Bruno Franchi **PDE and Analysis Seminar** Monday, November 27, 2023 - 15:30

Sobolev and Poincaré inequalities for differential forms in Heisenberg groups.

Heisenberg groups \mathbb{H}^n , $n \geq 1$, are connected, simply connected Lie groups whose Lie algebra is the central extensions

$$\mathfrak{h} = \mathfrak{h}_1 \oplus \mathfrak{h}_2$$
, with $\mathfrak{h}_2 = \mathbb{R} = Z(\mathfrak{h})$,

with bracket $\mathfrak{h}_1 \otimes \mathfrak{h}_1 \to \mathfrak{h}_2 = \mathbb{R}$ being a non-degenerate skew-symmetric 2-form. Due to its stratification, the Heisenberg Lie algebra admits a one parameter group of automorphisms δ_t ,

$$\delta_t = t \text{ on } \mathfrak{h}_1, \quad \delta_t = t^2 \text{ on } \mathfrak{h}_2,$$

which are counterparts of the usual Euclidean dilations in \mathbb{R}^N . Since dim $\mathfrak{h} = 2n + 1$, through exponential coordinates, \mathbb{H}^n can be identified with \mathbb{R}^{2n+1} endowed with a non-commutative product given by the Baker-Campell-Hausdorff formula.

The stratification of the Lie algebra \mathfrak{h} yields a lack of homogeneity of de Rham's exterior differential with respect to group dilations δ_{λ} . The so-called Rumin's complex (E_0^{\bullet}, d_c) is meant precisely to bypass the lack of homogeneity of de Rham's complex through a new complex that is still homotopic to de Rham's complex. A further crucial feature of Rumin's complex is that d_c is an operator of order 1 on *h*-forms when $h \neq n$ and of order 2 when h = n. In addition, \mathbb{H}^n can be endowed with an homogeneous norm that induces a structure of metric space (\mathbb{H}^n, d_c) . It is important to stress that the Hausdorff dimension of (\mathbb{H}^n, d_c) is Q := 2n + 2. In this talk we present a family of inequalities proved in collaboration with A. Baldi (Bologna) and P. Pansu (Orsay). Denote by B := B(x, r) a generic d_c -ball.

To give a gist of our results, we present the notion of interior Poincaré inequality in E_0^{\bullet} .

Definition 0.1. Let B = B(e, 1) and $B(\lambda) = B(e, \lambda)$. Given $1 \le h \le 2n + 1$ and $1 \le p \le q \le \infty$, we say that the interior \mathbb{H} -Poincaré_{p,q} inequality holds in E_0^h if there exist constants $\lambda > 1$ and C such that, for every d_c -exact differential h-form ω in $L^p(B(\lambda); E_0^h)$ there exists a differential (h-1)-form ϕ in $L^q(B, E_0^{h-1})$ such that $d_c\phi = \omega$ and

(1)
$$\|\phi\|_{L^q(B,E_0^{h-1})} \le C \|\omega\|_{L^p(B(\lambda),E_0^h)}$$
 interior \mathbb{H} -Poincaré_{p,q}(h).

We can prove that

Theorem 0.2 (Poincaré inequality). If $1 \le h \le 2n+1$, we have:

i) if $h \neq n+1, 2n+1$ and $1 \leq p < Q$, then the interior \mathbb{H} -Poincaré_{p,pQ/(Q-p)}(h) holds;

ii) if h = n+1 and $1 \le p < Q/2$, then the interior \mathbb{H} -Poincaré_{p,pQ/(Q-2p)}(n+1) holds;

iii) if h = 2n + 1 and $1 , then the interior <math>\mathbb{H}$ -Poincaré_{p,pQ/(Q-p)}(h) holds.

The case p = 1 requires an approach *ad hoc*. The other endpoint result p = N, $q = \infty$, is more delicate. Indeed, it is well known that the interior Poincaré_{N,∞}(1) fails to hold in

 \mathbb{R}^N , and has to be replaced by the so-called Trudinger exponential estimate or by the more precise Adams-Trudinger inequality.

However, rather surprisingly, in 2007 Bourgain & Brezis proved that a global Poincaré_{N,∞}(h) holds for 1 < h < N - 1. An analogous result can be proved in \mathbb{H}^n provided we replace N by Q or Q/2 according to the degree of the form.