
PANSU DIFFERENTIABILITY

SOHEIL MALEKZADEH

1. Carnot Groups

1.1. Carnot-Carathéodory Metrics. Let Ω ⊆ Rn be an open set and letX = (X1, . . . , Xm)

be a family of vector fields with locally Lipschitz continuous coefficients on Ω. Vector fields

will be written

Xj(x) = (a1j(x), . . . , anj(x))

for j = 1, . . . ,m, where aij are locally Lipschitz on Ω. We will write the coefficients aij in

the n×m matrix A = col[X1, . . . , Xm].

Definition 1.1. A Lipschitz curve γ : [0, T ]→ Ω is X-admissible if there exists a measur-

able function h : [0, T ]→ Rm such that

(i) γ̇(t) = A(γ(t))h(t) =
∑m

j=1 hj(t)Xj(γ(t)) for a.e. t ∈ [0, T ],

(ii) h ∈ L∞([0, T ]).

The curve γ is X-subunit if it is X-admissible and ‖h‖∞ ≤ 1.

Remark 1.2. X-admissible is horizontal

Define d : Ω× Ω→ [0,∞] by

d(x, y) = inf{T ≥ 0 | γ : [0, T ]→ Ω is X-subunit such that γ(0) = x and γ(T ) = y}.

If the above set is empty we define d(x, y) =∞.

Proposition 1.3. If d(x, y) <∞ for all x, y ∈ Ω then (Ω, d) is a metric space.

The metric space (Ω, d) is called the Carnot-Carathéodory metric space.
1
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2. Pansu Differentiability

Let G = (Rn, ·, δλ, d) and Ḡ = (Rn̄, ·̄, δ̄λ, d̄) be two Carnot groups. A map ϕ : G→ Ḡ is

a homogeneous homomorphism if ϕ is a group homomorphism and ϕ(δλ(x)) = δ̄λ(ϕ(x)) for

all x ∈ G and λ > 0. A map f : G→ Ḡ is Lipschitz if there exists a constant M > 0 such

that d̄(f(x), f(y)) ≤ Md(x, y) for all x, y ∈ G. In G = Rn we fix the Lebesgue measure

and denote by |E| the measure of a measurable set E ⊆ G.

Definition 2.1. A map f : G → Ḡ is Pansu-differentiable (or differentiable) at x ∈ G if

for all y ∈ G there exists

Dfx(y) = lim
t→0

δ̄1/t(f(x)−1f(xδt(y))),

and the convergence is uniform with respect to y. The map Dfx : G→ Ḡ is the differential

of f at x.

The main theorem in this section is the Pansu differentiability of Lipschitz mappings

between Carnot groups. This theorem has interesting consequences which we will state

and prove after the proof of this theorem.

Theorem 2.2. Let f : G → Ḡ be a Lipschitz map. Then Dfx exists for a.e. x ∈ G and

is a homogeneous homomorphism.

Proposition 2.3. If Dfx(y) exists then there also exists Dfx(δλ(y)) for all λ > 0 and

Dfx(δλ(y)) = δ̄λDfx(y).

Proof. Indeed, for a fixed λ > 0 and t > 0,

δ̄1/t(f(x)−1f(xδt(δλ(y)))) = δ̄λδ̄1/λt(f(x)−1f(xδλt(y))),

by the dilation properties. Thus,

Dfx(δλ(y)) = lim
t→0

δ̄1/t(f(x)−1f(xδt(δλ(y))))

= δ̄λ lim
s→0

δ̄1/s(f(x)−1f(xδs(y))) = δ̄λDfx(y).

�

If f : G→ Ḡ, x, y ∈ G and t > 0 define

R(x, y; t) = δ̄1/t(f(x)−1f(xδt(y))).
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Proposition 2.4. Let f : G→ Ḡ be a Lipschitz map. If for some y1, y2 ∈ G the derivatives

Dfx(y1) and Dfx(y2) exist for a.e. x ∈ G, then there also exists Dfx(y1y2) for a.e. x ∈ G
and

Dfx(y1y2) = Dfx(y1)Dfx(y2).

Proof. By Proposition 2.3, we can assume that d(y1, 0) = d(y2, 0) = 1. Let Ω be an arbitrary

open subset of G with finite Lebesgue measure and fix η > 0. By our assumptions, the

mappings x 7→ Dfx(y1) and x 7→ Dfx(y2) are defined almost everywhere on G and therefore

they define two measurable functions from G to Ḡ. Also, R(x, y2; t) → Dfx(y2) as t → 0

for a.e. x ∈ G. By Lusin and Egorov Theorems, there exists a compact set K ⊆ Ω such

that

(i) |Ω \K| < η,

(ii) For any x ∈ K, Dfx(y1) and Dfx(y2) exist and they are continuous at x,

(iii) R(x, y2; t)→ Dfx(y2) as t→ 0 uniformly on K.

If we prove the claim for all x ∈ K we are done. Fix x ∈ K. We have to show that

limt→0R(x, y1y2; t) exists and Dfx(y1y2) = Dfx(y1)Dfx(y2). Using the fact that δλ and δ̄λ

are group automorphisms and by “adding and subtracting” the term f(xδt(y1)) we find

R(x, y1y2; t) = δ̄1/t(f(x)−1f(xδt(y1y2))) = δ̄1/t(f(x)−1f(xδt(y1)δt(y2)))

= δ̄1/t(f(x)−1f(xδt(y1))f(xδt(y1))−1f(xδt(y1)δt(y2)))

= δ̄1/t(f(x)−1f(xδt(y1)))δ̄1/t(f(xδt(y1))−1f(xδt(y1)δt(y2)))(2.1)

= R(x, y1; t)R(xδt(y1), y2; t).

We know that R(x, y1; t)→ Dfx(y1). So we have to show that R(xδt(y1), y2; t)→ Dfx(y2).

Let ε > 0 be chosen arbitrarily. Then by (iii) there exists δ > 0 such that

d̄(R(z, y2; t), Dfz(y2)) < ε

for all z ∈ K as long as 0 < t < δ.

If xδt(y1) ∈ K for all 0 < t < δ′ and some 0 < δ′ < δ then by (ii) there exists 0 < δ′′ < δ′

such that d̄(Dfxδt(y1)(y2), Dfx(y2)) < ε when 0 < t < δ′′ and

d̄(R(xδt(y1), y2; t), Dfx(y2)) ≤ d̄(R(xδt(y1), y2; t), Dfxδt(y1)(y2))

+ d̄(Dfxδt(y1)(y2), Dfx(y2)) < 2ε.(2.2)
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This shows that

Dfx(y1y2) = lim
t→0

R(x, y1y2; t) = Dfx(y1)Dfx(y2).

However, in general xδt(y1) /∈ K. Let B(x, r) a C-C ball centered at x with radius r. By

the Lebesgue differentiation theorem in doubling metric measure spaces, for a.e. x ∈ K
we have

lim
r→0

|B(x, r) \K|
|B(x, r)|

= 0.

Let λ(t) = dist(xδt(y1), K) = d(xδt(y1), x̄(t)) for some x̄(t) ∈ K and define ȳ1 = δ1/t(x
−1x̄(t))

so that x̄(t) = xδt(ȳ1(t)). By Proposition (1.7.3)

d(xδt(y1), x) = d(δt(y1), 0) = td(y1, 0) = t,

and consequently, B(xδt(y1), λ(t)) ⊆ B(x, t + λ(t)) \ K. Let Q ≥ n be the homogeneous

dimension of G. By Proposition (1.7.7)

|B(xδt(y1), λ(t))|
|B(x, t+ λ(t))|

=
(λ(t))Q|B(0, 1)|

(t+ λ(t))Q|B(0, 1)|
=

(
λ(t)

t+ λ(t)

)Q
,

and consequently(
λ(t)

t+ λ(t)

)Q
=
|B(xδt(y1), λ(t))|
|B(x, t+ λ(t))|

≤ |B(x, t+ λ(t)) \K|
|B(x, t+ λ(t))|

.

Notice that λ(t) = dist(xδt(y1), K) ≤ d(xδt(y1), x) = t. Hence

0 ≤ lim
t→0

(
λ(t)

t+ λ(t)

)Q
≤ lim

t→0

|B(x, t+ λ(t)) \K|
|B(x, t+ λ(t))|

= 0,

which implies

(2.3) lim
t→0

λ(t)

t
= 0.

We have

λ(t) = d(xδt(y1), x̄(t)) = d(xδt(y1), xδt(ȳ1(t))) = d(δt(y1), δt(ȳ1(t))) = td(y1, ȳ1(t)),

and from (2.3) it follows that

(2.4) lim
t→0

d(y1, ȳ1(t)) = 0.

We already showed in (2.1) that

R(x, y1y2; t) = R(x, y1; t)R(xδt(y1), y2; t).



PANSU DIFFERENTIABILITY 5

Our goal is to show that R(xδt(y1), y2; t) converges to Dfx(y2). Notice that the point

xδt(y1) does not belong to K. So it has to be projected onto the set K in order to apply

the argument in (2.2). Write

R(xδt(y1), y2; t) = δ̄1/t(f(xδt(y1))−1f(xδt(ȳ1(t))))

δ̄1/t(f(xδt(ȳ1(t)))−1f(xδt(ȳ1(t))δt(y2)))

δ̄1/t(f(xδt(ȳ1(t))δt(y2))−1f(xδt(y1)δt(y2))) =: R1(t)R2(t)R3(t).

We claim that limt→0R1(t) = limt→0R3(t) = 0. Let M > 0 be the Lipschitz constant of f

and notice that

d̄(R1(t), 0) = d̄(δ̄1/t(f(xδt(y1))−1f(xδt(ȳ1(t)))), 0)

= d̄(δ̄1/t(f(xδt(ȳ1(t)))), δ̄1/t(f(xδt(y1))))

=
1

t
d̄(f(xδt(ȳ1(t))), f(xδt(y1)))

≤ M

t
d(xδt(ȳ1(t)), xδt(y1))

=
M

t
d(δt(ȳ1(t)), δt(y1)) = Md(ȳ1(t), y1),

and analogously

d̄(R3(t), 0) = d̄(δ̄1/t(f(xδt(ȳ1(t))δt(y2))−1f(xδt(y1)δt(y2))), 0)

= d̄(δ̄1/t(f(xδt(y1)δt(y2))), δ̄1/t(f(xδt(ȳ1(t))δt(y2))))

=
1

t
d̄(f(xδt(y1)δt(y2)), f(xδt(ȳ1(t))δt(y2)))

≤ M

t
d(xδt(y1)δt(y2), xδt(ȳ1(t))δt(y2))

=
M

t
d(xδt(y1y2), xδt(ȳ1(t)y2))

=
M

t
d(δt(y1y2), δt(ȳ1(t)y2)) = Md(y1y2, ȳ1(t)y2).

So, (2.4) implies that both R1(t) and R3(t) converge to 0 in Ḡ. Consider now R2(t) and

notice that

R2(t) = R(xδt(ȳ1(t)), y2; t).

Since xδt(ȳ1(t)) ∈ K for all t and by (2.4), the argument in (2.2) does apply and hence

lim
t→0

R2(t) = Dfx(y2).
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Therefore,

lim
t→0

R(xδt(y1), y2; t) = Dfx(y2),

and finally

Dfx(y1y2) = Dfx(y1)Dfx(y2).

�

Let G = (Rn, ·, δλ, d) be a Carnot group and assume that X = (X1, . . . , Xm) is a

system of generators for the Lie algebra of the group such that Xj(0) = ej. We denote by

A = col[X1, . . . , Xm] the n×m matrix of the coefficients of the vector fields.

In the following lemma, we heavily use the fact that the underlying manifold of a Carnot

group can always be chosen to be Rn for some n ∈ N and therefore take advantage the

exponential coordinates. In this situation, the Carnot group G restricted to the first

m-dimensional subspace acts like the regular Rm. This is the case for example for the

Heisenberg group H1 and the 2-dimensional xy-plane.

Lemma 2.5. Let γ : [0, 1] → G be a Lipschitz curve. Then γ is X-admissible and if

h ∈ L∞([0, 1]) is its vector of canonical coordinates then

lim
t→0

δ1/t(γ(s)−1γ(s+ t)) = (h1(s), . . . , hm(s), 0, . . . , 0)

for a.e. s ∈ [0, 1].

Proof. By abuse of notation we identify h with (h1, . . . , hm, 0, . . . , 0) whenever necessary.

By Proposition 1.3.3, γ is X-admissible and γ̇(s) = A(γ(s))h(s) for a.e. s ∈ [0, 1]. Define

E = {s ∈ [0, 1] : γ̇(s) = A(γ(s))h(s) exists and s is a Lebesgue point of h}.

Clearly E is of full measure. Let s ∈ E and assume, without loss of generality, that s = 0.

Since the statement is translation invariant we may also assume that γ(0) = 0. We have

to prove that

lim
t→0

δ1/t(γ(t)) = (h1(0), . . . , hm(0), 0, . . . , 0).

Recall that if the coordinate xi has degree di then we can write

δ1/t(γ(t)) =

(
γ1(t)

td1
,
γ2(t)

td2
, . . . ,

γn(t)

tdn

)
,
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and we write xy = P (x, y) = x+ y +Q(x, y). By formula (1.7.83) for a.e. t ∈ [0, 1]

γ̇(t) =
m∑
j=1

hj(t)Xj(γ(t)) =
m∑
j=1

hj(t)
n∑
i=1

∂Pi
∂yj

(γ(t), 0)ei(2.5)

=
n∑
i=1

m∑
j=1

hj(t)
∂Pi
∂yj

(γ(t), 0)ei

We begin with i = 1, 2, . . . ,m. Since the degree of the coordinate xi is equal to 1, we have

to show that

lim
t→0

γi(t)

t
= γ̇i(0) = hi(0).

We know that Qi = 0 by Lemma 1.7.2 (iv). Thus, for all 1 ≤ i, j ≤ m,

∂Pi
∂yj

(γ(t), 0) = δij,

and consequently,

γ̇i(t) = hi(t),

for a.e. t ∈ [0, 1]. Since 0 ∈ E, we have

γ̇i(0) = lim
t→0

γi(t)

t
=

1

t

∫ t

0

hi(s) ds = hi(0),

for all i = 1, 2, . . . ,m.

Now, fix i = m+ 1, . . . , n and assume that the ith coordinate has degree k ≥ 2 and that

the claim has been proved for the degrees 1, 2, . . . , k− 1. If we denote by Q̄i(x, y) the sum

of the monomials in Qi(x, y) in which y appears linearly then by (2.5) we can write

γ̇i(t) =
m∑
j=1

hj(t)
∂Pi
∂yj

(γ(t), 0) =
m∑
j=1

hj(t)
∂Qi

∂yj
(γ(t), 0) = Q̄i(γ(t), h(t)).

It follows from Lemma 1.7.2 (v) that Qi(γ(t), h(t)) depends only on the coordinates of γ(t)

and h(t) with degrees strictly less than k. Moreover, since Q̄i is homogeneous of degree k

and it is the sum of the monomials in Qi(x, y) in which y appears linearly, each monomial

in Q̄i(γ(t), h(t)) contains the components γ1(t), . . . , γi−1(t) homogeneously of degree k−1.

(h(t) is the second component which plays the role of y.) Thus

Q̄i(δ1/s(γ(s)), h(s)) =
1

sk−1
Q̄i(γ(s), h(s)).
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Since γ̇i(t) = Q̄i(γ(t), h(t)), we have∣∣∣∣γi(t)tk

∣∣∣∣ ≤ 1

tk

∫ t

0

∣∣Q̄i(γ(s), h(s))
∣∣ ds

=
1

t

∫ t

0

∣∣∣∣ 1

tk−1
Q̄i(γ(s), h(s))

∣∣∣∣ ds
≤ 1

t

∫ t

0

∣∣∣∣ 1

sk−1
Q̄i(γ(s), h(s))

∣∣∣∣ ds
=

1

t

∫ t

0

∣∣Q̄i(δ1/s(γ(s)), h(s))
∣∣ ds.

By the inductive hypothesis, the jth component of δ1/t(γ(t)) converges to hj(0) for any

coordinate j with degree less than or equal to k − 1. Therefore,

lim sup
t→0

∣∣∣∣γi(t)tk

∣∣∣∣ ≤ ∣∣Q̄i(h(0), h(0))
∣∣ .

But Q̄i(h(0), h(0)) = 0 by Lemma 1.7.2 (iv) and the proof is complete. �

Remark 2.6. Let V = {λej : λ ∈ R and j = 1, . . . ,m}. Since the Lie algebra of the group

is nilpotent and stratified then it follows that there exists r ∈ N such that for every y ∈ G
there exists y1, . . . , yr ∈ V such that y = y1 . . . yr.

Theorem 2.7 (Pansu-Rademacher Theorem). Let f : G → Ḡ be a Lipschitz map. Then

Dfx : G→ Ḡ exists for a.e. x ∈ G and is a homogeneous homomorphism.

Proof. Fix 1 ≤ j ≤ m and write x̂j = (x1, . . . , xj−1, 0, xj+1, . . . , xn). So, for any x ∈ G, the

curve γx̂j : R→ Ḡ defined by

γx̂j(t) = f(exp(tXj)(x̂j))

is Lipschitz. Indeed, if γj : R→ G is a solution of the equation γ̇j(s) = Xj(γj(s)) with the

initial condition γj(0) = 0, then we have exp(Xj) = γj(1) and

exp(tXj)(x̂j) = x̂j exp(tXj) = x̂jγ(t).

Thus, for any s, t ∈ R

d̄(γx̂j(s), γx̂j(t)) = d̄(f(exp(sXj)(x̂j)), f(exp(tXj)(x̂j)))

≤ Md(exp(sXj)(x̂j), exp(tXj)(x̂j))

= Md(x̂jγ(s), x̂jγ(t))

= Md(γ(s), γ(t)) ≤ML|s− t|.
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Here, M is the Lipschitz constant of f . Notice that the curve γ is an L-Lipschitz mapping

because it is an integral curve.

So, by Lemma 2.5, the curve γx̂j is Pansu differentiable at a.e. t ∈ R. Let Ej = {x ∈ G : γx̂j

is differentiable at xj} and define E =
⋂m
j=1Ej. By Fubini theorem, |G \ E| = 0. We will

show that f is differentiable at almost every point x in E.

Fix x ∈ E and since the statement is translation invariant assume without loss of

generality that x = 0. Let K = ∂B(0, 1) = {v ∈ G : d(v, 0) = 1}. If v ∈ K we have to

prove that there exists

Df0(v) = lim
t→0

R(0, v; t) = lim
t→0

δ̄1/t(f(0)−1f(δt(v)))

and that the convergence is uniform for v ∈ K. Since Ḡ with its Carnot-Carathéodory

metric d̄ is a complete metric space it is enough to show that for all ε > 0 there exist δ > 0

such that

sup
v∈K

d̄(R(0, v; s), R(0, v; t)) < (1 + 2M)ε

for all 0 < s, t < δ.

Since K is compact, we can find v1, . . . , vk ∈ K such that K ⊆
⋃k
i=1B(vi, ε). Fix a vi

and denote it by v. By Remark 2.6 we can write v = y1y2 . . . yr where each yi is of the form

λej for some λ ∈ R and j = 1, 2, . . . ,m. Without loss of generality we can also assume

λ = 1. Now, if γ(t) = f(exp(tXj)(0)) then

Df0(yi) = lim
t→0

δ̄1/t(f(0)−1f(δt(yi))) = lim
t→0

δ̄1/t(γ(0)−1γ(t))

exists for all i = 1, 2, . . . , r because 0 ∈ E. Hence, by Proposition 2.4, Df0(v) exists and

Df0(v) = Df0(y1) . . . Df0(yr).

Therefore, there exists δ > 0 such that

sup
i=1,...,k

d̄(R(0, vi; s), R(0, vi; t)) < ε

for all 0 < s, t < δ. If v ∈ K then there exists vi such that d(v, vi) < ε and

d̄(R(0, v; s), R(0, v; t)) ≤ d̄(R(0, v; s), R(0, vi; s)) + d̄(R(0, vi; s), R(0, vi; t))

+ d̄(R(0, vi; t), R(0, v; t))

≤ (1 + 2M)ε.
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Indeed,

d̄(R(0, v; s), R(0, vi; s)) = d̄(δ̄1/s(f(0)−1f(δs(v))), δ̄1/s(f(0)−1f(δs(vi))))

=
1

s
d̄(f(0)−1f(δs(v)), f(0)−1f(δs(vi)))

=
1

s
d̄(f(δs(v)), f(δs(vi)))

≤ M

s
d(δs(v), δs(vi))

= Md(v, vi) < Mε.

Similarly,

d̄(R(0, v; t), R(0, vi; t)) < Mε.

Therefore, we showed that for all ε > 0 there exist δ > 0 such that

sup
v∈K

d̄(R(0, v; s), R(0, v; t)) < (1 + 2M)ε

for all 0 < s, t < δ.

Now we have to prove the homomorphism.

The proof is complete. �

Corollary 2.8. There is no biLipschitz embedding of any noncommutative Carnot group

G into any Euclidean space Rk.

Proof. Assume, to the contrary that there exists a biLipschitz map f : G→ Rk. Then by

the Pansu-Rademacher Theorem, f is differentiable at almost every x ∈ G. Let x ∈ G be

such that dfx : G → Rk exists. We claim that dfx is also biLipschitz. Indeed, since f is

biLipschitz, there exist constants 0 < m < M <∞ such that

md(z1, z2) ≤ |f(z1)− f(z2)| ≤Md(z1, z2),

for all z1, z2 ∈ G. Here, d is the Carnot-Carathéodory metric on G.
Fix y1, y2 ∈ G and t > 0. We have

md(xδt(y
−1
2 y1), x) ≤ |f(xδt(y

−1
2 y1))− f(x)| ≤Md(xδt(y

−1
2 y1), x),

which implies

mtd(y1, y2) ≤ |f(xδt(y
−1
2 y1))− f(x)| ≤Mtd(y1, y2).

Hence,

md(y1, y2) ≤ |f(xδt(y
−1
2 y1))− f(x)|
t

≤Md(y1, y2).
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Sending t to 0 implies

md(y1, y2) ≤ |dfx(y−1
2 y1)| ≤Md(y1, y2).

Notice that dfx : G→ Rk is a homogeneous homomorphism. So, we have

md(y1, y2) ≤ |dfx(y1)− dfx(y2)| ≤Md(y1, y2).

This means that dfx is a biLipschitz map and therefore injective. Since G is a noncommu-

tative group, there exist w, z ∈ G such that [w, z] 6= 0. However,

dfx([w, z]) = dfx(wzw
−1z−1) = dfx(w) + dfx(z)− dfx(w)− dfx(z) = 0,

which is a contradiction with the injectivity of dfx. Hence, there is no biLipschitz embedding

of any noncommutative Carnot group into any Euclidean space. �

Remark 2.9. Notice that the Heisenberg group Hn is a noncommutative Carnot group.

Therefore, the above corollary implies that there is no biLipschitz embedding of any Heisen-

berg group into any Euclidean space.


