
Metric Currents 



Defintions 

𝒟 𝑋 = 𝑓 ∈ Lip 𝑋 ∶ 𝑓 has compact support  

Let 𝑋 be a locally compact metric space.   

Lip𝐾,𝑙 𝑋 = 𝑓 ∈ Lip𝑙 𝑋 ∶ spt 𝑓 ⊂ 𝐾  

Notice 𝒟 𝑋 =  Lip𝐾,𝑙(𝑋). Say… 

𝑓𝑗 → 𝑓  in 𝒟(𝑋) 

if and only if 

• 𝑓𝑗 belong to some fixed Lip𝐾,𝑙(𝑋) 

• 𝑓𝑗 → 𝑓 pointwise (hence uniformly) on 𝑋 

Say… 

𝜋𝑗 → 𝜋  in Liploc(𝑋) 

if and only if 

• For compact 𝐾 ⊂ 𝑋 there is a constant 𝑙𝐾 with Lip 𝜋𝑗|𝐾 ≤ 𝑙𝐾 

• 𝜋𝑗 → 𝜋 pointwise (hence locally uniformly) on 𝑋 



Definitions  Let 𝒟𝑛 𝑋 = 𝒟 𝑋 × Liploc 𝑋
𝑛

 

Let 𝑇: 𝒟𝑛 𝑋 → ℝ be a function satisfying the following properties 

1. Multilinearity in the 𝑛 + 1 arguments 
 

2. Continuity in the product topology 
 

3. Locality: let 𝑓, 𝜋1, … , 𝜋𝑛 ∈ 𝒟𝑛(𝑋) and suppose some 𝜋𝑖 is constant on a neighborhood of spt(𝑓).  Then 
𝑇 𝑓, 𝜋 = 0 

If 𝑇 satisfies these properties, we call it an 𝑛-dimensional metric current on 𝑋.   

Denote by 𝒟𝑛(𝑋) the space of these objects.   

Endow 𝒟𝑛(𝑋) with the locally convex weak topology. 

𝑇𝑘 → 𝑇 if 𝑇𝑘 𝑓, 𝜋 → 𝑇 𝑓, 𝜋  for all 𝑓, 𝜋 ∈ 𝒟𝑛(𝑋) 



Example   A submanifold 𝑀 𝑚  of a Riemannian manifold 𝑉 induces an 𝑚-current 𝑀 ∈ 𝒟𝑚(𝑉) 

𝑀 𝑓, 𝑔1, … , 𝑔𝑚 =  𝑓𝑑𝑔1 ∧ ⋯ ∧ 𝑑𝑔𝑚
𝑀

 

More generally, if we have in addition a function 𝑢 ∈ 𝐿loc
1 (𝑉), there is an induced current 𝑢 ∈ 𝒟𝑚(𝑉) 

𝑢 𝑓, 𝑔1, … , 𝑔𝑚 =  𝑢𝑓 𝑑𝑔1 ∧ ⋯ ∧ 𝑑𝑔𝑚
𝑀

 

(Non-) Example Let 𝑋 = ℝ.  We ask whether the dirac mass 𝛿0 induces a 1-current.  

𝛿0 𝑓, 𝑔 = 𝑓 0 𝑔′(0) 

In the classical theory, 𝛿0 is a current 

But in the theory of metric currents, 𝛿0 is not a current because 𝑔 is merely Lipschitz and may not have a derivative at 0.   

This is a serious problem.  It seems we have no hope for compactness of 𝒟𝑚 𝑋 .   



Lemma (Strict Locality of Metric Currents) 

𝑇 𝑓, 𝜋1, … , 𝜋𝑚 = 0 whenever some 𝜋𝑖 is constant on spt(𝑓). 

Proof Replace 𝑓 with 𝑓𝑗 = 𝛽𝑗 ∘ 𝑓 

By locality, 𝑇 𝑓𝑗 , 𝜋1, … , 𝜋𝑚 = 0 

𝑇 𝑓, 𝜋1, … , 𝜋𝑚  = 0 

𝛽𝑗 𝑠 = max 0, 𝑠 − 1/𝑗  



Lemma (Lang 2.2) Suppose 𝑇: 𝒟 𝑋 𝑚+1 → ℝ satisfies the conditions of a metric current with 𝒟(𝑋) in place of Liploc(𝑋). 

Then 𝑇 extends uniquely to a current in 𝒟𝑚(𝑋). 

Remark Thus, 𝑇 ∈ 𝒟𝑚(𝑋) is determined by its values on 𝒟 𝑋 𝑚+1 ⊂ 𝒟𝑚(𝑋). 

Proof   Let 𝑇 be given as in the hypotheses.   Define, for 𝑓, 𝜋1, … , 𝜋𝑚 ∈ 𝒟𝑚 𝑋 = 𝒟 𝑋 × Liploc 𝑋
𝑚

 

𝑇 𝑓, 𝜋1, … , 𝜋𝑚 = 𝑇 𝑓, 𝜎𝜋1, … , 𝜎𝜋𝑚  

Where 𝜎 ∈ 𝒟 𝑋  with 𝜎 ≡ 1 on a neighborhood of spt 𝑓 .   This is independent of the choice of 𝜎 by locality. 

The three axioms are now easy to check.  For example, continuity: 

Let 𝑓𝑘 , 𝜋1
𝑘 , … , 𝜋𝑚

𝑘 → 𝑓, 𝜋1, … , 𝜋𝑚  

Then the 𝑓𝑘 ∈ Lip𝐾,𝑙(𝑋) for a fixed 𝐾, 𝑙. 

Let 𝜎 ≡ 1 on a neighborhood of 𝐾 and… 

𝑓𝑘 , 𝜎𝜋1
𝑘 , … , 𝜎𝜋𝑚

𝑘 → 𝑓, 𝜎𝜋1, … , 𝜎𝜋𝑚  

By assumption, 𝑇 𝑓𝑘 , 𝜎𝜋1
𝑘 , … , 𝜎𝜋𝑚

𝑘 → 𝑇 𝑓, 𝜎𝜋1, … , 𝜎𝜋𝑚  

So the extension is continuous: 

𝑇 𝑓𝑘 , 𝜋1
𝑘 , … , 𝜋𝑚

𝑘 → 𝑇 𝑓, 𝜋1, … , 𝜋𝑚  



Definition (Lang 2.3) Let 𝑇 ∈ 𝒟𝑚(𝑋) and 𝑢, 𝑣 ∈ Liploc 𝑋 × Liploc 𝑋
𝑘

, with 0 ≤ 𝑘 ≤ 𝑚.   

Define 𝑇 𝑢, 𝑣  by the formula 

𝑇 𝑢, 𝑣 𝑓, 𝑔 = 𝑇 𝑢𝑓, 𝑣, 𝑔 , 𝑓, 𝑔 ∈ 𝒟𝑚−𝑘(𝑋) 

𝑇 𝑢, 𝑣  is easily seen to be an 𝑚 − 𝑘-current. 



Proposition (Lang 2.4) Suppose 𝑇 ∈ 𝒟𝑚(𝑋), 𝑚 ≥ 1. 𝑓, 𝜋1, … , 𝜋𝑚 ∈ 𝒟𝑚(𝑋). Then: 

1. If 𝜋𝑖 = 𝜋𝑗 for some 𝑖 ≠ 𝑗 then 𝑇 𝑓, 𝜋1, … , 𝜋𝑚 = 0. 

 
2. For 𝑔, ℎ ∈ Liploc 𝑋 , 

 
𝑇 𝑓, 𝑔ℎ, 𝜋2, … , 𝜋𝑚 = 𝑇 𝑓𝑔, ℎ, 𝜋2, … , 𝜋𝑚 + 𝑇 𝑓ℎ, 𝑔, 𝜋2, … . , 𝜋𝑚  



We first prove (1), the alternating property.   Let us prove that 𝑇 𝑓, 𝜋, 𝜋 = 0 for 𝑓, 𝜋 ∈ 𝒟1(𝑋). 

Take a 1-Lipschitz partition of unity of the real line as pictured, called 𝜌𝑘 .   

Let 𝜋  and 𝜋  be two modifications of 𝜋 as pictured. 
𝜎 ∘ 𝜋 

𝜋 

𝜎 ∘ 𝜋 



𝜎𝑗 ∘ 𝜋 

𝜌𝑘
𝑗
∘ 𝜋 



𝑇 𝑓, 𝜎𝑗 ∘ 𝜋, 𝜎 𝑗 ∘ 𝜋  

𝑇 𝑓, 𝜋, 𝜋  

=  𝑇 𝜌𝑘
𝑗

∘ 𝜋 𝑓, 𝜎𝑗 ∘ 𝜋, 𝜎 𝑗 ∘ 𝜋

𝑘∈ℤ

 

Finite sum (why?) 

= 0,  by strict locality 

𝜎𝑗 ∘ 𝜋 

𝜌𝑘
𝑗
∘ 𝜋 



Now we prove the product rule (2) 

It suffices to prove 𝑇 𝑓, 𝑔2 = 2𝑇 𝑓𝑔, 𝑔  (Why?) 

𝑇 𝑓, 𝑔ℎ, 𝜋2, … , 𝜋𝑚 = 𝑇 𝑓𝑔, ℎ, 𝜋2, … , 𝜋𝑚 + 𝑇 𝑓ℎ, 𝑔, 𝜋2, … . , 𝜋𝑚  

𝑇 𝑓, 𝜎𝑗 ∘ 𝑔 𝜎 𝑗 ∘ 𝑔 =  𝑇 𝜌𝑘
𝑗

∘ 𝑔 𝑓, 𝜎𝑗 ∘ 𝑔 𝜎 𝑗 ∘ 𝑔

𝑘∈ℤ

 

=  
2𝑘

𝑗
𝑇 𝜌𝑘

𝑗
∘ 𝑔 𝑓, 𝜎𝑗 ∘ 𝑔

𝑘 even 

+  
2𝑘

𝑗
 𝑇 𝜌𝑘

𝑗
∘ 𝑔 𝑓, 𝜎𝑗 ∘ 𝑔

𝑘 odd 

 

=  
2𝑘

𝑗
 𝑇 𝜌𝑘

𝑗
∘ 𝑔 𝑓, 𝜎 𝑗 ∘ 𝑔 + 𝜎𝑗 ∘ 𝑔

𝑘 even 

+  
2𝑘

𝑗
 𝑇 𝜌𝑘

𝑗
∘ 𝑔 𝑓, 𝜎𝑗 ∘ 𝑔 + 𝜎 𝑗 ∘ 𝑔

𝑘 odd 

 

= 𝑇 𝜏𝑗 ∘ 𝑔 𝑓, 𝜎𝑗 + 𝜎 𝑗 ∘ 𝑔  

𝜏𝑗 =  
2𝑘

𝑗
𝜌𝑘

𝑗

𝑘∈ℤ

 

→ 𝑇(𝑔𝑓, 2𝑔) 
∎ 

𝜎𝑗 ∘ 𝑔 

𝜌𝑘
𝑗
∘ 𝜋 



Theorem (Chain Rule, Lang 2.5) 𝑇 𝑓, 𝑔 ∘ 𝜋 = 𝑇 𝑔′ ∘ 𝜋 𝑓, 𝜋  for 1-currents 𝑇 and 𝑔 ∈ 𝐶1,1 ℝ  

Proof   

𝑇 𝑓, 𝜋𝑟 = 𝑇 𝑟𝜋𝑟−1𝑓, 𝜋  by the product rule. 

Thus the chain rule holds for 𝑔 a polynomial.   Now suppose 𝑔 ∈ 𝐶2 ℝ  

Invoke Stone-Weierstrass Theorem to find polynomials 𝑝𝑗 → 𝑔 in 𝐶2 ℝ . 

Finally, any 𝑔 ∈ 𝐶1,1 can be approximated by 𝑔𝑗 ∈ 𝐶2 ℝ  by convolution.   

More generally: 

∎ 



Theorem (Chain Rule, Lang 2.5) Suppose 𝑚, 𝑛 ≥ 1, 𝑇 ∈ 𝒟𝑚(𝑋), 𝑈 ⊂ ℝ𝑛 open, 𝑓 ∈ 𝒟(𝑋) 

𝜋 = 𝜋1, … , 𝜋𝑛 ∈ Liploc(𝑋, 𝑈), 𝑔 = 𝑔1, … , 𝑔𝑚 ∈ 𝐶1,1 𝑈 𝑚.   If 𝑛 ≥ 𝑚 then 

𝑇 𝑓, 𝑔 ∘ 𝜋 =  𝑇 𝑓 det 𝐷𝜆 𝑘 𝑔𝑖 ∘ 𝜋
𝑖,𝑘=1

𝑚
, 𝜋𝜆 1 , … , 𝜋𝜆 𝑚  

𝜆∈Λ(𝑛,𝑚)

 

If 𝑛 < 𝑚 then 𝑇 𝑓, 𝑔 ∘ 𝜋 = 0 

Proof Again, the theorem holds for polynomials, and follows from a density argument. 



Proposition (Standard Example, Lang 2.6) Let 𝑈 ⊂ ℝ𝑚 open, 𝑚 ≥ 1.  Then every 𝑢 ∈ 𝐿loc
1 (𝑈) induces a current 𝑢 ∈ 𝒟𝑚(𝑈) 

satisfying 

𝑢 𝑓, 𝑔 =  𝑢𝑓 det 𝐷𝑔  𝑑𝑥
𝑈

 

Proof Locality and multilinearity are obvious.  We prove continuity.   Let 𝑓𝑗 , 𝑔𝑗 → 𝑓, 𝑔 ∈ 𝒟𝑚(𝑈). 

There exists 𝑉 ⋐ 𝑈 and 𝑙 > 0 such that spt 𝑓𝑗 ⊂ 𝑉 and Lip 𝑓𝑗 ≤ 𝑙 for all 𝑗, and 𝑓𝑗 → 𝑓 uniformly; 

Moreover Lip 𝑔𝑖
𝑗
|𝑉 ≤ 𝑙 for 𝑗, 𝑖 and 𝑔𝑖

𝑗
|𝑉 → 𝑔𝑖|𝑉  uniformly.  Put ℎ𝑖

𝑗
= 𝑔𝑖

𝑗
− 𝑔𝑖 and we have 

𝑢 𝑓𝑗 , 𝑔𝑗 − 𝑢 𝑓, 𝑔  = 𝑢 𝑓𝑗 − 𝑓, 𝑔𝑗 +  𝑢 𝑓, 𝑔1, … , 𝑔𝑖−1, ℎ𝑖
𝑗
, 𝑔𝑖+1

𝑗
, … , 𝑔𝑚

𝑗

𝑚

𝑖=1

 

The first term tends to zero. Consider the summand 𝑖 = 1. 𝑢𝑓 ∈ 𝐿1(𝑉) so we need to show 

 𝑣 det 𝐷(ℎ1
𝑗
, 𝑔2

𝑗
, … , 𝑔𝑚

𝑗
𝑑𝑥 → 0

𝑉

, 𝑣 ∈ 𝐿1(𝑉) 

But 𝐶𝑐
1 𝑉 ⊂ 𝐿1(𝑉) is dense and the determinants are bounded in 𝐿∞(𝑉).  So we can take 𝑣 ∈ 𝐶𝑐

1(𝑉). 

 𝑣 det 𝐷 ℎ1
𝑗
, 𝑔2

𝑗
, … , 𝑔𝑚

𝑗
𝑑𝑥

𝑉

= −  ℎ1
𝑗
det 𝐷 𝑣, 𝑔2

𝑗
, … , 𝑔𝑚

𝑗
𝑑𝑥

𝑉

 (Stokes’ Theorem)   

0 



Definition (Support, Lang 3.1) Given 𝑇 ∈ 𝒟𝑚(𝑋), 𝑚 ≥ 0, its support spt(𝑇) in 𝑋 is the intersection of closed sets 𝐶 ⊂ 𝑋 

with the property that 𝑇 𝑓, 𝜋 = 0 for 𝑓, 𝜋 ∈ 𝒟𝑚(𝑋) with spt 𝑓 ∩ 𝐶 = ∅. 

spt 𝑇 = ⋂ 𝐶 closed : 𝑇 𝑓, 𝜋 = 0 for 𝑓, 𝜋 ∈ 𝒟𝑚 𝑋  with spt 𝑓 ∩ 𝐶 = ∅  

Lemma (Support, Lang 3.2) Suppose 𝑇 ∈ 𝒟𝑚(𝑋), 𝑚 ≥ 0.  Then: 

(1) spt 𝑇 = 𝑥 ∈ 𝑋 : 휀 > 0 ∃ 𝑓, 𝜋 ∈ 𝒟𝑚 𝑋 spt 𝑓 ⊂ 𝐵 𝑥, 휀  and 𝑇 𝑓, 𝜋 ≠ 0  

(2) If 𝑓|spt 𝑇 = 0 then 𝑇 𝑓, 𝜋1, … , 𝜋𝑚 = 0 

(3) 𝑇 𝑓, 𝜋1, … , 𝜋𝑚 = 0 if some 𝜋𝑖 is constant on 𝑓 ≠ 0 ∩ spt 𝑇 . 

Proof   Let Σ be the set described in (1). Suppose 𝑥 ∉ spt 𝑇 . Let 𝐶 be a closed set with property ∗  and 𝑥 ∉ 𝐶. 

(∗) 

Let 휀 > 0 be such that 𝑇 𝑓, 𝜋 = 0 whenever spt 𝑓 ⊂ 𝐵 𝑥, 휀 .   Conclude 𝑥 ∉ Σ. 

Let us now show that Σ has property (∗). This will show spt 𝑇 ⊂ Σ. Let spt 𝑓 ∩ Σ = ∅. 

Let 𝑈1, … , 𝑈𝑁 be a covering of spt(𝑓) by balls not touching Σ with property (∗∗)  

휀 > 0 ∃ 𝑔, 𝜋 ∈ 𝒟𝑚 𝑋 spt 𝑔 ⊂ 𝐵 𝑥, 휀  and 𝑇 𝑔, 𝜋 ≠ 0  

∃휀 > 0 ∀ 𝑔, 𝜋 ∈ 𝒟𝑚 𝑋 spt 𝑔 ⊂ 𝐵 𝑥, 휀 ⇒ 𝑇 𝑔, 𝜋 = 0  

(∗∗) 
Decompose 𝑓 =  𝜑𝑖𝑓

𝑁
𝑖=1  

𝑇 𝑓, 𝜋 =  𝑇 𝜑𝑖𝑓, 𝜋

𝑁

𝑖=1

 = 0 



Proof (continued) Now let us show that if 𝑓|spt 𝑇 = 0 then 𝑇 𝑓, 𝜋1, … , 𝜋𝑚 = 0. 

𝑓 𝑓𝑗 Each ball 𝐵 has the property that 
spt 𝑔 ⊂ 𝐵 ⇒ 𝑇 𝑔, 𝜋 = 0 

Take a partition of unity subordinate to 

these balls and conclude 𝑇 𝑓𝑗 , 𝜋 = 0 

By continuity, 𝑇 𝑓, 𝜋 = 0.  



Proof (continued) Finally we must show that 𝑇 𝑓, 𝜋1, … , 𝜋𝑚 = 0 if some 𝜋𝑖 is constant on 𝑓 ≠ 0 ∩ spt 𝑇 . 

Assume WLG 𝑚 = 1.   

𝑇 𝑓, 𝜋  𝑇 𝑓, 𝛽𝑗 ∘ 𝜋  

Observe spt 𝛽𝑗 ∘ 𝜋 ∩ spt 𝑓|spt 𝑇 = ∅.   

Let spt 𝑓|spt 𝑇 ≺ 𝜎 ≺ 𝑋\spt 𝛽𝑗 ∘ 𝜋  

 − 𝑇 𝑓 1 − 𝜎 , 𝛽𝑗 ∘ 𝜋  = 𝑇 𝜎𝑓, 𝛽𝑗 ∘ 𝜋  = 0 

0 because of part (2): 
𝑔|spt 𝑇 = 0 ⇒ 𝑇 𝑔, 𝜋 = 0 

Subtract a constant and assume 𝜋 = 0 on 𝑓 ≠ 0 ∩ spt 𝑇 . 

∎ 



Proposition (Lang 3.3)   Let 𝑇 ∈ 𝒟𝑚(𝑋), 𝐴 ⊂ 𝑋 a locally compact subspace containing spt(𝑇). Then there is a unique current 

𝑇𝐴 ∈ 𝒟𝑚(𝐴) with the property that… 

𝑇𝐴 𝑓, 𝜋1, … , 𝜋𝑚 = 𝑇 𝑓 , 𝜋 1, … , 𝜋 𝑚  

… whenever 𝑓 , 𝜋 1, … , 𝜋 m are extensions of 𝑓, 𝜋1, … , 𝜋𝑚 to all of 𝑋.  Moreoever, spt 𝑇𝐴 = spt 𝑇 . 

Proof   Let 𝐾 ⊂ 𝐴 be compact, 𝑙 ≥ 0 and 𝑐 > 0. There exist 𝐾 ⊂ 𝐾′ ⊂ 𝑋, 𝑙′ ≥ 𝑙 and 𝐸 an extension operator 

𝐸: Lip𝐾,𝑙 𝐴 ∩ 𝑓 ∞ ≤ 𝑐 → Lip𝐾′,𝑙′(𝑋) 

𝐸 can be taken to be a MacShane extension times a cutoff function.   If 𝐸 and 𝐸  are two such extensions, then 

𝑇 𝐸𝑓, 𝐸𝜋1, … , 𝐸𝜋𝑚 − 𝑇 𝐸 𝑓, 𝐸 𝜋1, … , 𝐸 𝜋𝑚 = 𝑇 𝐸𝑓 − 𝐸 𝑓, 𝐸𝜋1, … , 𝐸𝜋𝑚  

+  𝑇 𝐸 𝑓, 𝐸 𝜋1, … , 𝐸 𝜋𝑖−1, 𝐸𝜋𝑖 − 𝐸 𝜋𝑖 , 𝐸𝜋𝑖+1, … , 𝐸𝜋𝑚

𝑚

𝑖=1

 

Each of the terms vanishes by the previous lemma.  So 𝑇𝐴 is thus well-defined.    

We used the fact that currents are determined by their values on 𝒟 𝑋 𝑚+1.  



Definition (Boundary, Lang 3.4) The boundary of a current 𝑇 ∈ 𝒟𝑚(𝑋), 𝑚 ≥ 1 is the current 𝜕𝑇 ∈ 𝒟𝑚−1(𝑋) defined by 

𝜕𝑇 𝑓, 𝜋1, … , 𝜋𝑚−1 ≔ 𝑇 𝜎, 𝑓, 𝜋1, … , 𝜋𝑚−1  

for 𝑓, 𝜋1, … , 𝜋𝑚−1 ∈ 𝒟𝑚−1(𝑋), where 𝜎 ∈ 𝒟(𝑋) is any function with 𝜎 ≡ 1 on 𝑓 ≠ 0 ∩ spt 𝑇 . 

Lemma (Lang 3.5) 𝜕𝑇  𝑢, 𝑣 = 𝑇 (1, 𝑢, 𝑣) + −1 𝑘𝜕 𝑇 𝑢, 𝑣  

Proof 𝜕𝑇  𝑢, 𝑣 𝑓, 𝑔 = 𝜕𝑇 𝑢𝑓, 𝑣, 𝑔  

= 𝑇 𝜎, 𝑢𝑓, 𝑣, 𝑔  

= 𝑇 𝜎𝑓, 𝑢, 𝑣, 𝑔 + 𝑇 𝜎𝑢, 𝑓, 𝑣, 𝑔  

= 𝑇 𝑓, 𝑢, 𝑣, 𝑔 + −1 𝑘𝑇 𝜎𝑢, 𝑣, 𝑓, 𝑔  

= 𝑇 1, 𝑢, 𝑣 𝑓, 𝑔 + −1 𝑘(𝜕 𝑇 𝑢, 𝑣 𝑓, 𝑔  

Observe that if 𝑀 is a manifold with boundary 

𝜕𝑀 𝑓𝑑𝑥1 ∧ ⋯ ∧ 𝑑𝑥𝑚−1 = 𝑀 𝑑𝑓 ∧ 𝑑𝑥1 ∧ ⋯ ∧ 𝑑𝑥𝑚−1  

So this definition is simply meant to give us Stokes’ Theorem. 



Definition (Push-forward, Lang 3.6)   Suppose 𝑇 ∈ 𝒟𝑚(𝑋), 𝐴 ⊂ 𝑋 is a locally compact subspace containing spt 𝑇 . 

Suppose 𝑌 is another locally compact metric space. Suppose 𝐹 ∈ Liploc(𝐴, 𝑌) is proper.   Define the pushforward: 

𝐹#𝑇 𝑓, 𝜋1, … , 𝜋𝑚 ≔ 𝑇𝐴 𝑓 ∘ 𝐹, 𝜋1 ∘ 𝐹, … , 𝜋𝑚 ∘ 𝐹  

For 𝑓, 𝜋1, … , 𝜋𝑚 ∈ 𝒟𝑚 𝑌 .   

Proof (that 𝐹#𝑇 is a current):  Multilinearity of 𝐹#𝑇 follows immediately from multilinearity of 𝑇𝐴. 

The same is true for continuity.   We prove locality.  Suppose 𝜋𝑖 is constant on a neighborhood of spt 𝑓 .   

Then 𝜋𝑖 ∘ 𝐹 is constant on a neighborhood of spt 𝑓 ∘ 𝐹  in 𝐴.   

By locality of 𝑇𝐴, 𝐹#𝑇 𝑓, 𝜋1, … , 𝜋𝑚 = 𝑇𝐴 𝑓 ∘ 𝐹, 𝜋1 ∘ 𝐹, … , 𝜋𝑚 ∘ 𝐹 = 0 



Remark 1 

𝜕 𝐹#𝑇 𝑓, 𝜋 = 𝐹#𝑇 𝜎, 𝑓, 𝜋  

= 𝑇𝐴 𝜎 ∘ 𝐹, 𝑓 ∘ 𝐹, 𝜋 ∘ 𝐹  

𝜎 ≡ 1 on 𝑓 ≠ 0 ∩ spt 𝐹#𝑇  

= 𝜕 𝑇𝐴 𝑓 ∘ 𝐹, 𝜋 ∘ 𝐹  

Note 𝜎 ∘ 𝐹 ≡ 1 on 𝑓 ∘ 𝐹 ≠ 0 ∩ spt 𝑇𝐴  

= 𝜕𝑇 𝐴 𝑓 ∘ 𝐹, 𝜋 ∘ 𝐹  

= 𝐹# 𝜕𝑇 𝑓, 𝜋  

𝜕𝐹# = 𝐹#𝜕 

Easy lemma, omitted. 

Remark 2 

𝐺 ∘ 𝐹 # = 𝐺#𝐹# 



Lemma 3.7   Suppose 𝑢 ∈ 𝐿loc
1 ℝ𝑚 , 𝐹 ∈ Liploc ℝ𝑚, ℝ𝑚 , and 𝐹|spt 𝑢  is proper.   Then 𝐹# 𝑢 = [𝑣] where 

𝑣 ∈ 𝐿loc
1 ℝ𝑚  satisfies 

𝑣 𝑦 =  𝑢 𝑥 sgn det 𝐷𝐹(𝑥)

𝑥∈𝐹−1 𝑦

 ℒ𝑚-a.e. 𝑦 ∈ ℝ𝑚 

Proof   Let 𝑓, 𝜋 ∈ 𝒟𝑚 ℝ𝑚 .  Then… 

𝐹# 𝑢 𝑓, 𝜋 =  𝑢 𝑥 𝑓 𝐹 𝑥 det 𝐷 𝜋 ∘ 𝐹 𝑥  𝑑𝑥
ℝ𝑚

 

=  𝑢 𝑥 𝑓 𝐹 𝑥 det 𝐷𝜋𝐹 𝑥 sgn det 𝐷𝐹𝑥 det 𝐷𝐹𝑥 𝑑𝑥
ℝ𝑚

 

ℎ(𝑥) 

=   ℎ(𝑥)

𝑥∈𝐹−1 𝑦

 𝑑𝑦
ℝ𝑚

 

=  𝑣 𝑦 𝑓 𝑦 det 𝐷𝜋𝑦  𝑑𝑦
ℝ𝑚

 

= 𝑣 𝑓, 𝜋  ∎ 

Area formula, c.f. Evans and Gariepy 



Definition (Mass, Lang 4.1) For 𝑇 ∈ 𝒟𝑚(𝑋), 𝑉 ⊂ 𝑋 open, define the mass of 𝑇 on 𝑉 𝑀𝑉(𝑇) as 

𝑀𝑉 𝑇 = sup
∗

 𝑇 𝑓𝜆, 𝜋𝜆

𝜆∈Λ

 

∗ : Λ is a finite indexing set, 𝑓𝜆, 𝜋𝜆 ∈ 𝒟 𝑋 × Lip1 𝑋 𝑚, spt 𝑓𝜆 ⊂ 𝑉,  𝑓𝜆𝜆∈Λ ≤ 1. 

Define 𝑀 𝑇 ≔ 𝑀𝑋(𝑇) the total mass of 𝑇.   

Denote 𝑀𝑚,loc(𝑋) the vector space of 𝑇 ∈ 𝒟𝑚(𝑋) with 𝑀𝑉 𝑇 < ∞ for 𝑉 ⋐ 𝑋. 

Define 𝑀𝑚 𝑋 ≔ 𝑇 ∈ 𝒟𝑚 𝑋 ∶ 𝑀 𝑇 < ∞   

Define 𝑇 𝐴 ≔ inf 𝑀𝑉 𝑇 : 𝑉 ⊂ 𝑋 open, 𝐴 ⊂ 𝑉  for 𝑇 ∈ 𝒟𝑚(𝑋), 𝐴 ⊂ 𝑋. 

Mass is weak lower-semicontinuous, clearly.  Mass is a norm on 𝑀𝑚(𝑋).   



Proposition 4.2 (𝑀𝑚 𝑋 , 𝑀) is a Banach space. 

Proof Sketch Given a Cauchy sequence 𝑇𝑘 𝑘=1
∞  in (𝑀𝑚 𝑋 , 𝑀),  𝑇𝑘 𝑓, 𝜋 𝑘=1

∞  is Cauchy for 𝑓, 𝜋 ∈ 𝒟𝑚(𝑋). 

One defines 𝑇 𝑓, 𝜋  to be the limit, then shows that it is a current and the limit of 𝑇𝑘. 
∎ 



Proposition 4.2 (𝑀𝑚 𝑋 , 𝑀) is a Banach space. 

Proof   Let 𝑇𝑘 𝑘=1
∞  be Cauchy in (𝑀𝑚 𝑋 , 𝑀).  Let 휀 > 0. Let 𝑓, 𝜋 ∈ 𝒟𝑚(𝑋).   

𝑇𝑘 − 𝑇𝑙 𝑓, 𝜋1, … , 𝜋𝑚 = 𝑓 ∞  Lip 𝜋𝑖|spt 𝑓

𝑚

𝑖=1

𝑇𝑘 − 𝑇𝑙

𝑓

𝑓 ∞
,

𝜋1

Lip 𝜋1|spt 𝑓

, … ,
𝜋𝑚

Lip 𝜋𝑚|spt 𝑓

 

≤ 𝑓 ∞  Lip 𝜋𝑖|spt 𝑓

𝑚

𝑖=1

𝑀𝑚 𝑇𝑘 − 𝑇𝑙  

< 휀, for 𝑘, 𝑙  sufficiently large. 

Define 𝑇 𝑓, 𝜋 = lim
𝑘→∞

𝑇𝑘 𝑓, 𝜋 . 𝑇 is 𝑚 + 1 -multilinear and satisfies the locality condition.   

For continuity: let 𝑓𝑗 , 𝜋𝑗 → 𝑓, 𝜋  in 𝒟𝑚(𝑋). 

𝑇 𝑓𝑗 , 𝜋𝑗 − 𝑇 𝑓, 𝜋 ≤ 𝑇 𝑓𝑗 , 𝜋𝑗 − 𝑇𝑘 𝑓𝑗 , 𝜋𝑗 + 𝑇𝑘 𝑓𝑗 , 𝜋𝑗 − 𝑇𝑘 𝑓, 𝜋 + 𝑇𝑘 𝑓, 𝜋 − 𝑇 𝑓, 𝜋  

≤ 3휀, for 𝑗, 𝑘 sufficiently large.  

Finally we must check that 𝑀 𝑇𝑘 − 𝑇 → 0. We leave this as an easy exercise.   



Remark (Mass for standard examples) Let 𝑈 ⊂ ℝ𝑚 open, 𝑇 ∈ 𝒟𝑚(𝑈).  Invoke the chain rule: 

𝑀𝑉 𝑇 = sup  𝑇 𝑓𝜆, 𝜋1
𝜆, … , 𝜋𝑚

𝜆

𝜆∈Λ

∶ Λ finite,  |𝑓𝜆|

𝜆∈Λ

≤ 1, 𝑓𝜆, 𝜋𝜆 ∈ 𝒟 𝑈 × Lip1 𝑈 𝑚, spt 𝑓𝜆 ⊂ 𝑉  

= sup  𝑇 𝑓𝜆, 𝜋1
𝜆, … , 𝜋𝑚

𝜆

𝜆∈Λ

∶ Λ finite,  |𝑓𝜆|

𝜆∈Λ

≤ 1, 𝑓𝜆, 𝜋𝜆 ∈ 𝒟 𝑈 × Lip1 𝑈 ∩ 𝐶1,1 𝑈 𝑚, spt 𝑓𝜆 ⊂ 𝑉  

= sup  𝑇 𝑓𝜆 det
𝜕𝜋𝑖

𝜆

𝜕𝑥𝑘
𝑖,𝑘=1

𝑚

, Id 

𝜆∈Λ

∶ Λ  |𝑓𝜆|

𝜆∈Λ

≤ 1, 𝑓𝜆, 𝜋𝜆 ∈ 𝒟 𝑈 × Lip1 𝑈 ∩ 𝐶1,1 𝑈 𝑚, spt 𝑓𝜆 ⊂ 𝑉  

 
= sup 𝑇 𝑓, Id : 𝑓 ≤ 1, sp𝑡(𝑓) ⊂ 𝑉  

If 𝑢 ∈ 𝐿loc
1 (𝑈), we have 

𝑀𝑉 𝑢 =  𝑢 𝑑𝑥
𝑉

 



Theorem (Mass, Lang 4.3) Let 𝑇 ∈ 𝒟𝑚(𝑋). 

(1)  𝑇  is a Borel regular measure. 

(2)  spt 𝑇 = spt 𝑇  and 𝑇 𝑋\spt 𝑇 = 0 

(3)  For open 𝑉 ⊂ 𝑋,  

𝑇 𝑉 = sup
𝐾⊂𝑋 compact

𝐾⊂𝑉

𝑇 (𝐾) 

(4)  If 𝑇 ∈ 𝑀𝑚,loc(𝑋) then 𝑇  is a Radon measure and 

𝑇 𝑓, 𝜋 ≤  Lip 𝜋𝑖|spt 𝑓  |𝑓|𝑑 𝑇
𝑋

𝑚

𝑖=1

 



Proof Recall the definitions 

𝑇 𝐴 = inf 𝑀𝑉 𝑇 ∶ 𝑉 ⊂ 𝑋 open, 𝐴 ⊂ 𝑉  

𝑀𝑉 𝑇 = sup
∗

 𝑇 𝑓𝜆, 𝜋𝜆

𝜆∈Λ

 

We want to prove 𝑇  is a Borel regular measure.  We begin by proving subadditivity for open sets 𝑉 ⊂  𝑉𝑖
∞
𝑖=1  

Let Λ and 𝑓𝜆, 𝜋𝜆  be as in the definition of 𝑀𝑉(𝑇), 𝑁 the first index with  𝑉𝑖
𝑁
𝑖=1 ⊃ 𝐾 ≔  spt 𝑓𝜆𝜆∈Λ . 

Take a partition of unity on 𝐾, 𝜌1, … , 𝜌𝑁 ∈ 𝒟(𝑋) subordinate to the 𝑉𝑖. 

 𝑇 𝑓𝜆, 𝜋𝜆

𝜆∈Λ

 =   𝑇 𝜌𝑘𝑓𝜆, 𝜋𝜆

𝑁

𝑖=1𝜆∈Λ

 =   𝑇 𝜌𝑘𝑓𝜆, 𝜋𝜆

𝜆∈Λ

𝑁

𝑖=1

 ≤  𝑇 𝑉𝑖

𝑁

𝑖=1

 

𝑇 𝑉 ≤  𝑇 𝑉𝑖

∞

𝑖=1

 

Now subadditivity for arbitrary sets 𝐴 ⊂  𝐴𝑖
∞
𝑖=1  follows (why?). 

Also, 𝑇  satisfies Caratheodory’s criterion: 𝑇 𝐴 ∪ 𝐵 = 𝑇 𝐴 + 𝑇 (𝐵) whenever 𝑑 𝐴, 𝐵 > 0.  (Why?) 

By Caratheodory’s criterion, the Borel sets are 𝑇 -measurable. 

It is clear that 𝑇  is Borel regular: every 𝐴 ⊂ 𝑋 is contained in a Borel set 𝐵 of equal 𝑇 -measure (why?).    

We proved that 𝑇  is a Borel regular outer measure.   



Proof (cont’d) Now we prove spt 𝑇 = spt 𝑇  and that 𝑇 𝑋\spt 𝑇 = 0. 

Recall Lemma 3.2(1) spt 𝑇 = 𝑥 ∈ 𝑋 : 휀 > 0 ∃ 𝑓, 𝜋 ∈ 𝒟𝑚 𝑋 spt 𝑓 ⊂ 𝐵 𝑥, 휀  and 𝑇 𝑓, 𝜋 ≠ 0  

And the definitions spt 𝑇 = 𝑥 ∈ 𝑋 ∶ 𝑉 ⊂ 𝑋 open with 𝑥 ∈ 𝑉 𝑇 𝑉 ≠ 0  

From these two characterizations, we easily have spt 𝑇 ⊂ spt 𝑇  

Next, if 𝑥 ∉ spt 𝑇  then there is a closed set 𝐶 with 𝑥 ∉ 𝐶 and 𝑇 𝑓, 𝜋 = 0 for spt 𝑓 ∩ 𝐶 = ∅. 

Let 𝑉 open, 𝑥 ∈ 𝑉, 𝑉 ∩ 𝐶 = ∅.  Then clearly 𝑇 𝑉 = 0 so 𝑥 ∉ spt 𝑇  

We leave 𝑇 𝑋\spt 𝑇 = 0 as an easy exercise.   



Proof (cont’d) Now we prove (3): for open 𝑉 ⊂ 𝑋, 𝑇 𝑉 = sup 𝑇 𝐾 ∶ 𝐾 ⊂ 𝑉 compact . 

Let 𝛼 < 𝑇 (𝑉).   

𝑠 ≔  𝑇 𝑓𝜆, 𝜋𝜆

𝜆∈Λ 

≥ 𝛼 

For 𝑈 containing 𝐾, 𝑇 𝑈 ≥ 𝑠 ≥ 𝛼, hence 𝑇 𝐾 ≥ 𝛼.   

This proves (3).   

Find Λ and 𝑓𝜆, 𝜋𝜆 ∈ 𝒟 𝑋 × Lip1 𝑋 𝑚 such that 𝐾 =  spt 𝑓𝜆𝜆∈Λ ⊂ 𝑉,  𝑓𝜆𝜆 ≤ 1 and 



Proof (cont’d) We must prove for 𝑇 ∈ 𝑀𝑚,loc(𝑋) that 𝑇  is a Radon measure and 

𝑇 𝑓, 𝜋 ≤  Lip 𝜋𝑖|spt 𝑓  |𝑓|𝑑 𝑇
𝑋

𝑚

𝑖=1

 

𝑇  is finite on compact sets so is a Radon measure.  Now we prove the estimate.   Consider 𝑚 = 0 first. 

Put 𝑓𝑠 = min 𝑓, 𝑠 .   

𝑇 𝑓𝑡 − 𝑇 𝑓𝑠 = 𝑇 𝑓𝑡 − 𝑓𝑠 ≤ 𝑇 𝑓 > 𝑠 𝑡 − 𝑠  whenever 0 ≤ 𝑠 < 𝑡 

Hence 𝑠 ↦ 𝑇 𝑓𝑠  is a Lipschitz function with 𝑑/𝑑𝑠 𝑇 𝑓𝑠 ≤ 𝑇 𝑓 > 𝑠  for a.e. 𝑠 ≥ 0. Finally, 

𝑇 𝑓 = 𝑇 𝑓 − 𝑇 𝑓0  =  𝑑/𝑑𝑠 𝑇 𝑓𝑠 𝑑𝑠
∞

0

 

𝑇 𝑓 ≤  
𝑑

𝑑𝑠
𝑇 𝑓𝑠 𝑑𝑠

∞

0

 ≤  𝑇 𝑓 > 𝑠
∞

0

 =  𝑓 𝑑 𝑇
𝑋

 

Adjusting for 𝑚 ≥ 1 is easy, omitted. 

∎ 



Theorem (Lang 4.4, Extended Functional)   Let 𝑇 ∈ 𝐌𝑚,loc(𝑋), 𝑚 ≥ 0.  There is an extension 𝑇: ℬ𝑐
∞ 𝑋 × Liploc 𝑋 𝑚 → ℝ 

such that… 

(1)  Multilinearity 

(2) continuity* 

𝑓𝑗 → 𝑓 if sup
𝑗

𝑓𝑗 < ∞,  spt 𝑓𝑗𝑗 ⊂ 𝐾 some compact 𝐾, 𝑓𝑗 → 𝑓 pointwise on 𝑋 

(3) locality 

(4) Mass inequality 

𝑇 𝑓, 𝜋 ≤  Lip 𝜋𝑖  
spt 𝑓

 |𝑓|𝑑 𝑇
𝑋

𝑚

𝑖=1

 

Reason: 𝒟(𝑋) is dense in 𝐿1 𝑇 ⊃ ℬ𝑐
∞(𝑋) 



Lemma (Lang 4.6, Pushforwards and Mass) Suppose 𝑇 ∈ 𝐌𝑚,loc 𝑋 , 𝑚 ≥ 0, 𝑌 locally compact metric space 

𝐹 ∈ Liploc(𝑋, 𝑌), and 𝐹|spt 𝑇  proper.  Then 𝐹#𝑇 ∈ 𝐌𝑚,loc(𝑌) and  

(1)  For 𝑓, 𝜋 ∈ ℬ𝑐
∞ 𝑌 × Liploc 𝑌

𝑚
 and 𝜎 ∈ ℬ𝑐

∞ with 𝜎 = 1 on 𝑓 ∘ 𝐹 ≠ 0 ∩ spt 𝑇 , 

𝐹#𝑇 𝑓, 𝜋 = 𝑇(𝜎 𝑓 ∘ 𝐹 , 𝜋 ∘ 𝐹) 

(2)  For Borel 𝐵 ⊂ 𝑌, 

𝐌𝑉 𝐹#𝑇 
𝐵

≤ Lip 𝐹  
𝐹−1 𝐵 ∩spt 𝑇

𝑚

𝑇 𝐹−1 𝑉  



Suppose 𝑇 ∈ 𝐌𝑚,loc 𝑋 , 𝑚 ≥ 0, 𝑌 locally compact metric space 

𝐹 ∈ Liploc(𝑋, 𝑌), and 𝐹|spt 𝑇  proper.   

Proof 

We need to show 𝐹#𝑇 ∈ 𝐌𝑚,loc(𝑌) 

Observe: 

𝐌𝑉 𝐹#𝑇 = sup
∗

 𝐹#𝑇 𝑓𝜆, 𝜋𝜆

𝜆∈Λ

 

∗ : Λ finite, 𝑓𝜆, 𝜋𝜆 ∈ 𝒟 𝑋 × Lip1 𝑋 𝑚,  𝑓𝜆𝜆 ≤ 1, spt 𝑓𝜆 ⊂ 𝑉 

= sup
∗

 𝑇 𝜎 𝑓𝜆 ∘ 𝐹 , 𝜋𝜆 ∘ 𝐹

𝜆∈Λ

 

𝜎 ∈ 𝒟 𝑋 , 𝜎 ≡ 1 on 𝐹−1 𝑉 ∩ spt 𝑇  

≤ Lip 𝐹  
spt 𝜎

𝑚

𝑇 𝑉  

This proves (2) and in particular that 𝐹#𝑇 ∈ 𝐌𝑚,loc(𝑌) 



(1)  For 𝑓, 𝜋 ∈ ℬ𝑐
∞ 𝑌 × Liploc 𝑌

𝑚
 and 𝜎 ∈ ℬ𝑐

∞ with 𝜎 = 1 on 𝑓 ∘ 𝐹 ≠ 0 ∩ spt 𝑇 , 

𝐹#𝑇 𝑓, 𝜋 = 𝑇(𝜎 𝑓 ∘ 𝐹 , 𝜋 ∘ 𝐹) 

Let us now show: 

Indeed, this is true for 𝜎 ∈ 𝒟(𝑋) with 𝜎 = 1 on 𝑓 ∘ 𝐹 ≠ 0 ∩ spt 𝑇 .   

Now if 𝜎 ∈ ℬ𝑐
∞, we can approximate 𝜎 by 𝜏 ∈ 𝒟(𝑋) and take a limit to prove the statement.   

Now let us show (2):  For Borel 𝐵 ⊂ 𝑌, 𝐌𝑉 𝐹#𝑇 
𝐵

≤ Lip 𝐹  
𝐹−1 𝐵 ∩spt 𝑇

𝑚

𝑇 𝐹−1 𝑉  

Take 𝑓, 𝜋 ∈ 𝒟 𝑋 × Lip1 𝑋 𝑚, 𝜎 = 𝜒𝐹−1 𝐵 ∩ 𝑓∘𝐹≠0 . Then, 

𝐹#𝑇  
𝐵

𝑓, 𝜋 = 𝐹#𝑇 𝜒𝐵𝑓, 𝜋  

= 𝑇 𝜎 𝑓 ∘ 𝐹 , 𝜋 ∘ 𝐹  

≤ Lip 𝐹  
spt 𝜎

𝑚

 |𝑓 ∘ 𝐹|𝑑 𝑇
𝐹−1(𝐵)

 



Lemma (Lang 4.7, Characterizing 𝑻 ) Suppose 𝑇 ∈ 𝐌𝑚,loc(𝑋), 𝐵 ⊂ 𝑋 is 𝜎-finite with respect to 𝑇  or open.   Then: 

𝑇 𝐵 = sup
∗

 𝑇 𝑓𝜆, 𝜋𝜆

𝜆∈Λ

 

∗ : Λ finite, 𝑓𝜆, 𝜋𝜆 ∈ ℬ𝑐
∞ × Lip1 𝑋 𝑚,  𝑓𝜆𝜆 ≤ 𝜒𝐵 

Moreover, 𝑇|𝐵 = 𝑇 |𝐵 

Proof   Recall 4.4(4) 

𝑇 𝑓, 𝜋 ≤  Lip 𝜋𝑖  
spt 𝑓

𝑚

𝑖=1

 |𝑓|𝑑 𝑇
𝑋

 

Thus 

 𝑇 𝑓𝜆, 𝜋𝜆

𝜆∈Λ

≤ 𝑇 (𝐵) 

On the other hand, let 휀 > 0.   Let 𝑉 open contain 𝐵 with 𝑇 𝑉\B ≤ 휀.   Choose 𝛼 < 𝑇 (𝑉) and find 

𝑓𝜆, 𝜋𝜆  satisfying (∗) with 

𝛼 ≤  𝑇 𝑓𝜆, 𝜋𝜆

𝜆∈Λ

 =  𝑇 𝜒𝐵𝑓𝜆, 𝜋𝜆

𝜆∈Λ

+  𝑇 𝜒𝑉\B𝑓𝜆, 𝜋𝜆

𝜆∈Λ

 

 𝑇 𝜒𝑉\B𝑓𝜆, 𝜋𝜆

𝜆∈Λ

≤ 휀 

 𝑇 𝜒𝐵𝑓𝜆, 𝜋𝜆

𝜆∈Λ

≥ 𝛼 − 휀 



We’ve proved that  

𝑇 𝐵 = sup
∗

 𝑇 𝑓𝜆, 𝜋𝜆

𝜆∈Λ

 

Now we must prove that 𝑇 |𝐵 = 𝑇|𝐵 .   

Choose 𝐴 borel.   

𝑇  
𝐵

𝐴 = 𝑇 𝐴 ∩ 𝐵 = sup
∗∗

 𝑇 𝑓𝜆, 𝜋𝜆

𝜆∈Λ

 

∗∗: Λ finite, 𝑓𝜆, 𝜋𝜆 ∈ ℬ𝑐
∞ 𝑋 × Lip1 𝑋 𝑚,  𝑓𝜆 ≤ 𝜒𝐵∩𝐴𝜆  

= sup
∗∗∗

 𝑇 𝑓𝜆𝜒𝐵 , 𝜋𝜆

𝜆∈Λ

 

∗∗∗: Λ finite, 𝑓𝜆, 𝜋𝜆 ∈ ℬ𝑐
∞ 𝑋 × Lip1 𝑋 𝑚,  𝑓𝜆 ≤ 𝜒𝐴𝜆  

= 𝑇|𝐵 (𝐴) 

∎ 



𝑁𝑉 𝑇 = 𝑀𝑉 𝑇 + 𝑀𝑉 𝜕𝑇  

𝑁𝑚,loc 𝑋 = 𝑇 ∈ 𝒟𝑚 𝑋 ∶ 𝑁𝑉 𝑇 < ∞ for 𝑉 ⋐ 𝑋  

𝑁 𝑇 = 𝑁𝑋(𝑇) 

𝑁𝑚 𝑋 = 𝑇 ∈ 𝒟𝑚 𝑋 ∶ 𝑁 𝑇 < ∞  



Proposition  𝑁𝑚(𝑋) is a Banach space.   

Proof   If 𝑇𝑖  in 𝑁𝑚(𝑋) is Cauchy, then {𝑇𝑖} and 𝜕𝑇𝑖  are Cauchy in 𝑀𝑚(𝑋) and 𝑀𝑚−1(𝑋) respectively.   

So they have limits 𝑇∗ and 𝜕𝑇∗ in 𝑀𝑚(𝑋) and 𝑀𝑚−1 𝑋 .   

𝑇𝑖 → 𝑇∗ in 𝑁𝑚(𝑋), proving completeness. 

∎ 



Observation If 𝑇 ∈ 𝑁𝑚,loc(𝑋) and 𝑢, 𝑣 ∈ Liploc 𝑋 × Liploc 𝑋
𝑘

, then 𝜕 𝑇 𝑢, 𝑣 = −1 𝑘 𝜕𝑇 𝑢, 𝑣 − 𝑇|(1, 𝑢, 𝑣). 

Hence 

𝑀𝑉 𝜕 𝑇 𝑢, 𝑣 ≤  Lip 𝑣𝑖 𝑉

𝑚

𝑖=1

 𝑢 𝑑 𝜕𝑇
𝑉

+  Lip 𝑣𝑖 𝑉

𝑚

𝑖=1

Lip 𝑢 𝑉 𝑇 𝑉  

So 𝑇| 𝑢, 𝑣 ∈ 𝑁𝑚,loc(𝑋) 

Observation Pushforwards of locally normal currents are locally normal.   



Lemma (Lang 5.2, Uniform Continuity of Locally Normal Currents) Let 𝑇 ∈ 𝑁𝑚,loc(𝑋).  Then, 

(1)  For 𝑓, 𝑔1, 𝑔2, … , 𝑔𝑚 ∈ 𝒟 𝑋 × Liploc 𝑋 × Lip1 𝑋 𝑚−1, 

𝑇 𝑓, 𝑔 ≤ Lip 𝑓  𝑔1 𝑑 𝑇
spt 𝑓

+  𝑓𝑔1 𝑑 𝜕𝑇
𝑋

 

(2)  For 𝑓, 𝑔 , 𝑓 , 𝑔 ∈ 𝒟 𝑋 × Lip1 𝑋 𝑚, 

𝑇 𝑓, 𝑔 − 𝑇 𝑓 , 𝑔 ≤  𝑓 − 𝑓 𝑑 𝑇
𝑋

+  Lip 𝑓  𝑔𝑖 − 𝑔 𝑖 𝑑 𝑇
spt 𝑓

𝑚

𝑖=1

+   𝑓 𝑔𝑖 − 𝑔 𝑖 𝑑 𝜕𝑇
𝑋

𝑚

𝑖=1

 



Proof Omitted; not interesting.   



Lemma (Lang 5.3, Convergence Criterion)   Suppose 𝑋 is compact, ℱ ⊂ Lip1(𝑋) is dense in supremum norm ⋅ ∞.  

Suppose 𝑇𝑛  is a bounded sequence in 𝑁𝑚 𝑋 , 𝑚 ≥ 0, with 𝑀 = sup𝑛𝑁 𝑇𝑛 < ∞.   

Suppose further that 𝑇𝑛(𝑓, 𝑔) has a limit, which we’ll denote 𝑇(𝑓, 𝑔), for 𝑓, 𝑔 ∈ ℱ × ℱ𝑚.   

Then 𝑇𝑛 converges weakly to a 𝑇 ∈ 𝑁𝑚(𝑋).   

Proof idea We must show that the natural limit 𝑇 𝑓, 𝑔 = lim 𝑇𝑛(𝑓, 𝑔) extends from ℱ × ℱ𝑚 to 𝒟𝑚(𝑋).   

So we need local uniform continuity.  Use the uniform continuity estimate… 

𝑇 𝑓, 𝑔 − 𝑇 𝑓 , 𝑔 ≤  𝑓 − 𝑓 𝑑 𝑇
𝑋

+  Lip 𝑓  𝑔𝑖 − 𝑔 𝑖 𝑑 𝑇
spt 𝑓

𝑚

𝑖=1

+   𝑓 𝑔𝑖 − 𝑔 𝑖 𝑑 𝜕𝑇
𝑋

𝑚

𝑖=1

 



Theorem (Lang 5.4, Compactness) Suppose 𝑇𝑛  is a sequence in 𝑁𝑚,loc(𝑋), 𝑚 ≥ 0, with spt 𝑇𝑛  separable,  

Suppose also sup𝑛𝑁𝑉 𝑇𝑛 < ∞, for open 𝑉 ⋐ 𝑋.   

Then some subsequence converges weakly to a 𝑇 ∈ 𝑁𝑚,loc(𝑋) 

Proof   Assume first 𝑋 compact, so we can take a countable dense ℱ ⊂ Lip1(𝑋).   A diagonalization argument yields that 

a subsequence 𝑇𝑛𝑘
 converges for 𝑓, 𝑔 ∈ ℱ × ℱ𝑚. 



Integer Rectifiable Currents We say 𝑇 ∈ 𝒟𝑚(𝑋) is a locally integer rectifiable current if: 

1.  𝑇 ∈ 𝐌𝑚,loc(𝑋) 

2.  Whenever 𝐵 ⋐ 𝑋 is Borel and 𝜋 ∈ Lip 𝑋, ℝ𝑚 , we have 𝜋# 𝑇 𝐵 = [𝑢] for some 𝑢 ∈ 𝐿1 ℝ𝑚, ℤ  
3.  𝑇  is concentrated on a countably ℋ𝑚-rectifiable Borel set 𝐵 ⊂ 𝑋. 

Facts about Integer Rectifiable Currents 

Denote the set of such currents ℐ𝑚,loc(𝑋).   Define ℐ𝑚 𝑋 = ℐ𝑚,loc 𝑋 ∩ 𝐌𝑚(𝑋) 

1. Parametric Representation: 𝑇 ∈ ℐ𝑚,loc(𝑋) if and only if 

𝑇 =  𝐹𝑖# 𝑢𝑖

∞

𝑖=1

, 𝑢𝑖 ∈ 𝐿1 ℝ𝑚, ℤ , 𝐹𝑖: ℝ
𝑚 → 𝑋 bi−Lipschitz,     𝑇 𝐴 =  𝑇𝑖(𝐴)

∞

𝑖=1

 

 
2. ℐ𝑚,loc 𝑋 ∩ 𝐍𝑚,loc(𝑋) is locally compact.   

 
   



Part II: an Application to the Heisenberg Group 



Theorem (Zust, 1.3) Let 𝑋 be a quasiconvex compact metric space with 𝜋1
Lip

𝑋 = 0, 

and let 𝜑: 𝑋, 𝑑𝑋 → ℍ, 𝑑cc  be Holder continuous of order 𝛼 > 2/3.   

Then 𝜑 factors through a tree. 

Proof Outline   

Definition  We say 𝜑: 𝑋 → 𝑌 has property (T) if for 𝑥, 𝑥′ ∈ 𝑋 with 𝜑 𝑥 ≠ 𝜑(𝑥′) there exists 
a point 𝑦 ∈ 𝑌 such that 𝜑 ∘ 𝛾 passes through 𝑦 for all curves 𝛾: 𝑥 ⇝ 𝑥′.   

Theorem (Zust 1.1)  If 𝑋 is 𝐶-quasiconvex compact with 𝐻1 𝑋 = 0 or 𝐻1
Lip

𝑋 = 0 and 

𝜑: 𝑋 → 𝑌 is 𝜎-continuous with property (T), then 𝜑 factors through a tree + estimates and 
contractibility 

Proposition (Zust 4.1)  Let 𝑋 be quasiconvex compact, 𝐻1 𝑋 = 0 or 𝐻1
Lip

𝑋 = 0, 

𝜑: 𝑋 → 𝑌 Holder continuous of order 𝛼 > 1/2, and suppose 𝜑 ∘ 𝛾 # 𝕊1 = 0 for closed 
Lipschitz curves 𝛾: 𝕊1 → 𝑋.  Then 𝜑 has property (T). 

Lemma (Zust 4.6)  Let 𝑄 ⊂ ℝ2 be a square and 𝜑: 𝑄 → ℍ Holder continuous of order 𝛼 >
2

3
.  

Then the pushforward 𝜑# 𝑄 = 0 viewed as a current in ℝ3.   



If 𝜑: 𝑋 → 𝑌 is 𝛼 > 1/2 Holder continuous and 𝛾: 𝕊1 → 𝑋 a Lipschitz curve, then 𝜑 ∘ 𝛾 # 𝕊1  is a well-defined 1-current. 

Notice, we have implicitly assumed: 

This can be done in several conceptually different ways. 

We need to make sense of the expression 

𝜑 ∘ 𝛾 # 𝕊1 𝑓, 𝑔 = 𝕊1 𝑓 ∘ 𝜑 ∘ 𝛾, 𝑔 ∘ 𝜑 ∘ 𝛾  =  𝑓 ∘ 𝜑 ∘ 𝛾  𝑑 𝑔 ∘ 𝜑 ∘ 𝛾
𝕊1

 =  𝑓  𝑑𝑔 
𝕊1

 

= R𝑆  𝑓  𝑑𝑔 
1

0

 = lim
𝜀→0

 𝑓 
𝜀 𝑑𝑔 𝜀

1

0

 = lim
𝜀→0

 𝑑𝑓  ∧ 𝑑𝑔  
𝔹2

 

Riemann-Stieltjes 
Integration 

Mollification Sobolev Extension 

All three give the same number, so take your pick. 



Theorem (Zust, 1.3) Let 𝑋 be a quasiconvex compact metric space with 𝜋1
Lip

𝑋 = 0, 

and let 𝜑: 𝑋, 𝑑𝑋 → ℍ, 𝑑cc  be Holder continuous of order 𝛼 > 2/3.   

Then 𝜑 factors through a tree. 

Proof Outline   

Definition  We say 𝜑: 𝑋 → 𝑌 has property (T) if for 𝑥, 𝑥′ ∈ 𝑋 with 𝜑 𝑥 ≠ 𝜑(𝑥′) there exists 
a point 𝑦 ∈ 𝑌 such that 𝜑 ∘ 𝛾 passes through 𝑦 for all curves 𝛾: 𝑥 ⇝ 𝑥′.   

Theorem (Zust 1.1)  If 𝑋 is 𝐶-quasiconvex compact with 𝐻1 𝑋 = 0 or 𝐻1
Lip

𝑋 = 0 and 

𝜑: 𝑋 → 𝑌 is 𝜎-continuous with property (T), then 𝜑 factors through a tree (+ estimates and 
contractibility) 

Proposition (Zust 4.1)  Let 𝑋 be quasiconvex compact, 𝐻1 𝑋 = 0 or 𝐻1
Lip

𝑋 = 0, 

𝜑: 𝑋 → 𝑌 Holder continuous of order 𝛼 > 1/2, and suppose 𝜑 ∘ 𝛾 # 𝕊1 = 0 for closed 
Lipschitz curves 𝛾: 𝕊1 → 𝑋.  Then 𝜑 has property (T). 

Lemma (Zust 4.6)  Let 𝑄 ⊂ ℝ2 be a square and 𝜑: 𝑄 → ℍ Holder continuous of order 𝛼 >
2

3
.  

Then the pushforward 𝜑# 𝑄 = 0 viewed as a current in ℝ3.   



Proof of 4.1:  If 𝜑: 𝑋 → 𝑌 𝛼 >
1

2
 Holder continuous, pushes forward Lipschitz loops to zero currents, then 𝜑 has property (T). 

Proof Fix 𝑥, 𝑥′ ∈ 𝑋 with 𝜑 𝑥 ≠ 𝜑(𝑥′).  Let 𝜇, 𝜇′: 𝑥 ⇝ 𝑥′ Lipschitz.   Now 𝜑 ∘ 𝜇 # 0,1 , 𝜑 ∘ 𝜇′
# ∈ 𝒟1(𝑌). 

i.e. 𝜑 ∘ 𝛾 # 𝕊1 = 0 

They are non-zero currents since they have non-zero boundary. 

But a 1-current cannot have a support consisting of finitely many points. 

So there is a 𝑦 ∈ 𝑌 not equal to 𝜑(𝑥) or 𝜑 𝑥′ , belonging to the support spt 𝜑 ∘ 𝜇 # 0,1  

Clearly 𝑦 must be in the image of 𝜑 ∘ 𝜇. 

Let 𝛾 = 𝜇 ∗ 𝜇′−1: 𝕊1 → 𝑋. 0 = 𝜑 ∘ 𝛾 # 𝕊1 = 𝜑 ∘ 𝜇 # 0,1 − 𝜑 ∘ 𝜇′
# 0,1  

Thus 𝜑 ∘ 𝜇 # 0,1 = 𝜑 ∘ 𝜇′
# 0,1 , and so 𝑦 ∈ spt 𝜑 ∘ 𝜇 # 0,1 = spt 𝜑 ∘ 𝜇′

# 0,1  

So 𝑦 is also in the image of 𝜑 ∘ 𝜇′ 

This is property (T) ∎ 



Theorem (Zust, 1.3) Let 𝑋 be a quasiconvex compact metric space with 𝜋1
Lip

𝑋 = 0, 

and let 𝜑: 𝑋, 𝑑𝑋 → ℍ, 𝑑cc  be Holder continuous of order 𝛼 > 2/3.   

Then 𝜑 factors through a tree. 

Proof Outline   

Definition  We say 𝜑: 𝑋 → 𝑌 has property (T) if for 𝑥, 𝑥′ ∈ 𝑋 with 𝜑 𝑥 ≠ 𝜑(𝑥′) there exists 
a point 𝑦 ∈ 𝑌 such that 𝜑 ∘ 𝛾 passes through 𝑦 for all curves 𝛾: 𝑥 ⇝ 𝑥′.   

Theorem (Zust 1.1)  If 𝑋 is 𝐶-quasiconvex compact with 𝐻1 𝑋 = 0 or 𝐻1
Lip

𝑋 = 0 and 

𝜑: 𝑋 → 𝑌 is 𝜎-continuous with property (T), then 𝜑 factors through a tree (+ estimates and 
contractibility) 

Proposition (Zust 4.1)  Let 𝑋 be quasiconvex compact, 𝐻1 𝑋 = 0 or 𝐻1
Lip

𝑋 = 0, 

𝜑: 𝑋 → 𝑌 Holder continuous of order 𝛼 > 1/2, and suppose 𝜑 ∘ 𝛾 # 𝕊1 = 0 for closed 
Lipschitz curves 𝛾: 𝕊1 → 𝑋.  Then 𝜑 has property (T). 

Lemma (Zust 4.6)  Let 𝑄 ⊂ ℝ2 be a square and 𝜑: 𝑄 → ℍ Holder continuous of order 𝛼 >
2

3
.  

Then the pushforward 𝜑# 𝑄 = 0 viewed as a current in ℝ3.   



Again we need to check that we have a well-defined current 𝜑# 𝑄  before proceeding to prove the lemma. 

We need to make sense of 𝜑# 𝑄 𝑓, 𝑔1, 𝑔2  

𝜑# 𝑄 𝑓, 𝑔1, 𝑔2 = 𝑄 𝑓 ∘ 𝜑, 𝑔1 ∘ 𝜑, 𝑔2 ∘ 𝜑  

=  𝑓  𝑑𝑔 1 ∧ 𝑑𝑔 2
𝑄

 

Again, we have options.   

= Z  𝑓  𝑑𝑔 1 ∧ 𝑑𝑔 2
𝑄

= lim
𝑛→∞

 𝑓 𝑏𝑄𝑖
 𝑔 1𝑑𝑔 2
𝜕𝑄𝑖𝑄𝑖∈𝒫𝑛(𝑄)

 

= lim
𝜀→0

 𝑓 
𝜀 𝑑𝑔 1𝜀 ∧ 𝑑𝑔 2𝜀

𝑄

 

=  𝑑𝑓  ∧ 𝑑𝑔  1 ∧ 𝑑𝑔  2
𝑄×(0,1)

 



Theorem (Zust, 1.3) Let 𝑋 be a quasiconvex compact metric space with 𝜋1
Lip

𝑋 = 0, 

and let 𝜑: 𝑋, 𝑑𝑋 → ℍ, 𝑑cc  be Holder continuous of order 𝛼 > 2/3.   

Then 𝜑 factors through a tree. 

Proof Outline   

Definition  We say 𝜑: 𝑋 → 𝑌 has property (T) if for 𝑥, 𝑥′ ∈ 𝑋 with 𝜑 𝑥 ≠ 𝜑(𝑥′) there exists 
a point 𝑦 ∈ 𝑌 such that 𝜑 ∘ 𝛾 passes through 𝑦 for all curves 𝛾: 𝑥 ⇝ 𝑥′.   

Theorem (Zust 1.1)  If 𝑋 is 𝐶-quasiconvex compact with 𝐻1 𝑋 = 0 or 𝐻1
Lip

𝑋 = 0 and 

𝜑: 𝑋 → 𝑌 is 𝜎-continuous with property (T), then 𝜑 factors through a tree (+ estimates and 
contractibility) 

Proposition (Zust 4.1)  Let 𝑋 be quasiconvex compact, 𝐻1 𝑋 = 0 or 𝐻1
Lip

𝑋 = 0, 

𝜑: 𝑋 → 𝑌 Holder continuous of order 𝛼 > 1/2, and suppose 𝜑 ∘ 𝛾 # 𝕊1 = 0 for closed 
Lipschitz curves 𝛾: 𝕊1 → 𝑋.  Then 𝜑 has property (T). 

Lemma (Zust 4.6)  Let 𝑄 ⊂ ℝ2 be a square and 𝜑: 𝑄 → ℍ Holder continuous of order 𝛼 >
2

3
.  

Then the pushforward 𝜑# 𝑄 = 0 viewed as a current in ℝ3.   



Proof of Lemma (Zust 4.6): Let 𝑄 ⊂ ℝ2 be a square, 𝜑: 𝑄 → ℍ 𝛼 >
2

3
 Holder continuous.  Then 𝜑# 𝑄 = 0. 

Proof First recall that an 𝛼 >
1

2
 Holder continuous curve 𝛾: 𝑎, 𝑏 → ℍ is weakly horizontal in the sense that 

 𝑑𝛾𝑡 + 2 𝛾𝑦𝑑𝛾𝑥 − 𝛾𝑥𝑑𝛾𝑦

𝑏

𝑎

= 0 

In fact, more can be said: if 𝑓: 𝑎, 𝑏 → ℝ is 𝛼 >
1

2
 Holder continuous, then 

 𝑓 𝑑𝛾𝑡 + 2 𝛾𝑦𝑑𝛾𝑥 − 𝛾𝑥𝑑𝛾𝑦 = 0
𝑏

𝑎

 

Let 𝑓 = 𝛾𝑥 and assume now that 𝛾 is a closed curve. 

 𝛾𝑥𝑑𝛾𝑡

𝑏

𝑎

=  2𝛾𝑥
2𝑑𝛾𝑦

𝑏

𝑎

−  2𝛾𝑦𝛾𝑥𝑑𝛾𝑥

𝑏

𝑎

 =  2𝛾𝑥
2𝑑𝛾𝑦

𝑏

𝑎

+  𝛾𝑥
2𝑑𝛾𝑦

𝑏

𝑎

 = 3  𝛾𝑥
2𝑑𝛾𝑦

𝑏

𝑎

 

Similarly 

 𝛾𝑦𝑑𝛾𝑡

𝑏

𝑎

= −3  𝛾𝑦
2𝑑𝛾𝑥

𝑏

𝑎

 



Proof of Lemma (Zust 4.6): Let 𝑄 ⊂ ℝ2 be a square, 𝜑: 𝑄 → ℍ 𝛼 >
2

3
 Holder continuous.  Then 𝜑# 𝑄 = 0. 

Proof We proved 

 𝛾𝑥𝑑𝛾𝑧

𝑏

𝑎

= 3  𝛾𝑥
2𝑑𝛾𝑦

𝑏

𝑎

  𝛾𝑦𝑑𝛾𝑧

𝑏

𝑎

= −3  𝛾𝑦
2𝑑𝛾𝑥

𝑏

𝑎

 

With these we compute, for 𝜔1, 𝜔2, 𝜔3 Lipschitz 

𝜑# 𝑄 𝜔1𝑑𝑦 ∧ 𝑑𝑡 + 𝜔2𝑑𝑥 ∧ 𝑑𝑡 + 𝜔3𝑑𝑥 ∧ 𝑑𝑦  = 𝑄 𝜑∗ 𝜔1𝑑𝑦 ∧ 𝑑𝑡 + 𝜔2𝑑𝑥 ∧ 𝑑𝑡 + 𝜔3𝑑𝑥 ∧ 𝑑𝑦  

= 𝑄 𝜔  𝑑𝜑𝑥 ∧ 𝑑𝜑𝑦  

= lim
𝑛→∞

 𝜔 𝑏𝑄𝑖
 𝜑𝑥 𝑑𝜑𝑦
𝜕𝑄𝑖𝑄𝑖∈𝒫𝑛(𝑄)

 

= 0 

This is correct by (∗), but 
requires more justification 

(∗) 

= lim
𝑛→∞

 𝜔 𝑏𝑄𝑖
 

1

2
𝜑𝑥𝑑𝜑𝑦 − 𝜑𝑦𝑑𝜑𝑥

𝜕𝑄𝑖𝑄𝑖∈𝒫𝑛(𝑄)

 



Proof of Lemma (Zust 4.6): Let 𝑄 ⊂ ℝ2 be a square, 𝜑: 𝑄 → ℍ, 𝛽 >
2

3
 Holder continuous.  Then 𝜑# 𝑄 = 0. 

Alternative Proof Let 𝛼 = 𝑑𝑡 + 2 𝑦𝑑𝑥 − 𝑥𝑑𝑦  be the contact form for ℍ with ker 𝛼 = 𝐻ℍ. 

Obvious estimates with convolutions, using the Holder continuity of 𝜑 and the Koranyi metric yield 

𝜑𝜀
∗𝛼 ∞ < 𝐶휀2𝛾−1 

Observe that we have 𝑑𝑥 ∧ 𝑑𝑦 =
1

4
𝑑𝛼, 𝑑𝑥 ∧ 𝑑𝑡 = 𝑑𝑥 ∧ 𝛼 −

𝑥

2
𝑑𝛼, and 𝑑𝑦 ∧ 𝑑𝑡 = 𝑑𝑦 ∧ 𝛼 +

𝑦

2
𝑑𝛼 

And also for arbitrary 1-forms 𝜅 on ℝ3 = ℍ we have  

𝜑𝜀
∗𝜅 ∞ < 𝐶휀𝛾−1 

Thus, 

𝜑# 𝑄 𝜔1𝑑𝑦 ∧ 𝑑𝑡 + 𝜔2𝑑𝑥 ∧ 𝑑𝑡 + 𝜔3𝑑𝑥 ∧ 𝑑𝑦  = 𝜑# 𝑄 𝛼 ∧ 𝜉 + 𝑑𝛼 ∧ 𝜂  

= lim
𝜀→0

 𝜑𝜀
∗ 𝛼 ∧ 𝜉 + 𝜂 𝑑𝛼

𝑄

 

= lim
𝜀→0

 𝜑𝜀
∗ 𝛼 ∧ 𝜉

𝑄

+ lim
𝜀→0

 𝜂 ∘ 𝜑𝜀 𝑑 𝜑𝜀
∗𝛼

𝑄

 

 𝜑𝜀
∗ 𝛼 ∧ 𝜉

𝑄

≤ 𝐶 𝜑𝜀
∗𝛼 ∞ 𝜑𝜀

∗𝜉 ∞ 

≤ 𝐶 휀2𝛾−1휀𝛾−1 → 0 

 𝜂 ∘ 𝜑𝜀 𝑑 𝜑𝜀
∗𝛼

𝑄

 =  𝜑𝜀
∗(𝜂 𝛼)

𝜕𝑄

−  𝜑𝜀
∗ 𝛼 ∧ 𝑑𝜂

𝑄

 

 𝜂 ∘ 𝜑𝜀 𝑑 𝜑𝜀
∗𝛼

𝑄

≤ 𝐶휀2𝛾−1 + 𝐶휀3𝛾−2 

= 0 
∎ 



Theorem (Zust, 1.3) Let 𝑋 be a quasiconvex compact metric space with 𝜋1
Lip

𝑋 = 0, 

and let 𝜑: 𝑋, 𝑑𝑋 → ℍ, 𝑑cc  be Holder continuous of order 𝛼 > 2/3.   

Then 𝜑 factors through a tree. 

Proof Outline   

Definition  We say 𝜑: 𝑋 → 𝑌 has property (T) if for 𝑥, 𝑥′ ∈ 𝑋 with 𝜑 𝑥 ≠ 𝜑(𝑥′) there exists 
a point 𝑦 ∈ 𝑌 such that 𝜑 ∘ 𝛾 passes through 𝑦 for all curves 𝛾: 𝑥 ⇝ 𝑥′.   

Theorem (Zust 1.1)  If 𝑋 is 𝐶-quasiconvex compact with 𝐻1 𝑋 = 0 or 𝐻1
Lip

𝑋 = 0 and 

𝜑: 𝑋 → 𝑌 is 𝜎-continuous with property (T), then 𝜑 factors through a tree (+ estimates and 
contractibility) 

Proposition (Zust 4.1)  Let 𝑋 be quasiconvex compact, 𝐻1 𝑋 = 0 or 𝐻1
Lip

𝑋 = 0, 

𝜑: 𝑋 → 𝑌 Holder continuous of order 𝛼 > 1/2, and suppose 𝜑 ∘ 𝛾 # 𝕊1 = 0 for closed 
Lipschitz curves 𝛾: 𝕊1 → 𝑋.  Then 𝜑 has property (T). 

Lemma (Zust 4.6)  Let 𝑄 ⊂ ℝ2 be a square and 𝜑: 𝑄 → ℍ Holder continuous of order 𝛼 >
2

3
.  

Then the pushforward 𝜑# 𝑄 = 0 viewed as a current in ℝ3.   


