Metric Currents

Definitons Let *X* be a locally compact metric space.

 $\mathcal{D}(X) = \{ f \in \text{Lip}(X) : f \text{ has compact support} \}$ $\text{Lip}_{K,l}(X) = \{ f \in \text{Lip}_l(X) : \text{spt}(f) \subset K \}$

Notice $\mathcal{D}(X) = \bigcup \operatorname{Lip}_{K,l}(X)$. Say...

$$f_j \to f \text{ in } \mathcal{D}(X)$$

if and only if

- f_j belong to some fixed $\operatorname{Lip}_{K,l}(X)$
- $f_j \rightarrow f$ pointwise (hence uniformly) on X

Say...

$$\pi_j \to \pi$$
 in $\operatorname{Lip}_{\operatorname{loc}}(X)$

if and only if

- For compact $K \subset X$ there is a constant l_K with $\operatorname{Lip}(\pi_j|_K) \leq l_K$
- $\pi_i \rightarrow \pi$ pointwise (hence locally uniformly) on X

Definitions Let $\mathcal{D}^n(X) = \mathcal{D}(X) \times [Lip_{loc}(X)]^n$

Let $T: \mathcal{D}^n(X) \to \mathbb{R}$ be a function satisfying the following properties

- 1. Multilinearity in the n + 1 arguments
- 2. Continuity in the product topology
- 3. Locality: let $(f, \pi_1, ..., \pi_n) \in \mathcal{D}^n(X)$ and suppose some π_i is constant on a neighborhood of spt(f). Then $T(f, \pi) = 0$

If *T* satisfies these properties, we call it an *n*-dimensional metric current on *X*. Denote by $\mathcal{D}_n(X)$ the space of these objects.

Endow $\mathcal{D}_n(X)$ with the locally convex weak topology.

 $T_k \to T$ if $T_k(f,\pi) \to T(f,\pi)$ for all $(f,\pi) \in \mathcal{D}^n(X)$

Example A submanifold $M^{(m)}$ of a Riemannian manifold V induces an m-current $[M] \in \mathcal{D}_m(V)$

$$\llbracket M \rrbracket (f, g_1, \dots, g_m) = \int_M f dg_1 \wedge \dots \wedge dg_m$$

More generally, if we have in addition a function $u \in L^1_{loc}(V)$, there is an induced current $[u] \in \mathcal{D}_m(V)$

$$[u](f,g_1,\ldots,g_m) = \int_M uf \, dg_1 \wedge \cdots \wedge dg_m$$

(Non-) Example Let $X = \mathbb{R}$. We ask whether the dirac mass δ_0 induces a 1-current. In the classical theory, δ_0 is a current

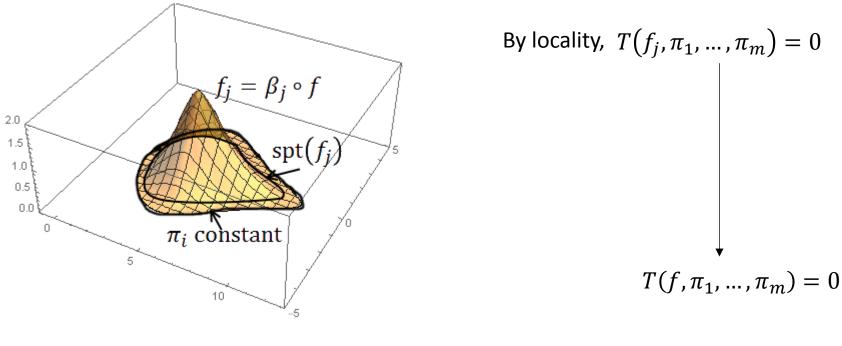
$$[\delta_0](f,g) = f(0)g'(0)$$

But in the theory of metric currents, δ_0 is not a current because g is merely Lipschitz and may not have a derivative at 0. This is a serious problem. It seems we have no hope for compactness of $\mathcal{D}_m(X)$.

Lemma (Strict Locality of Metric Currents)

 $T(f, \pi_1, ..., \pi_m) = 0$ whenever some π_i is constant on spt(f).

Proof Replace f with $f_j = \beta_j \circ f$



 $\beta_j(s) = \max(0, s - 1/j)$

Lemma (Lang 2.2) Suppose $T: [\mathcal{D}(X)]^{m+1} \to \mathbb{R}$ satisfies the conditions of a metric current with $\mathcal{D}(X)$ in place of $\operatorname{Lip}_{\operatorname{loc}}(X)$. Then T extends uniquely to a current in $\mathcal{D}_m(X)$.

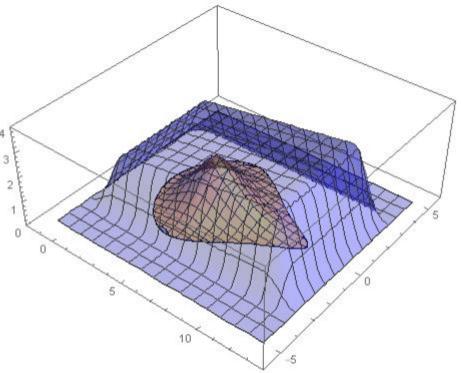
Remark Thus, $T \in \mathcal{D}_m(X)$ is determined by its values on $[\mathcal{D}(X)]^{m+1} \subset \mathcal{D}^m(X)$.

Proof Let *T* be given as in the hypotheses. Define, for $(f, \pi_1, ..., \pi_m) \in \mathcal{D}^m(X) = \mathcal{D}(X) \times [Lip_{loc}(X)]^m$

$$\overline{T}(f, \pi_1, \dots, \pi_m) = T(f, \sigma \pi_1, \dots, \sigma \pi_m)$$

Where $\sigma \in \mathcal{D}(X)$ with $\sigma \equiv 1$ on a neighborhood of spt(f). This is independent of the choice of σ by locality. The three axioms are now easy to check. For example, continuity:

Let $(f^k, \pi_1^k, ..., \pi_m^k) \rightarrow (f, \pi_1, ..., \pi_m)$ Then the $f^k \in \operatorname{Lip}_{K_1}(X)$ for a fixed K, l. Let $\sigma \equiv 1$ on a neighborhood of K and ... $(f^k, \sigma \pi_1^k, ..., \sigma \pi_m^k) \rightarrow (f, \sigma \pi_1, ..., \sigma \pi_m)$ By assumption, $T(f^k, \sigma \pi_1^k, ..., \sigma \pi_m^k) \rightarrow T(f, \sigma \pi_1, ..., \sigma \pi_m)$ So the extension is continuous: $\overline{T}(f^k, \pi_1^k, \mathfrak{m}, \pi_m^k) \rightarrow \overline{T}(f, \pi_1, ..., \pi_m)$



Definition (Lang 2.3) Let $T \in \mathcal{D}_m(X)$ and $(u, v) \in \text{Lip}_{\text{loc}}(X) \times [\text{Lip}_{\text{loc}}(X)]^k$, with $0 \le k \le m$. Define T[(u, v) by the formula

 $(T[(u,v))(f,g) = T(uf,v,g), \qquad (f,g) \in \mathcal{D}^{m-k}(X)$

T[(u, v) is easily seen to be an m - k-current.

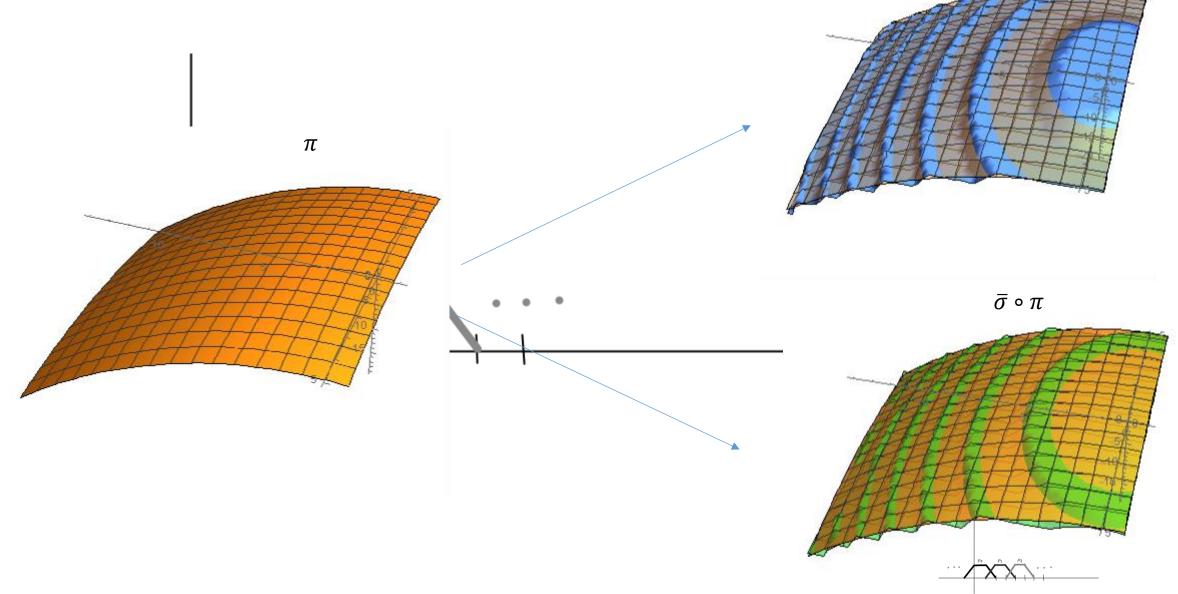
Proposition (Lang 2.4) Suppose $T \in \mathcal{D}_m(X)$, $m \ge 1$. $(f, \pi_1, ..., \pi_m) \in \mathcal{D}^m(X)$. Then:

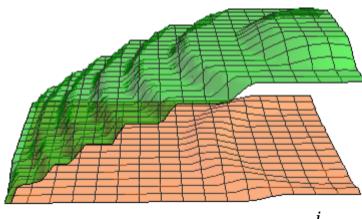
1. If
$$\pi_i = \pi_j$$
 for some $i \neq j$ then $T(f, \pi_1, ..., \pi_m) = 0$.

2. For $g, h \in \text{Lip}_{\text{loc}}(X)$,

$$T(f, gh, \pi_2, ..., \pi_m) = T(fg, h, \pi_2, ..., \pi_m) + T(fh, g, \pi_2, ..., \pi_m)$$

We first prove (1), the *alternating property*. Let us prove that $T(f, \pi, \pi) = 0$ for $(f, \pi) \in \mathcal{D}^1(X)$. Take a 1-Lipschitz partition of unity of the real line as pictured, called $\{\rho_k\}$. Let $\tilde{\pi}$ and $\bar{\pi}$ be two modifications of π as pictured.

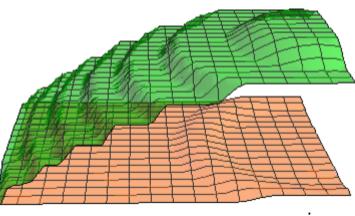




/ Finite sum (why?)

$$T(f,\sigma_j\circ\pi,\bar{\sigma}_j\circ\pi) = \sum_{k\in\mathbb{Z}} T\left(\left(\rho_k^j\circ\pi\right)f,\sigma_j\circ\pi,\bar{\sigma}_j\circ\pi\right)$$

 $\stackrel{\downarrow}{T}(f,\pi,\pi) = 0, \quad \text{by strict locality}$



Now we prove the *product rule* (2) $T(f, gh, \pi_2, ..., \pi_m) = T(fg, h, \pi_2, ..., \pi_m) + T(fh, g, \pi_2, ..., \pi_m)$ It suffices to prove $T(f, g^2) = 2T(fg, g)$ (Why?)

$$T\left(f,(\sigma_{j}\circ g)(\bar{\sigma}_{j}\circ g)\right) = \sum_{k\in\mathbb{Z}} T\left(\left(\rho_{k}^{j}\circ g\right)f,(\sigma_{j}\circ g)(\bar{\sigma}_{j}\circ g)\right)$$

$$= \sum_{k\text{ even }} \frac{2k}{j} T\left(\left(\rho_{k}^{j}\circ g\right)f,\bar{\sigma}_{j}\circ g\right) + \sum_{k\text{ odd }} \frac{2k}{j} T\left(\left(\rho_{k}^{j}\circ g\right)f,\sigma_{j}\circ g\right)$$

$$= \sum_{k\in\mathbb{Z}} \frac{2k}{j} \rho_{k}^{j}$$

$$= T\left(\left(\tau_{j}\circ g\right)f,(\sigma_{j}+\bar{\sigma}_{j})\circ g\right)$$

$$\Rightarrow T(gf,2g)$$

 $ho_k^j \circ \pi$

Theorem (Chain Rule, Lang 2.5) $T(f, g \circ \pi) = T((g' \circ \pi)f, \pi)$ for 1-currents T and $g \in C^{1,1}(\mathbb{R})$ **Proof**

 $T(f, \pi^r) = T(r\pi^{r-1}f, \pi)$ by the product rule.

Thus the chain rule holds for g a polynomial. Now suppose $g \in C^2(\mathbb{R})$ Invoke Stone-Weierstrass Theorem to find polynomials $p_j \to g$ in $C^2(\mathbb{R})$. Finally, any $g \in C^{1,1}$ can be approximated by $g_i \in C^2(\mathbb{R})$ by convolution.

More generally:

Theorem (Chain Rule, Lang 2.5) Suppose $m, n \ge 1, T \in \mathcal{D}_m(X), U \subset \mathbb{R}^n$ open, $f \in \mathcal{D}(X)$ $\pi = (\pi_1, ..., \pi_n) \in \operatorname{Lip}_{\operatorname{loc}}(X, U), g = (g_1, ..., g_m) \in [C^{1,1}(U)]^m$. If $n \ge m$ then

$$T(f,g\circ\pi) = \sum_{\lambda\in\Lambda(n,m)} T\left(f\det\left[\left(D_{\lambda(k)}g_i\right)\circ\pi\right]_{i,k=1}^m, \pi_{\lambda(1)}, \dots, \pi_{\lambda(m)}\right)$$

If n < m then $T(f, g \circ \pi) = 0$

Proof Again, the theorem holds for polynomials, and follows from a density argument.

Proposition (Standard Example, Lang 2.6) Let $U \subset \mathbb{R}^m$ open, $m \ge 1$. Then every $u \in L^1_{loc}(U)$ induces a current $[u] \in \mathcal{D}_m(U)$ satisfying

$$[u](f,g) = \int_U uf \det(Dg) dx$$

Proof Locality and multilinearity are obvious. We prove continuity. Let $(f^j, g^j) \to (f, g) \in \mathcal{D}^m(U)$. There exists $V \Subset U$ and l > 0 such that $\operatorname{spt}(f^j) \subset V$ and $\operatorname{Lip}(f^j) \leq l$ for all j, and $f^j \to f$ uniformly; Moreover $\operatorname{Lip}(g_i^j|_V) \leq l$ for j, i and $g_i^j|_V \to g_i|_V$ uniformly. Put $h_i^j = g_i^j - g_i$ and we have $[u](f^j, g^j) - [u](f, g) = [u](f^j - f, g^j) + \sum_{i=1}^m [u](f, g_1, \dots, g_{i-1}, h_i^j, g_{i+1}^j, \dots, g_m^j)$

The first term tends to zero. Consider the summand i = 1. $uf \in L^1(V)$ so we need to show

$$\int_{V} v \det \left(D(h_1^j, g_2^j, \dots, g_m^j) dx \to 0, \qquad v \in L^1(V) \right)$$

But $C_c^1(V) \subset L^1(V)$ is dense and the determinants are bounded in $L^{\infty}(V)$. So we can take $v \in C_c^1(V)$.

$$\int_{V} v \det \left(D\left(h_{1}^{j}, g_{2}^{j}, \dots, g_{m}^{j}\right) \right) dx = -\int_{V} h_{1}^{j} \det \left(D\left(v, g_{2}^{j}, \dots, g_{m}^{j}\right) \right) dx \quad \text{(Stokes' Theorem)}$$

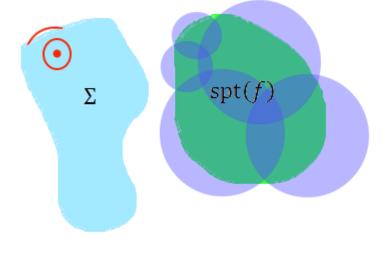
Definition (Support, Lang 3.1) Given $T \in \mathcal{D}_m(X)$, $m \ge 0$, its support $\operatorname{spt}(T)$ in X is the intersection of closed sets $C \subset X$ with the property that $T(f,\pi) = 0$ for $(f,\pi) \in \mathcal{D}^m(X)$ with $\operatorname{spt}(f) \cap C = \emptyset$.

 $\operatorname{spt}(T) = \bigcap \{ C \operatorname{closed} : T(f, \pi) = 0 \text{ for } (f, \pi) \in \mathcal{D}^m(X) \text{ with } \operatorname{spt}(f) \cap C = \emptyset \}$

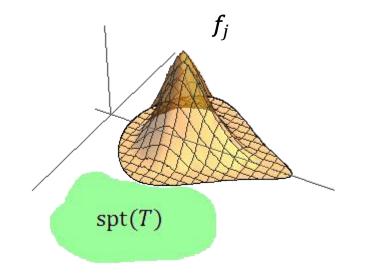
Lemma (Support, Lang 3.2) Suppose $T \in \mathcal{D}_m(X), m \ge 0$. Then: (1) $\operatorname{spt}(T) = \{x \in X : (\varepsilon > 0) (\exists (f, \pi) \in \mathcal{D}^m(X)) (\operatorname{spt}(f) \subset B(x, \varepsilon) \text{ and } T(f, \pi) \neq 0) \}$ (2) If $f|_{\operatorname{spt}(T)} = 0$ then $T(f, \pi_1, \dots, \pi_m) = 0$ (3) $T(f, \pi_1, \dots, \pi_m) = 0$ if some π_i is constant on $\{f \neq 0\} \cap \operatorname{spt}(T)$.

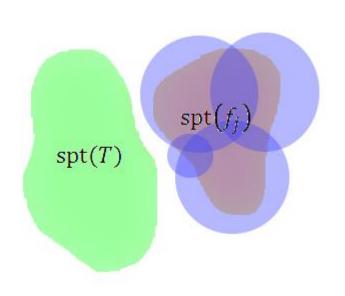
Proof Let Σ be the set described in (1). Suppose $x \notin \operatorname{spt}(T)$. Let C be a closed set with property (*) and $x \notin C$. Let $\varepsilon > 0$ be such that $T(f, \pi) = 0$ whenever $\operatorname{spt}(f) \subset B(x, \varepsilon)$. Conclude $x \notin \Sigma$.

Let us now show that Σ has property (*). This will show $\operatorname{spt}(T) \subset \Sigma$. Let $\operatorname{spt}(f) \cap \Sigma = \emptyset$. Let U_1, \ldots, U_N be a covering of $\operatorname{spt}(f)$ by balls not touching Σ with property (**)



 $(\varepsilon > 0) (\exists (g, \pi) \in \mathcal{D}^{m}(X)) (\operatorname{spt}(g) \subset B(x, \varepsilon) \text{ and } T(g, \pi) \neq 0)$ $(\exists \varepsilon > 0) (\forall (g, \pi) \in \mathcal{D}^{m}(X)) (\operatorname{spt}(g) \subset B(x, \varepsilon) \Rightarrow T(g, \pi) = 0)$ Decompose $f = \sum_{i=1}^{N} \varphi_{i} f$ $T(f, \pi) = \sum_{i=1}^{N} T(\varphi_{i} f, \pi) = 0$ (**) **Proof (continued)** Now let us show that if $f|_{\text{spt}(T)} = 0$ then $T(f, \pi_1, ..., \pi_m) = 0$.





Each ball *B* has the property that $spt(g) \subset B \Rightarrow T(g, \pi) = 0$

Take a partition of unity subordinate to these balls and conclude $T(f_i, \pi) = 0$

By continuity, $T(f, \pi) = 0$.

Proof (continued) Finally we must show that $T(f, \pi_1, ..., \pi_m) = 0$ if some π_i is constant on $\{f \neq 0\} \cap \operatorname{spt}(T)$. Assume WLG m = 1. Subtract a constant and assume $\pi = 0$ on $\{f \neq 0\} \cap \operatorname{spt}(T)$.

$$T(f,\pi) \leftarrow T(f,\beta_{j}\circ\pi) - T(f(1-\sigma),\beta_{j}\circ\pi) = T(\sigma f,\beta_{j}\circ\pi) = 0$$

Observe spt $(\beta_{j}\circ\pi) \cap$ spt $(f|_{spt(T)}) = \emptyset$.
Let spt $(f|_{spt(T)}) < \sigma < X \setminus spt(\beta_{j}\circ\pi)$

0 because of part (2): $g|_{\text{spt}(T)} = 0 \Rightarrow T(g, \pi) = 0$ **Proposition (Lang 3.3)** Let $T \in \mathcal{D}_m(X)$, $A \subset X$ a locally compact subspace containing spt(T). Then there is a unique current $T_A \in \mathcal{D}_m(A)$ with the property that...

$$T_A(f, \pi_1, \dots, \pi_m) = T(\bar{f}, \bar{\pi}_1, \dots, \bar{\pi}_m)$$

... whenever \overline{f} , $\overline{\pi}_1$, ..., $\overline{\pi}_m$ are extensions of f, π_1 , ..., π_m to all of X. Moreoever, spt $(T_A) = spt(T)$.

Proof Let $K \subset A$ be compact, $l \ge 0$ and c > 0. There exist $K \subset K' \subset X$, $l' \ge l$ and E an extension operator $E: \operatorname{Lip}_{K,l}(A) \cap \{ \|f\|_{\infty} \le c \} \to \operatorname{Lip}_{K',l'}(X)$

E can be taken to be a MacShane extension times a cutoff function. If *E* and \tilde{E} are two such extensions, then

$$T(Ef, E\pi_1, \dots, E\pi_m) - T(\tilde{E}f, \tilde{E}\pi_1, \dots, \tilde{E}\pi_m) = T(Ef - \tilde{E}f, E\pi_1, \dots, E\pi_m) + \sum_{i=1}^m T(\tilde{E}f, \tilde{E}\pi_1, \dots, \tilde{E}\pi_{i-1}, E\pi_i - \tilde{E}\pi_i, E\pi_{i+1}, \dots, E\pi_m)$$

Each of the terms vanishes by the previous lemma. So T_A is thus well-defined. We used the fact that currents are determined by their values on $\mathcal{D}(X)^{m+1}$. **Definition (Boundary, Lang 3.4)** The boundary of a current $T \in \mathcal{D}_m(X)$, $m \ge 1$ is the current $\partial T \in \mathcal{D}_{m-1}(X)$ defined by

$$\partial T(f, \pi_1, \dots, \pi_{m-1}) \coloneqq T(\sigma, f, \pi_1, \dots, \pi_{m-1})$$

for $(f, \pi_1, ..., \pi_{m-1}) \in \mathcal{D}^{m-1}(X)$, where $\sigma \in \mathcal{D}(X)$ is any function with $\sigma \equiv 1$ on $\{f \neq 0\} \cap \operatorname{spt}(T)$.

Lemma (Lang 3.5)
$$(\partial T)[(u, v) = T[(1, u, v) + (-1)^k \partial (T[(u, v)))$$

Proof $((\partial T)[(u, v))(f, g) = \partial T(uf, v, g)$
 $= T(\sigma, uf, v, g)$
 $= T(\sigma f, u, v, g) + T(\sigma u, f, v, g)$
 $= T(f, u, v, g) + (-1)^k T(\sigma u, v, f, g)$
 $= (T[(1, u, v))(f, g) + (-1)^k (\partial (T[(u, v))(f, g)))$

Observe that if *M* is a manifold with boundary

$$\llbracket \partial M \rrbracket (f dx_1 \wedge \dots \wedge dx_{m-1}) = \llbracket M \rrbracket (df \wedge dx_1 \wedge \dots \wedge dx_{m-1})$$

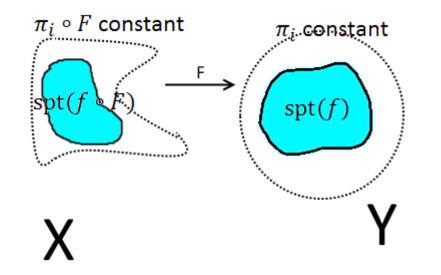
So this definition is simply meant to give us Stokes' Theorem.

Definition (Push-forward, Lang 3.6) Suppose $T \in \mathcal{D}_m(X)$, $A \subset X$ is a locally compact subspace containing spt(T). Suppose Y is another locally compact metric space. Suppose $F \in \text{Lip}_{\text{loc}}(A, Y)$ is proper. Define the pushforward:

$$F_{\#}T(f,\pi_1,\ldots,\pi_m) \coloneqq T_A(f \circ F,\pi_1 \circ F,\ldots,\pi_m \circ F)$$

For $(f, \pi_1, \dots, \pi_m) \in \mathcal{D}^m(Y)$.

Proof (that $F_{\#}T$ is a current): Multilinearity of $F_{\#}T$ follows immediately from multilinearity of T_A . The same is true for continuity. We prove locality. Suppose π_i is constant on a neighborhood of spt(f). Then $\pi_i \circ F$ is constant on a neighborhood of spt $(f \circ F)$ in A.



By locality of T_A , $F_{\#}T(f, \pi_1, \dots, \pi_m) = T_A(f \circ F, \pi_1 \circ F, \dots, \pi_m \circ F) = 0$

Remark 1

$$\partial(F_{\#}T)(f,\pi) = (F_{\#}T)(\sigma, f,\pi) \qquad \sigma \equiv 1 \text{ on } \{f \neq 0\} \cap \operatorname{spt}(F_{\#}T)$$
$$= T_{A}(\sigma \circ F, f \circ F, \pi \circ F) \qquad \text{Note } \sigma \circ F \equiv 1 \text{ on } \{f \circ F \neq 0\} \cap \operatorname{spt}(T_{A})$$
$$= \partial(T_{A})(f \circ F, \pi \circ F)$$
$$= (\partial T)_{A}(f \circ F, \pi \circ F) \qquad \text{Easy lemma, omitted.}$$
$$= F_{\#}(\partial T)(f,\pi)$$

$$\partial F_{\#} = F_{\#} \partial$$

Remark 2

$$(G \circ F)_{\#} = G_{\#}F_{\#}$$

Lemma 3.7 Suppose $u \in L^1_{loc}(\mathbb{R}^m)$, $F \in Lip_{loc}(\mathbb{R}^m, \mathbb{R}^m)$, and $F|_{spt(u)}$ is proper. Then $F_{\#}[u] = [v]$ where $v \in L^1_{loc}(\mathbb{R}^m)$ satisfies

$$v(y) = \sum_{x \in F^{-1}\{y\}} u(x) \operatorname{sgn} \det DF(x)$$
 $\mathcal{L}^m \operatorname{-a.e.} y \in \mathbb{R}^m$

Proof Let $(f, \pi) \in \mathcal{D}^m(\mathbb{R}^m)$. Then...

$$F_{\#}[u](f,\pi) = \int_{\mathbb{R}^{m}} u(x)f(F(x)) \det D(\pi \circ F)_{x} dx$$

$$= \int_{\mathbb{R}^{m}} u(x)f(F(x)) \det D\pi_{F(x)} \operatorname{sgn} \det DF_{x} |\det DF_{x}| dx$$

$$= \int_{\mathbb{R}^{m}} \sum_{x \in F^{-1}\{y\}} h(x) dy \quad \text{Area formula, c.f. Evans and Gariepy}$$

$$= \int_{\mathbb{R}^{m}} v(y)f(y) \det D\pi_{y} dy$$

 $= [v](f,\pi)$

Definition (Mass, Lang 4.1) For $T \in \mathcal{D}_m(X)$, $V \subset X$ open, define the mass of T on $V M_V(T)$ as

$$M_V(T) = \sup_* \sum_{\lambda \in \Lambda} T(f_\lambda, \pi^\lambda)$$

* : Λ is a finite indexing set, $(f_{\lambda}, \pi^{\lambda}) \in \mathcal{D}(X) \times [\operatorname{Lip}_{1}(X)]^{m}$, $\operatorname{spt}(f_{\lambda}) \subset V$, $\sum_{\lambda \in \Lambda} |f_{\lambda}| \leq 1$.

Define $M(T) \coloneqq M_X(T)$ the total mass of T.

Denote $M_{m,loc}(X)$ the vector space of $T \in \mathcal{D}_m(X)$ with $M_V(T) < \infty$ for $V \subseteq X$.

Define $M_m(X) \coloneqq \{T \in \mathcal{D}_m(X) : M(T) < \infty\}$

Define $||T||(A) \coloneqq \inf\{M_V(T): V \subset X \text{ open}, A \subset V\}$ for $T \in \mathcal{D}_m(X), A \subset X$.

Mass is weak lower-semicontinuous, clearly. Mass is a norm on $M_m(X)$.

Proposition 4.2 $(M_m(X), M)$ is a Banach space.

Proof Sketch Given a Cauchy sequence $\{T_k\}_{k=1}^{\infty}$ in $(M_m(X), M)$, $\{T_k(f, \pi)\}_{k=1}^{\infty}$ is Cauchy for $(f, \pi) \in \mathcal{D}^m(X)$. One defines $T(f, \pi)$ to be the limit, then shows that it is a current and the limit of T_k . **Proposition 4.2** $(M_m(X), M)$ is a Banach space.

Proof Let $\{T_k\}_{k=1}^{\infty}$ be Cauchy in $(M_m(X), M)$. Let $\varepsilon > 0$. Let $(f, \pi) \in \mathcal{D}^m(X)$.

$$(T_{k} - T_{l})(f, \pi_{1}, ..., \pi_{m}) = \|f\|_{\infty} \prod_{i=1}^{m} \operatorname{Lip}(\pi_{i}|_{\operatorname{spt}(f)}) (T_{k} - T_{l}) \left(\frac{f}{\|f\|_{\infty}}, \frac{\pi_{1}}{\operatorname{Lip}(\pi_{1}|_{\operatorname{spt}(f)})}, ..., \frac{\pi_{m}}{\operatorname{Lip}(\pi_{m}|_{\operatorname{spt}(f)})}\right) \\ \leq \|f\|_{\infty} \prod_{i=1}^{m} \operatorname{Lip}(\pi_{i}|_{\operatorname{spt}(f)}) M_{m}(T_{k} - T_{l})$$

 $< \varepsilon$, for *k*, *l* sufficiently large.

Define $T(f,\pi) = \lim_{k \to \infty} T_k(f,\pi)$. *T* is (m + 1)-multilinear and satisfies the locality condition. For continuity: let $(f^j, \pi^j) \to (f,\pi)$ in $\mathcal{D}^m(X)$.

 $\left| T(f^{j}, \pi^{j}) - T(f, \pi) \right| \leq \left| T(f^{j}, \pi^{j}) - T_{k}(f^{j}, \pi^{j}) \right| + \left| T_{k}(f^{j}, \pi^{j}) - T_{k}(f, \pi) \right| + \left| T_{k}(f, \pi) - T(f, \pi) \right|$

 $\leq 3\varepsilon$, for *j*, *k* sufficiently large.

Finally we must check that $M(T_k - T) \rightarrow 0$. We leave this as an easy exercise.

Remark (Mass for standard examples) Let $U \subset \mathbb{R}^m$ open, $T \in \mathcal{D}_m(U)$. Invoke the chain rule:

$$\begin{split} M_{V}(T) &= \sup\left\{\sum_{\lambda \in \Lambda} T\left(f_{\lambda}, \pi_{1}^{\lambda}, \dots, \pi_{m}^{\lambda}\right) : \Lambda \text{ finite, } \sum_{\lambda \in \Lambda} |f_{\lambda}| \leq 1, \left(f_{\lambda}, \pi^{\lambda}\right) \in \mathcal{D}(U) \times [\operatorname{Lip}_{1}(U)]^{m}, \operatorname{spt}(f_{\lambda}) \subset V \right\} \\ &= \sup\left\{\sum_{\lambda \in \Lambda} T\left(f_{\lambda}, \pi_{1}^{\lambda}, \dots, \pi_{m}^{\lambda}\right) : \Lambda \text{ finite, } \sum_{\lambda \in \Lambda} |f_{\lambda}| \leq 1, \left(f_{\lambda}, \pi^{\lambda}\right) \in \mathcal{D}(U) \times [\operatorname{Lip}_{1}(U) \cap C^{1,1}(U)]^{m}, \operatorname{spt}(f_{\lambda}) \subset V \right\} \\ &= \sup\left\{\sum_{\lambda \in \Lambda} T\left(f_{\lambda} \det\left[\frac{\partial \pi_{i}^{\lambda}}{\partial x_{k}}\right]_{i,k=1}^{m}, \operatorname{Id}\right) : \Lambda \sum_{\lambda \in \Lambda} |f_{\lambda}| \leq 1, \left(f_{\lambda}, \pi^{\lambda}\right) \in \mathcal{D}(U) \times [\operatorname{Lip}_{1}(U) \cap C^{1,1}(U)]^{m}, \operatorname{spt}(f_{\lambda}) \subset V \right\} \\ &= \sup\{T(f, \operatorname{Id}) : |f| \leq 1, \operatorname{spt}(f) \subset V \} \end{split}$$

If $u \in L^1_{\text{loc}}(U)$, we have

$$M_V([u]) = \int_V |u| dx$$

Theorem (Mass, Lang 4.3) Let $T \in \mathcal{D}_m(X)$.

- (1) ||T|| is a Borel regular measure.
- (2) $\operatorname{spt}(||T||) = \operatorname{spt}(T)$ and $||T||(X \setminus \operatorname{spt}(T)) = 0$

(3) For open $V \subset X$,

$$||T||(V) = \sup_{\substack{K \subset X \text{ compact}\\K \subset V}} ||T||(K)$$

(4) If $T \in M_{m,loc}(X)$ then ||T|| is a Radon measure and

$$|T(f,\pi)| \le \prod_{i=1}^{m} \operatorname{Lip}(\pi_i|_{\operatorname{spt}(f)}) \int_X |f|d||T||$$

Proof Recall the definitions

$$||T||(A) = \inf\{M_V(T) : V \subset X \text{ open, } A \subset V\}$$
$$M_V(T) = \sup_* \sum_{\lambda \in \Lambda} T(f_\lambda, \pi^\lambda)$$

We want to prove ||T|| is a Borel regular measure. We begin by proving subadditivity for open sets $V \subset \bigcup_{i=1}^{\infty} V_i$ Let Λ and $(f_{\lambda}, \pi^{\lambda})$ be as in the definition of $M_V(T)$, N the first index with $\bigcup_{i=1}^{N} V_i \supset K \coloneqq \bigcup_{\lambda \in \Lambda} \operatorname{spt}(f_{\lambda})$. Take a partition of unity on K, $\rho_1, \ldots, \rho_N \in \mathcal{D}(X)$ subordinate to the V_i .

$$\sum_{\lambda \in \Lambda} T(f_{\lambda}, \pi^{\lambda}) = \sum_{\lambda \in \Lambda} \sum_{i=1}^{N} T(\rho_k f_{\lambda}, \pi^{\lambda}) = \sum_{i=1}^{N} \sum_{\lambda \in \Lambda} T(\rho_k f_{\lambda}, \pi^{\lambda}) \le \sum_{i=1}^{N} ||T|| (V_i)$$
$$||T|| (V) \le \sum_{i=1}^{\infty} ||T|| (V_i)$$

Now subadditivity for arbitrary sets $A \subset \bigcup_{i=1}^{\infty} A_i$ follows (why?).

Also, ||T|| satisfies Caratheodory's criterion: $||T||(A \cup B) = ||T||(A) + ||T||(B)$ whenever d(A, B) > 0. (Why?) By Caratheodory's criterion, the Borel sets are ||T||-measurable.

It is clear that ||T|| is Borel regular: every $A \subset X$ is contained in a Borel set B of equal ||T||-measure (why?). We proved that ||T|| is a Borel regular outer measure. **Proof (cont'd)** Now we prove $\operatorname{spt}(||T||) = \operatorname{spt}(T)$ and that $||T||(X \setminus \operatorname{spt}(T)) = 0$. Recall Lemma 3.2(1) $\operatorname{spt}(T) = \{x \in X : (\varepsilon > 0)(\exists (f, \pi) \in \mathcal{D}^m(X))(\operatorname{spt}(f) \subset B(x, \varepsilon) \text{ and } T(f, \pi) \neq 0)\}$ And the definitions $\operatorname{spt}(||T||) = \{x \in X : (V \subset X \text{ open with } x \in V)(||T||(V) \neq 0)\}$ From these two characterizations, we easily have $\operatorname{spt}(T) \subset \operatorname{spt}(||T||)$ Next, if $x \notin \operatorname{spt}(T)$ then there is a closed set C with $x \notin C$ and $T(f, \pi) = 0$ for $\operatorname{spt}(f) \cap C = \emptyset$. Let V open, $x \in V, V \cap C = \emptyset$. Then clearly ||T||(V) = 0 so $x \notin \operatorname{spt}(||T||)$

We leave $||T||(X \setminus \operatorname{spt}(T)) = 0$ as an easy exercise.

Proof (cont'd) Now we prove (3): for open $V \subset X$, $||T||(V) = \sup\{||T||(K) : K \subset V \text{ compact}\}$.

Let $\alpha < ||T||(V)$. Find Λ and $(f_{\lambda}, \pi^{\lambda}) \in \mathcal{D}(X) \times [Lip_1(X)]^m$ such that $K = \bigcup_{\lambda \in \Lambda} \operatorname{spt}(f_{\lambda}) \subset V, \sum_{\lambda} |f_{\lambda}| \leq 1$ and

$$s \coloneqq \sum_{\lambda \in \Lambda} T(f_{\lambda}, \pi^{\lambda}) \geq \alpha$$

For *U* containing *K*, $||T||(U) \ge s \ge \alpha$, hence $||T||(K) \ge \alpha$. This proves (3). **Proof (cont'd)** We must prove for $T \in M_{m,loc}(X)$ that ||T|| is a Radon measure and

$$|T(f,\pi)| \le \prod_{i=1}^{m} \operatorname{Lip}(\pi_{i}|_{\operatorname{spt}(f)}) \int_{X} |f|d||T||$$

||T|| is finite on compact sets so is a Radon measure. Now we prove the estimate. Consider m = 0 first. Put $f_s = \min\{f, s\}$.

$$|T(f_t) - T(f_s)| = |T(f_t - f_s)| \le ||T||(\{f > s\})(t - s)$$
 whenever $0 \le s < t$

Hence $s \mapsto T(f_s)$ is a Lipschitz function with $|d/ds T(f_s)| \le ||T|| (\{f > s\})$ for a.e. $s \ge 0$. Finally,

$$T(f) = T(f) - T(f_0) = \int_0^\infty (d/ds) T(f_s) ds$$
$$|T(f)| \le \int_0^\infty \left| \frac{d}{ds} T(f_s) \right| ds \le \int_0^\infty ||T|| (\{f > s\}) = \int_X f d||T||$$

Adjusting for $m \ge 1$ is easy, omitted.

Theorem (Lang 4.4, Extended Functional) Let $T \in \mathbf{M}_{m,\text{loc}}(X)$, $m \ge 0$. There is an extension $T: \mathcal{B}_c^{\infty}(X) \times \text{Lip}_{\text{loc}}(X)^m \to \mathbb{R}$ such that...

- (1) Multilinearity
- (2) continuity*
- (3) locality
- (4) Mass inequality

$$|T(f,\pi)| \le \prod_{i=1}^{m} \operatorname{Lip}\left(\pi_{i} \Big|_{\operatorname{spt}(f)}\right) \int_{X} |f|d||T||$$

Reason: $\mathcal{D}(X)$ is dense in $L^1(||T||) \supset \mathcal{B}_c^{\infty}(X)$

$$f_j \to f$$
 if $\sup_j ||f_j|| < \infty$, $\bigcup_j \operatorname{spt}(f_j) \subset K$ some compact $K, f^j \to f$ pointwise on X

Lemma (Lang 4.6, Pushforwards and Mass) Suppose $T \in \mathbf{M}_{m,\text{loc}}(X)$, $m \ge 0$, Y locally compact metric space $F \in \text{Lip}_{\text{loc}}(X, Y)$, and $F|_{\text{spt}(T)}$ proper. Then $F_{\#}T \in \mathbf{M}_{m,\text{loc}}(Y)$ and

(1) For
$$(f,\pi) \in \mathcal{B}_c^{\infty}(Y) \times [\operatorname{Lip}_{\operatorname{loc}}(Y)]^m$$
 and $\sigma \in \mathcal{B}_c^{\infty}$ with $\sigma = 1$ on $\{f \circ F \neq 0\} \cap \operatorname{spt}(T)$,
 $F_{\#}T(f,\pi) = T(\sigma(f \circ F), \pi \circ F)$

(2) For Borel $B \subset Y$,

$$\mathbf{M}_{V}\left(F_{\#}T\Big|_{B}\right) \leq \operatorname{Lip}\left(F\Big|_{F^{-1}(B)\cap\operatorname{spt}(T)}\right)^{m} \|T\|(F^{-1}(V))$$

Proof Suppose $T \in \mathbf{M}_{m,\text{loc}}(X)$, $m \ge 0$, Y locally compact metric space

 $F \in \text{Lip}_{\text{loc}}(X, Y)$, and $F|_{\text{spt}(T)}$ proper. We need to show $F_{\#}T \in \mathbf{M}_{m,\text{loc}}(Y)$

Observe:

$$\begin{split} \mathbf{M}_{V}(F_{\#}T) &= \sup_{*} \sum_{\lambda \in \Lambda} F_{\#}T(f_{\lambda}, \pi^{\lambda}) \\ &= \sup_{*} \sum_{\lambda \in \Lambda} T(\sigma(f_{\lambda} \circ F), \pi^{\lambda} \circ F) \\ &\leq \left(\operatorname{Lip}\left(F \Big|_{\operatorname{spt}(\sigma)}\right) \right)^{m} \|T\|(V) \end{split}$$

This proves (2) and in particular that $F_{\#}T \in \mathbf{M}_{m,\text{loc}}(Y)$

*: Λ finite, $(f_{\lambda}, \pi^{\lambda}) \in \mathcal{D}(X) \times [\operatorname{Lip}_{1}(X)]^{m}, \sum_{\lambda} |f_{\lambda}| \leq 1, \operatorname{spt}(f_{\lambda}) \subset V$

Let us now show: (1) For $(f, \pi) \in \mathcal{B}_c^{\infty}(Y) \times [\operatorname{Lip}_{\operatorname{loc}}(Y)]^m$ and $\sigma \in \mathcal{B}_c^{\infty}$ with $\sigma = 1$ on $\{f \circ F \neq 0\} \cap \operatorname{spt}(T)$,

 $F_{\#}T(f,\pi) = T(\sigma(f \circ F), \pi \circ F)$

Indeed, this is true for $\sigma \in \mathcal{D}(X)$ with $\sigma = 1$ on $\{f \circ F \neq 0\} \cap \operatorname{spt}(T)$.

Now if $\sigma \in \mathcal{B}_c^{\infty}$, we can approximate σ by $\tau \in \mathcal{D}(X)$ and take a limit to prove the statement.

Now let us show (2): For Borel
$$B \subset Y$$
, $\mathbf{M}_V \left(F_{\#}T \Big|_B \right) \leq \operatorname{Lip} \left(F \Big|_{F^{-1}(B) \cap \operatorname{spt}(T)} \right)^m \|T\| (F^{-1}(V))$

Take $(f, \pi) \in \mathcal{D}(X) \times [\operatorname{Lip}_1(X)]^m$, $\sigma = \chi_{F^{-1}(B) \cap \{f \circ F \neq 0\}}$. Then,

$$\left(F_{\#}T \Big|_{B} \right) (f,\pi) = F_{\#}T(\chi_{B}f,\pi)$$

= $T(\sigma(f \circ F), \pi \circ F)$
 $\leq \left(\operatorname{Lip}F \Big|_{\operatorname{spt}(\sigma)} \right)^{m} \int_{F^{-1}(B)} |f \circ F|d||T||$

Lemma (Lang 4.7, Characterizing ||T||) Suppose $T \in \mathbf{M}_{m, \text{loc}}(X)$, $B \subset X$ is σ -finite with respect to ||T|| or open. Then:

$$||T||(B) = \sup_{*} \sum_{\lambda \in \Lambda} T(f_{\lambda}, \pi^{\lambda})$$

Moreover, $||T|B|| = ||T|||_B$

Proof Recall 4.4(4)

$$|T(f,\pi)| \le \prod_{i=1}^{m} \operatorname{Lip}\left(\pi_{i} \Big|_{\operatorname{spt}(f)}\right) \int_{X} |f|d||T||$$

Thus

$$\sum_{\lambda \in \Lambda} T(f_{\lambda}, \pi^{\lambda}) \leq ||T||(B)$$

On the other hand, let $\varepsilon > 0$. Let V open contain B with $||T||(V \setminus B) \le \varepsilon$. Choose $\alpha < ||T||(V)$ and find $(f_{\lambda}, \pi^{\lambda})$ satisfying (*) with

$$\alpha \leq \sum_{\lambda \in \Lambda} T(f_{\lambda}, \pi^{\lambda}) = \sum_{\lambda \in \Lambda} T(\chi_{B} f_{\lambda}, \pi^{\lambda}) + \sum_{\lambda \in \Lambda} T(\chi_{V \setminus B} f_{\lambda}, \pi^{\lambda})$$
$$\left| \sum_{\lambda \in \Lambda} T(\chi_{V \setminus B} f_{\lambda}, \pi^{\lambda}) \right| \leq \varepsilon$$
$$* : \Lambda \text{ finite, } (f_{\lambda}, \pi^{\lambda}) \in \mathcal{B}_{c}^{\infty} \times [\operatorname{Lip}_{1}(X)]^{m}, \sum_{\lambda} |f_{\lambda}| \leq \chi_{B}$$
$$\sum_{\lambda \in \Lambda} T(\chi_{B} f_{\lambda}, \pi^{\lambda}) \geq \alpha - \varepsilon$$

We've proved that

$$||T|||(B) = \sup_{*} \sum_{\lambda \in \Lambda} T(f_{\lambda}, \pi^{\lambda})$$

Now we must prove that $||T|||_B = ||T|B||$.

Choose *A* borel.

$$\|T\|\Big|_{B}(A) = \|T\|(A \cap B) = \sup_{**} \sum_{\lambda \in \Lambda} T(f_{\lambda}, \pi^{\lambda}) = \sup_{***} \sum_{\lambda \in \Lambda} T(f_{\lambda}\chi_{B}, \pi^{\lambda}) = \|T|B\|(A)$$

: Λ finite, $(f_{\lambda}, \pi^{\lambda}) \in \mathcal{B}_{c}^{\infty}(X) \times [\operatorname{Lip}_{1}(X)]^{m}, \sum_{\lambda} |f_{\lambda}| \leq \chi_{B \cap A}$ *: Λ finite, $(f_{\lambda}, \pi^{\lambda}) \in \mathcal{B}_{c}^{\infty}(X) \times [\operatorname{Lip}_{1}(X)]^{m}, \sum_{\lambda} |f_{\lambda}| \leq \chi_{A}$

$$N_V(T) = M_V(T) + M_V(\partial T)$$

$$N_{m,\text{loc}}(X) = \{T \in \mathcal{D}_m(X) : N_V(T) < \infty \text{ for } V \subseteq X\}$$

 $N(T) = N_X(T)$

$$N_m(X) = \{T \in \mathcal{D}_m(X) : N(T) < \infty\}$$

Proposition $N_m(X)$ is a Banach space.

Proof If $\{T_i\}$ in $N_m(X)$ is Cauchy, then $\{T_i\}$ and $\{\partial T_i\}$ are Cauchy in $M_m(X)$ and $M_{m-1}(X)$ respectively. So they have limits T^* and ∂T^* in $M_m(X)$ and $M_{m-1}(X)$.

 $T_i \rightarrow T^*$ in $N_m(X)$, proving completeness.

Observation If $T \in N_{m,\text{loc}}(X)$ and $(u, v) \in \text{Lip}_{\text{loc}}(X) \times [\text{Lip}_{\text{loc}}(X)]^k$, then $\partial(T|(u, v)) = (-1)^k (\partial T|(u, v)) - T|(1, u, v)$.

Hence

$$M_V(\partial(T|(u,v))) \leq \prod_{i=1}^m (\operatorname{Lip}(v_i|V)) \int_V u \, d\|\partial T\| + \prod_{i=1}^m (\operatorname{Lip}(v_i|V)) \operatorname{Lip}(u|V)\|T\|(V)$$
So $T|(u,v) \in N_{m,\operatorname{loc}}(X)$

Observation Pushforwards of locally normal currents are locally normal.

Lemma (Lang 5.2, Uniform Continuity of Locally Normal Currents) Let $T \in N_{m,loc}(X)$. Then,

For
$$(f, g_1, g_2, \dots, g_m) \in \mathcal{D}(X) \times \operatorname{Lip}_{\operatorname{loc}}(X) \times [\operatorname{Lip}_1(X)]^{m-1}$$
,
 $|T(f, g)| \leq \operatorname{Lip}(f) \int_{\operatorname{spt}(f)} |g_1| d ||T|| + \int_X |fg_1| d ||\partial T||$

(2) For $(f,g), (\tilde{f},\tilde{g}) \in \mathcal{D}(X) \times [\operatorname{Lip}_1(X)]^m$,

(1)

$$\left| T(f,g) - T(\tilde{f},\tilde{g}) \right| \le \int_{X} \left| f - \tilde{f} \right| d \|T\| + \sum_{i=1}^{m} \operatorname{Lip}(f) \int_{\operatorname{spt}(f)} |g_{i} - \tilde{g}_{i}| d \|T\| + \sum_{i=1}^{m} \int_{X} |f| |g_{i} - \tilde{g}_{i}| d \|\partial T\|$$

Proof Omitted; not interesting.

Lemma (Lang 5.3, Convergence Criterion) Suppose X is compact, $\mathcal{F} \subset \text{Lip}_1(X)$ is dense in supremum norm $\|\cdot\|_{\infty}$. Suppose (T_n) is a bounded sequence in $N_m(X)$, $m \ge 0$, with $M = \sup_n N(T_n) < \infty$. Suppose further that $T_n(f,g)$ has a limit, which we'll denote T(f,g), for $f,g \in \mathcal{F} \times \mathcal{F}^m$.

Then T_n converges weakly to a $T \in N_m(X)$.

Proof idea We must show that the natural limit $T(f,g) = \lim T_n(f,g)$ extends from $\mathcal{F} \times \mathcal{F}^m$ to $\mathcal{D}^m(X)$. So we need local uniform continuity. Use the uniform continuity estimate...

$$\left| T(f,g) - T(\tilde{f},\tilde{g}) \right| \le \int_{X} \left| f - \tilde{f} \right| d \|T\| + \sum_{i=1}^{m} \operatorname{Lip}(f) \int_{\operatorname{spt}(f)} |g_{i} - \tilde{g}_{i}| d \|T\| + \sum_{i=1}^{m} \int_{X} |f| |g_{i} - \tilde{g}_{i}| d \|\partial T\|$$

Theorem (Lang 5.4, Compactness) Suppose (T_n) is a sequence in $N_{m,loc}(X)$, $m \ge 0$, with $spt(T_n)$ separable, Suppose also $sup_n N_V(T_n) < \infty$, for open $V \subseteq X$.

Then some subsequence converges weakly to a $T \in N_{m,loc}(X)$

Proof Assume first X compact, so we can take a countable dense $\mathcal{F} \subset \text{Lip}_1(X)$. A diagonalization argument yields that a subsequence T_{n_k} converges for $(f, g) \in \mathcal{F} \times \mathcal{F}^m$.

Integer Rectifiable Currents We say $T \in \mathcal{D}_m(X)$ is a locally *integer rectifiable current* if:

- 1. $T \in \mathbf{M}_{m, \text{loc}}(X)$
- 2. Whenever $B \subseteq X$ is Borel and $\pi \in \text{Lip}(X, \mathbb{R}^m)$, we have $\pi_{\#}(T|B) = [u]$ for some $u \in L^1(\mathbb{R}^m, \mathbb{Z})$
- 3. ||T|| is concentrated on a countably \mathcal{H}^m -rectifiable Borel set $B \subset X$.

Denote the set of such currents $\mathcal{I}_{m,\text{loc}}(X)$. Define $\mathcal{I}_m(X) = \mathcal{I}_{m,\text{loc}}(X) \cap \mathbf{M}_m(X)$

Facts about Integer Rectifiable Currents

1. Parametric Representation: $T \in \mathcal{I}_{m,loc}(X)$ if and only if

$$T = \sum_{i=1}^{\infty} F_{i\#}[u_i], \qquad u_i \in L^1(\mathbb{R}^m, \mathbb{Z}), \qquad F_i: \mathbb{R}^m \to X \text{ bi-Lipschitz}, \quad \|T\|(A) = \sum_{i=1}^{\infty} \|T_i(A)\|$$

2. $\mathcal{I}_{m,\text{loc}}(X) \cap \mathbf{N}_{m,\text{loc}}(X)$ is locally compact.

Part II: an Application to the Heisenberg Group

Proof Outline

Definition We say $\varphi: X \to Y$ has property (T) if for $x, x' \in X$ with $\varphi(x) \neq \varphi(x')$ there exists a point $y \in Y$ such that $\varphi \circ \gamma$ passes through y for all curves $\gamma: x \rightsquigarrow x'$.

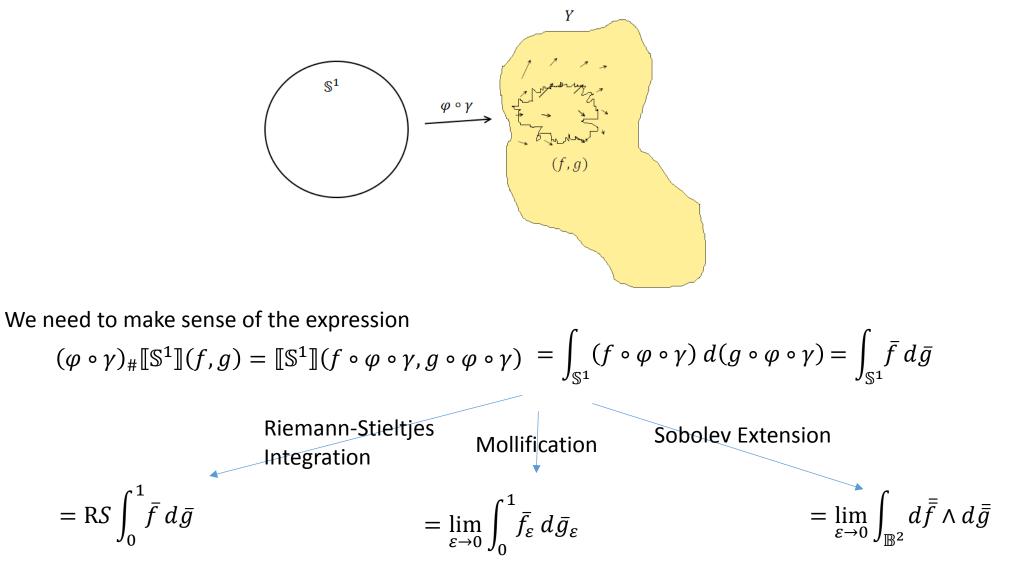
Theorem (Zust 1.1) If X is C-quasiconvex compact with $H_1(X) = 0$ or $H_1^{\text{Lip}}(X) = 0$ and $\varphi: X \to Y$ is σ -continuous with property (T), then φ factors through a tree + estimates and contractibility

Proposition (Zust 4.1) Let X be quasiconvex compact, $H_1(X) = 0$ or $H_1^{\text{Lip}}(X) = 0$, $\varphi: X \to Y$ Holder continuous of order $\alpha > 1/2$, and suppose $(\varphi \circ \gamma)_{\#}[[S^1]] = 0$ for closed Lipschitz curves $\gamma: S^1 \to X$. Then φ has property (T).

Notice, we have implicitly assumed:

If $\varphi: X \to Y$ is $\alpha > 1/2$ Holder continuous and $\gamma: \mathbb{S}^1 \to X$ a Lipschitz curve, then $(\varphi \circ \gamma)_{\#}[\mathbb{S}^1]$ is a well-defined 1-current.

This can be done in several conceptually different ways.



All three give the same number, so take your pick.

Proof Outline

Definition We say $\varphi: X \to Y$ has property (T) if for $x, x' \in X$ with $\varphi(x) \neq \varphi(x')$ there exists a point $y \in Y$ such that $\varphi \circ \gamma$ passes through y for all curves $\gamma: x \rightsquigarrow x'$.

Theorem (Zust 1.1) If X is C-quasiconvex compact with $H_1(X) = 0$ or $H_1^{\text{Lip}}(X) = 0$ and $\varphi: X \to Y$ is σ -continuous with property (T), then φ factors through a tree (+ estimates and contractibility)

Proposition (Zust 4.1) Let X be quasiconvex compact, $H_1(X) = 0$ or $H_1^{\text{Lip}}(X) = 0$, $\varphi: X \to Y$ Holder continuous of order $\alpha > 1/2$, and suppose $(\varphi \circ \gamma)_{\#}[[S^1]] = 0$ for closed Lipschitz curves $\gamma: S^1 \to X$. Then φ has property (T).

Proof of 4.1: If $\varphi: X \to Y \alpha > \frac{1}{2}$ Holder continuous, pushes forward Lipschitz loops to zero currents, then φ has property (T).

Proof Fix $x, x' \in X$ with $\varphi(x) \neq \varphi(x')$. Let $\mu, \mu': x \rightsquigarrow x'$ Lipschitz. Now $(\varphi \circ \mu)_{\#} [[0,1]], (\varphi \circ \mu')_{\#} \in \mathcal{D}_1(Y)$. They are non-zero currents since they have non-zero boundary.

But a 1-current cannot have a support consisting of finitely many points.

So there is a $y \in Y$ not equal to $\varphi(x)$ or $\varphi(x')$, belonging to the support $spt((\varphi \circ \mu)_{\#}[0,1])$ Clearly y must be in the image of $\varphi \circ \mu$.

i.e. $(\varphi \circ \gamma)_{\#}(\mathbb{S}^1) = 0$

Let
$$\gamma = \mu * \mu'^{-1} : \mathbb{S}^1 \to X$$
. $0 = (\varphi \circ \gamma)_{\#} [\![\mathbb{S}^1]\!] = (\varphi \circ \mu)_{\#} [\![0,1]\!] - (\varphi \circ \mu')_{\#} [\![0,1]\!]$
Thus $(\varphi \circ \mu)_{\#} [\![0,1]\!] = (\varphi \circ \mu')_{\#} [\![0,1]\!]$, and so $y \in \operatorname{spt} ((\varphi \circ \mu)_{\#} [\![0,1]\!]) = \operatorname{spt} ((\varphi \circ \mu')_{\#} [\![0,1]\!])$
So y is also in the image of $\varphi \circ \mu'$

This is property (T) ■

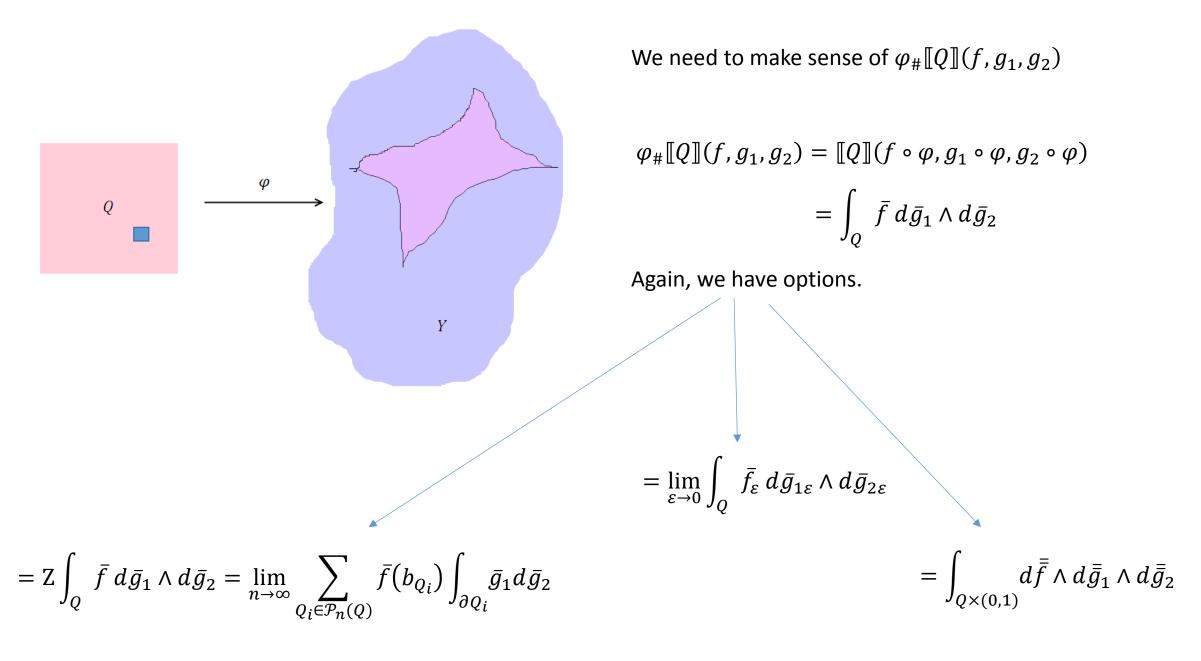
Proof Outline

Definition We say $\varphi: X \to Y$ has property (T) if for $x, x' \in X$ with $\varphi(x) \neq \varphi(x')$ there exists a point $y \in Y$ such that $\varphi \circ \gamma$ passes through y for all curves $\gamma: x \rightsquigarrow x'$.

Theorem (Zust 1.1) If X is C-quasiconvex compact with $H_1(X) = 0$ or $H_1^{\text{Lip}}(X) = 0$ and $\varphi: X \to Y$ is σ -continuous with property (T), then φ factors through a tree (+ estimates and contractibility)

Proposition (Zust 4.1) Let X be quasiconvex compact, $H_1(X) = 0$ or $H_1^{\text{Lip}}(X) = 0$, $\varphi: X \to Y$ Holder continuous of order $\alpha > 1/2$, and suppose $(\varphi \circ \gamma)_{\#}[[S^1]] = 0$ for closed Lipschitz curves $\gamma: S^1 \to X$. Then φ has property (T).

Again we need to check that we have a well-defined current $\varphi_{\#}[\![Q]\!]$ before proceeding to prove the lemma.



Proof Outline

Definition We say $\varphi: X \to Y$ has property (T) if for $x, x' \in X$ with $\varphi(x) \neq \varphi(x')$ there exists a point $y \in Y$ such that $\varphi \circ \gamma$ passes through y for all curves $\gamma: x \rightsquigarrow x'$.

Theorem (Zust 1.1) If X is C-quasiconvex compact with $H_1(X) = 0$ or $H_1^{\text{Lip}}(X) = 0$ and $\varphi: X \to Y$ is σ -continuous with property (T), then φ factors through a tree (+ estimates and contractibility)

Proposition (Zust 4.1) Let X be quasiconvex compact, $H_1(X) = 0$ or $H_1^{\text{Lip}}(X) = 0$, $\varphi: X \to Y$ Holder continuous of order $\alpha > 1/2$, and suppose $(\varphi \circ \gamma)_{\#}[[S^1]] = 0$ for closed Lipschitz curves $\gamma: S^1 \to X$. Then φ has property (T).

Proof of Lemma (Zust 4.6): Let $Q \subset \mathbb{R}^2$ be a square, $\varphi: Q \to \mathbb{H} \alpha > \frac{2}{3}$ Holder continuous. Then $\varphi_{\#}[\![Q]\!] = 0$.

Proof First recall that an $\alpha > \frac{1}{2}$ Holder continuous curve $\gamma: [a, b] \to \mathbb{H}$ is weakly horizontal in the sense that

$$\int_{a}^{b} d\gamma_{t} + 2(\gamma_{y}d\gamma_{x} - \gamma_{x}d\gamma_{y}) = 0$$

In fact, more can be said: if $f: [a, b] \to \mathbb{R}$ is $\alpha > \frac{1}{2}$ Holder continuous, then

$$\int_{a}^{b} f\left(d\gamma_{t}+2(\gamma_{y}d\gamma_{x}-\gamma_{x}d\gamma_{y})\right)=0$$

Let $f = \gamma_x$ and assume now that γ is a closed curve.

$$\int_{a}^{b} \gamma_{x} d\gamma_{t} = \int_{a}^{b} 2\gamma_{x}^{2} d\gamma_{y} - \int_{a}^{b} 2\gamma_{y} \gamma_{x} d\gamma_{x} = \int_{a}^{b} 2\gamma_{x}^{2} d\gamma_{y} + \int_{a}^{b} \gamma_{x}^{2} d\gamma_{y} = 3 \int_{a}^{b} \gamma_{x}^{2} d\gamma_{y}$$

Similarly

$$\int_{a}^{b} \gamma_{y} d\gamma_{t} = -3 \int_{a}^{b} \gamma_{y}^{2} d\gamma_{x}$$

Proof of Lemma (Zust 4.6): Let $Q \subset \mathbb{R}^2$ be a square, $\varphi: Q \to \mathbb{H} \alpha > \frac{2}{3}$ Holder continuous. Then $\varphi_{\#}[\![Q]\!] = 0$.

Proof We proved

(*)
$$\int_{a}^{b} \gamma_{x} d\gamma_{z} = 3 \int_{a}^{b} \gamma_{x}^{2} d\gamma_{y} \qquad \qquad \int_{a}^{b} \gamma_{y} d\gamma_{z} = -3 \int_{a}^{b} \gamma_{y}^{2} d\gamma_{x}$$

With these we compute, for $\omega_1, \omega_2, \omega_3$ Lipschitz

 $\varphi_{\#}\llbracket Q \rrbracket (\omega_1 dy \wedge dt + \omega_2 dx \wedge dt + \omega_3 dx \wedge dy) = \llbracket Q \rrbracket (\varphi^* (\omega_1 dy \wedge dt + \omega_2 dx \wedge dt + \omega_3 dx \wedge dy))$

This is correct by (*), but requires more justification $= \lim_{n \to \infty} \sum_{Q_i \in \mathcal{P}_n(Q)} \overline{\omega}(b_{Q_i}) \int_{\partial Q_i} \varphi_x \, d\varphi_y$ $= \lim_{n \to \infty} \sum_{Q_i \in \mathcal{P}_n(Q)} \overline{\omega}(b_{Q_i}) \int_{\partial Q_i} \frac{1}{2} (\varphi_x d\varphi_y - \varphi_y d\varphi_x)$ = 0 **Proof of Lemma (Zust 4.6)**: Let $Q \subset \mathbb{R}^2$ be a square, $\varphi: Q \to \mathbb{H}$, $\beta > \frac{2}{3}$ Holder continuous. Then $\varphi_{\#}[\![Q]\!] = 0$.

Alternative Proof Let $\alpha = dt + 2(ydx - xdy)$ be the contact form for \mathbb{H} with ker(α) = $H\mathbb{H}$.

Obvious estimates with convolutions, using the Holder continuity of arphi and the Koranyi metric yield

 $\|\varphi_{\varepsilon}^*\alpha\|_{\infty} < C\varepsilon^{2\gamma-1}$

And also for arbitrary 1-forms κ on $\mathbb{R}^3 = \mathbb{H}$ we have

$$\|\varphi_{\varepsilon}^*\kappa\|_{\infty} < C\varepsilon^{\gamma-1}$$

Observe that we have $dx \wedge dy = \frac{1}{4}d\alpha$, $dx \wedge dt = dx \wedge \alpha - \frac{x}{2}d\alpha$, and $dy \wedge dt = dy \wedge \alpha + \frac{y}{2}d\alpha$ Thus,

 $\varphi_{\#}\llbracket Q \rrbracket(\omega_{1}dy \wedge dt + \omega_{2}dx \wedge dt + \omega_{3}dx \wedge dy) = \varphi_{\#}\llbracket Q \rrbracket(\alpha \wedge \xi + d\alpha \wedge \eta)$

$$\begin{split} & \int_{Q} \varphi_{\varepsilon}^{*}(\alpha \wedge \xi) \leq C \, \|\varphi_{\varepsilon}^{*}\alpha\|_{\infty} \|\varphi_{\varepsilon}^{*}\xi\|_{\infty} \\ & \leq C \, \varepsilon^{2\gamma-1}\varepsilon^{\gamma-1} \to 0 \\ & \int_{Q} \eta \circ \varphi_{\varepsilon} \, d(\varphi_{\varepsilon}^{*}\alpha) = \int_{\partial Q} \varphi_{\varepsilon}^{*}(\eta \, \alpha) - \int_{Q} \varphi_{\varepsilon}^{*}(\alpha \wedge d\eta) \\ & \left| \int_{Q} \eta \circ \varphi_{\varepsilon} \, d(\varphi_{\varepsilon}^{*}\alpha) \right| \leq C \varepsilon^{2\gamma-1} + C \varepsilon^{3\gamma-2} \end{split}$$

$$= \lim_{\varepsilon \to 0} \int_{Q} \varphi_{\varepsilon}^{*}(\alpha \wedge \xi + \eta \, d\alpha)$$
$$= \lim_{\varepsilon \to 0} \int_{Q} \varphi_{\varepsilon}^{*}(\alpha \wedge \xi) + \lim_{\varepsilon \to 0} \int_{Q} \eta \circ \varphi_{\varepsilon} \, d(\varphi_{\varepsilon}^{*}\alpha)$$
$$= 0$$

Proof Outline

Definition We say $\varphi: X \to Y$ has property (T) if for $x, x' \in X$ with $\varphi(x) \neq \varphi(x')$ there exists a point $y \in Y$ such that $\varphi \circ \gamma$ passes through y for all curves $\gamma: x \rightsquigarrow x'$.

Theorem (Zust 1.1) If X is C-quasiconvex compact with $H_1(X) = 0$ or $H_1^{\text{Lip}}(X) = 0$ and $\varphi: X \to Y$ is σ -continuous with property (T), then φ factors through a tree (+ estimates and contractibility)

Proposition (Zust 4.1) Let X be quasiconvex compact, $H_1(X) = 0$ or $H_1^{\text{Lip}}(X) = 0$, $\varphi: X \to Y$ Holder continuous of order $\alpha > 1/2$, and suppose $(\varphi \circ \gamma)_{\#}[[S^1]] = 0$ for closed Lipschitz curves $\gamma: S^1 \to X$. Then φ has property (T).