Metric Currents



Defintions Let X be a locally compact metric space.
D(X) = {f € Lip (X) : f has compact support}
Lipg (X) = {f € Lip;(X) : spt(f) c K}
Notice D(X) = U Lipg;(X). Say...
fj = f inD(X)

if and only if
* f; belong to some fixed Lipg ; (X)
* f; = f pointwise (hence uniformly) on X
Say...
m; = 1 in Lip)yc(X)
if and only if

* For compact K C X there is a constant [ with Lip(nle) < lg
* 1; - 1 pointwise (hence locally uniformly) on X



Definitions Let D"*(X) = D(X) X [LiploC(X)]n

Let T: D™ (X) — R be a function satisfying the following properties

1. Multilinearity in the n + 1 arguments
2. Continuity in the product topology

3. Locality: let (f,mq, ..., ;) € D™ (X) and suppose some 7; is constant on a neighborhood of spt(f). Then

T(f,m)=20

If T satisfies these properties, we call it an n-dimensional metric current on X.

Denote by D,,(X) the space of these objects.

Endow D,,(X) with the locally convex weak topology.

T, » TifT,(f,m) » T(f,n) forall (f,m) € D*(X)



Example A submanifold M of a Riemannian manifold V induces an m-current [M] € D,, (V)

IMICf, 15 s Gm) = jM fdgi A Ndgm

1

More generally, if we have in addition a function u € Lioc

(V), there is an induced current [u] € D,,, (V)

[ul(f, g1, » Gm) =f uf dg, A--ANdgm

M

(Non-) Example Let X = R. We ask whether the dirac mass §, induces a 1-current.

In the classical theory, § is a current

[60](f,9) = f(0)g'(0)

But in the theory of metric currents, §;, is not a current because g is merely Lipschitz and may not have a derivative at 0.

This is a serious problem. It seems we have no hope for compactness of D,,, (X).




Lemma (Strict Locality of Metric Currents)

T(f,mq,...,m;) = 0 whenever some 7; is constant on spt(f).

Proof Replace f with f; = ;o f
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B;(s) = max(0,s — 1/j)

T(f,mq, ...,

,nm) =0

T,) =0



Lemma (Lang 2.2) Suppose T: [D(X)]™*! - R satisfies the conditions of a metric current with D(X) in place of Lipyoc(X).

Then T extends uniquely to a current in D,,,(X).
Remark Thus, T € D,,(X) is determined by its values on [D(X)]™*1 c D™(X).
Proof Let T be given as in the hypotheses. Define, for (f, mq, ..., ) € D™(X) = D(X) X [Liploc(X)]m

T(f, g, ..., my) = T(f,0m4, ..., M)
Where ¢ € D(X) with ¢ = 1 on a neighborhood of spt(f). This is independent of the choice of o by locality.

The three axioms are now easy to check. For example, continuity:




Definition (Lang 2.3) Let T € D,,,(X) and (u,v) € Lipyo(X) X [Lipjyc(X)]", with 0 < k < m.
Define T'|(u, v) by the formula
(T, v)(f,9) = Tuf,v,9), (f,g) € D" X)

T|(u, v) is easily seen to be an m — k-current.



Proposition (Lang 2.4) Suppose T € D,,(X), m = 1. (f,my, ..., T,,) € D™(X). Then:

1. Ifr; = mj forsome i # j then T(f,my, ..., my) = 0.
2. For g, h € Lipjoc(X),

T(f,gh,,,..,my) =T(fg, h, sy, ...,m) + T(fh, g, 15, ...., Tp,)



We first prove (1), the alternating property. Let us prove that T(f,m, ) = 0 for (f,m) € D1(X).
Take a 1-Lipschitz partition of unity of the real line as pictured, called {p;}.

Let 7 and 7 be two modifications of m as pictured.
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Finite sum (why?)

(oomaem) =Y 1((ol w)aemaon)

l keZ

T(f,m, m) =0, by strict locality




Now we prove the product rule (2) T(f,gh,m,,..., ) =T(fg,h, 1y, ...,1,) + T(fh, g,my, ..., T,)
It suffices to prove T(f, g%) = 2T(fg,9) (Why?)
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Theorem (Chain Rule, Lang 2.5) T(f,geomn) =T((g' e m)f,m) for 1-currents T and g € CV1(R)
Proof

T(f,n") = T(rr"1f, m) by the product rule.
Thus the chain rule holds for g a polynomial.  Now suppose g € C*(R)

Invoke Stone-Weierstrass Theorem to find polynomials p; — g in C%(R).

Finally, any g € C*! can be approximated by g; € C*(R) by convolution. m

More generally:



Theorem (Chain Rule, Lang 2.5) Supposem,n > 1,T € D,,(X), U € R" open, f € D(X)
T = (1, ..., y) € Lip)oc(X, U), g = (g1, -, gm) € [CPH(U)]™.  Ifn = mthen

T(f,g o T[) = z T (f det[(DA(k)gi) o 71']:;:1 yTTA(L)s ++e s T[/l(m))
AeEA(nmM)

fn<mthenT(f,gem) =0

Proof Again, the theorem holds for polynomials, and follows from a density argument.



Proposition (Standard Example, Lang 2.6) Let U ¢ R™ open, m > 1. Theneveryu € L%OC(U) induces a current [u] € D,,,(U)

satisfying

(. g) = j uf det(Dg) dx

U
Proof Locality and multilinearity are obvious. We prove continuity. Let (fj,gj) - (f,g) € D™(U).

There exists V € U and [ > 0 such that spt(f/) c V and Lip(f/) < I forall j, and f/ — f uniformly;

Moreover Lip(gijlv) < [forj,iand gij|V — g;ly uniformly. Put h{ = gij — ¢g; and we have

m
[WI(f/,97) — ul(f, @)= [ul(f’ - f.g7) + z[u](f, 91 o Gt 1 Gly1s e G0)
i=1
The first term tends to zero.  Consider the summandi = 1. uf € L'(V) so we need to show
j vdet(D(hj,gg, ...,grjn) dx -0, wveL\(V)
14

But C}(V) c LY(V) is dense and the determinants are bounded in L® (V). So we can take v € C2 (V).

[ vaer(p(ilh..oh))ax =

h{ det (D (v, gg, o g#)) dx (Stokes’ Theorem)
14



Definition (Support, Lang 3.1) GivenT € D,,,(X), m = 0, its support spt(T) in X is the intersection of closed sets C € X
with the property that T(f, ) = 0 for (f,m) € D™ (X) with spt(f) N C = @.
spt(T) = N{C closed : T(f,m) = 0 for (f,m) € D™(X) with spt(f) n C = @}

\

Lemma (Support, Lang 3.2) Suppose T € D,,,(X), m = 0. Then: (*)
(1) spt(T) = {x EX:(e> 0)(3(f, ) € Dm(X))(spt(f) Cc B(x,e) and T(f,m) # O)}

(2) If flsptery = 0 then T(f, 7y, ..., ) = 0
(3) T(f,my, ..., T,y) = 0 if some m; is constant on {f # 0} N spt(T).

Proof Let X be the set described in (1). Suppose x & spt(T). Let C be a closed set with property (¥) and x ¢ C.
Let € > 0 be such that T(f,m) = 0 whenever spt(f) € B(x,&). Conclude x ¢ X.

Let us now show that X has property (*). This will show spt(T) c . Let spt(f) N X = 0.
Let Uy, ..., Uy be a covering of spt(f) by balls not touching £ with property (**)

(e > O)(El(g, ) € Dm(X))(spt(g) c B(x,e)and T(g,m) + 0)
(3e > 0)(V(g, ) € Z)m(X))(spt(g) c B(x,&) = T(g,m) = 0)

X %k
Decompose f = Zliv=1 oif o)

N
T(f,m) = ) T(pif,m) =0



Proof (continued) Now let us show that if f{spt(r) = 0 then T(f,mq, ..

spt(T)

, ) = 0.

Each ball B has the property that
spt(g) cB=>T(g,m) =0

Take a partition of unity subordinate to
these balls and conclude T(fj,n) =0

By continuity, T(f,m) = 0.



Proof (continued) Finally we must show that T(f, y, ..., T,,) = 0 if some 7; is constant on {f # 0} N spt(T).
Assume WLG m = 1. Subtract a constant and assume © = 0 on {f # 0} n spt(T).

T(f,m) < T(f,ﬁj 0 n) — T(f(l —0),pj° n) = T(af,,Bj 0 T[) =0

Observe spt(/)’j ° n) N spt(f|spt(T)) = Q.
Let spt(f|spt(T)) <0< X\spt(,Bj o n)

0 because of part (2):
9lspteny =0=>T(g,m) =0



Proposition (Lang 3.3) LetT € D,,,(X), A C X alocally compact subspace containing spt(T). Then there is a unique current
T, € D,,,(A) with the property that...

T (f,mq, ..., Ty) = T(f, T4, ...,ﬁm)

... whenever f, T4, ..., Ty, are extensions of f, 4, ..., T, to all of X. Moreoever, spt(T,) = spt(T).

Proof LetK c A becompact,l > 0andc > 0.Thereexist K € K' c X, I’ > [ and E an extension operator
E:Lipg,(A) N{llflle < c} = Lipgs 7 (X)

E can be taken to be a MacShane extension times a cutoff function. If E and E are two such extensions, then
T(Ef,Emy, ..,Eny) — T(Ef, Emcy, ..., Eny) = T(Ef — Ef, ETq, ..., ETrpy)

m
+ Z T(E'f, Emy,...,Em;_{, Em; — Em;, ETti4q, ..., Enm)
i=1
Each of the terms vanishes by the previous lemma. So T, is thus well-defined.
We used the fact that currents are determined by their values on D(X)™*1,



Definition (Boundary, Lang 3.4) The boundary of a current T € D,,,(X), m = 1 is the current dT € D,,,_,(X) defined by
aT(f, 19, "';nm—l) = T(O-r fi Ty, "';T[m—l)

for (f,my, ..., Tm—1) € D™ 1(X), where o € D(X) is any function with ¢ = 1 on {f # 0} n spt(T).

Lemma (Lang 3.5) (0T)|(w,v) = T|(1,u,v) + (=1)*a(T|(u, v))
Proof ((@T)I(w, v))(f,9) = T (uf, v, 9)
=T(o,uf,v,g)
=T(of,u,v,g) +T(ou, f,v,g)
=T(f,u,v,9) + (=D)*T(ow,v,f,g)
= (TI(Lu, v))(f, g) + (=D*@T |, v))(f, 9)

Observe that if M is a manifold with boundary

[OM]N(fdx; A+ Ndxy_1) = [M](df Adxy A+ ANdxy,_1)

So this definition is simply meant to give us Stokes’ Theorem.



Definition (Push-forward, Lang 3.6) Suppose T € D,,(X), A € X is a locally compact subspace containing spt(T).

Suppose Y is another locally compact metric space. Suppose F € Lip|,(4,Y) is proper. Define the pushforward:
F#T(f,T[l, "'rnm) = TA(f ° Ffﬂl ° F' ey Tl © F)

For (f,mq, ..., m,y) € D(Y).

Proof (that F.T is a current): Multilinearity of F4T follows immediately from multilinearity of T,.

The same is true for continuity. We prove locality. Suppose 7; is constant on a neighborhood of spt(f).

Then m; o F is constant on a neighborhood of spt(f o F) in A.

m; o F constant T;.constant

----------

By locality of Ty, FxT(f, 11, ..., ) = Ty(f o F,my o F, ..., o F) =0



Remark 1

O(FsT)(f,m) = (FyT)(o, f, ) o=1on{f # 0} Nnspt(FsT)
=Ty(coF,foF,moF) NoteooF =1on{foF # 0} N spt(Ty)
=0(Ty)(feF,moF)
= (0T)4(f o F,mo F) Easy lemma, omitted.

= Fy(0T)(f,m)

OF# == F#a

Remark 2

(G o F)y = GyFy




Lemma 3.7 Supposeu € L} _(R™), F € Lip)oc(R™, R™), and Flspte is proper. Then Fy[u] = [v] where

loc
1 m s
vV E LlOC(]R ) satisfies
v(y) = Z u(x)sgn det DF (x) LM™-ae.y€eR™

x€F~1{y}

Proof Let (f,m) € D™(R™). Then...

Fylu](f, m) =j u(x)f(F(x)) detD(mo F), dx

Rm

= j u(x)f(F(x)) det Dy (y) sgn det DFy |det DF|dx
Rm

k )
|

h(x)

= j 2 h(x) dy Area formula, c.f. Evans and Gariepy
R™ xerigy)

= | v0)f ) detDr, dy

= [vI(f,m) .



Definition (Mass, Lang 4.1) ForT € D,,,(X), V < X open, define the mass of T on V My, (T) as

My (1) = sup ) T(fy, %)

A€A
« : \is a finite indexing set, (f3, ©1) € D(X) X [Lip; (X)]™, spt(fy) € V, X enlfal < 1.

Define M(T) := My (T) the total mass of T.

Denote M, 1o (X) the vector space of T € Dy, (X) with My (T) < oforV € X.
Define M,,(X) ={T € D,,(X) : M(T) < oo}

Define ||T||(A) := inf{M,(T):V < X open,A c V}forT € D,,(X), A c X.

Mass is weak lower-semicontinuous, clearly. Mass is a norm on M,,, (X).



Proposition 4.2 (M,,,(X), M) is a Banach space.

Proof Sketch Given a Cauchy sequence {Ty}r~1 in (M, (X), M), {T\(f,m)}r=q is Cauchy for (f,m) € D™(X).

One defines T (f, ) to be the limit, then shows that it is a current and the limit of Tj.
|



Proposition 4.2 (M,,,(X), M) is a Banach space.

Proof Let {T}};r~, be Cauchyin (M,,(X),M). Lete > 0. Let(f,m) € D™(X).

m
. f T T
(T = TD(Fo 1, s 7) = If o | [ Lin(ilspe )(Tk—To( — e
" b1 HSPHS) 1l Lip(m1sptcry)” Lip(Tmlsptes))

m
< Iflle l_[ Lip(ﬂi|spt(f)) M (T — T)
i=1

<E§, for k, | sufficiently large.

Define T(f,m) = I}im T, (f, ). T is (m + 1)-multilinear and satisfies the locality condition.
For continuity: let (f/,7/) - (f, ) in D™(X).
7(f, 7)) =T, m| < [T(f7, 7)) = T (. 7)| + |Ti (7, 77) = T (f, M| + T (f, ) = T(f, 7))
< 3¢, for j, k sufficiently large.

Finally we must check that M(T,, — T) —» 0. We leave this as an easy exercise.



Remark (Mass for standard examples) Let U € R™ open, T € D,,,(U). Invoke the chain rule:

My, (T) = sup z T(fynt, .., mh) s A finite,z Ifal < 1,(fo, mt) € D(U) x [Lip, (U)]™, spt(fy) c V
AEA AEA

= sup Z T(f,1, nf, nﬂn) : Afinite,z 7] < 1, (f,1, n’l) € D(U) x [Lip;(U) n CHE()]™, spt(f) c V

AEA AEA
AT )
aT[i 2 . 11 ‘
= sup 2 T| fydet Tx. Jd |2 A Z 1] < 1, (fz,n ) € D(U) x [Lip;(U) n CH(U)]™, spt(fy) V‘
€A Xk i k=1 €A )

= sup{T(f,1d): |f| < 1,spt(f) c V}

Ifu € Lioc(U)' we have

My ([u]) = j fuldx

%4



Theorem (Mass, Lang 4.3) Let T € D,,,(X).

(1) |IT|| is a Borel regular measure.

(2) spt(lITI) = spt(T) and [IT|I(X\spt(T)) = 0
(3) ForopenV c X,
ITII(V) = sup |ITII(K)
KcXx conpact
Kcv

(4) T € M, 19c(X) then IT|| is a Radon measure and

¢ < [ [Lin(mlspecn) [ 1r1ai
i=1



Proof Recall the definitions
IT]|(A) = inf{M,(T) : V <€ X open, A c V}

My(T) = sup ) T(f, 7"

AEA
We want to prove ||T|| is a Borel regular measure. We begin by proving subadditivity for open sets V c U;2, V;

Let A and (f3, m*) be as in the definition of My, (T), N the first index with UL V; D K := U4 spt(fp)-
Take a partition of unity on K, py4, .. ,pN € D(X) subordinate to the V;.

> T(fim?) = ZET(pkﬁ,n) zzT(pkf/bn )<Z|IT|I(V)

AEA AEA i=

ITIV) < ZnTu(vo

Now subadditivity for arbitrary sets A € U;2, A; follows (why?).
Also, ||T|| satisfies Caratheodory’s criterion: ||T||(A U B) = ||T||(4) + ||IT||(B) whenever d(4,B) > 0. (Why?)

By Caratheodory’s criterion, the Borel sets are ||T||-measurable.

It is clear that ||T|| is Borel regular: every A c X is contained in a Borel set B of equal ||T||-measure (why?).

We proved that ||T|| is a Borel regular outer measure.



Proof (cont’d) Now we prove spt(||T||) = spt(T) and that ||T||(X\spt(T)) = 0.

Recall Lemma 3.2(1) spt(T) = {x EX:(e> O)(El(f, ) € Dm(X))(spt(f) Cc B(x,e) and T(f,m) # O)}
And the definitions spt(||T||) = {x € X : (V € X open with x € V)(||T||(V) # 0)}

From these two characterizations, we easily have spt(T) c spt(||T||)

Next, if x & spt(T) then there is a closed set C with x € C and T(f,m) = 0 for spt(f) N C = @.

Let V open,x €V, V N C = @. Thenclearly ||T||(V) = 0so x & spt(||T||)

We IeaveIITII(X\spt(T)) = 0 as an easy exercise.



Proof (cont’d) Now we prove (3): foropenV c X, ||T||(V) = sup{|IT||(K) : K € V compact}.

Let ¢ < ||T||(V). Find Aand (f)[,ﬂ)l) € D(X) x [Lip1 (X)]™ such that K = U epspt(fa) €V, 21 1fal < 1and

S = Z T(fimt) = a

AEA

For U containing K, ||T||(U) = s = «a, hence ||T||(K) = a.
This proves (3).



Proof (cont’d) We must prove for T € M, |o(X) that ||T|| is a Radon measure and

¢l < [ [Lin(mlspe) | 1r1ai
=1

|T|| is finite on compact sets so is a Radon measure. Now we prove the estimate.  Consider m = 0 first.
Put f; = min{f, s}.

IT(fe) —TUDN =T — I < ITIIHf > sH(E —s) whenever 0 < s <t

Hence s = T(f;) is a Lipschitz function with |d/ds T(f,)| < |IT||({f > s}) fora.e.s = 0. Finally,

T(F) = T(f) = T(fy) = f (d/ds)T(f,)ds
0

co

d 0.0)
Tl [ |STE|ds < [ I > sy = | i

0

Adjusting for m > 1 is easy, omitted.



Theorem (Lang 4.4, Extended Functional) LetT € M, |,.(X), m = 0. There is an extension T: B (X) X Lipjgc(X)™ - R
such that...

(1) Multilinearity
(2) continuity*

(3) locality

(4) Mass inequality

d||T
i) [ 1716171

(ol < | [Lip (ni
i=1

Reason: D(X) is dense in L1(||T]]) 2 BZ (X)

fi—fif sqp”fj” < oo, U; spt(fj) c K some compact K, f/ = f pointwise on X
J



Lemma (Lang 4.6, Pushforwards and Mass) Suppose T € M 1,.(X), m = 0, Y locally compact metric space

F € Lip}yc(X,Y), and F|spt(T) proper. Then F4T € M, 15.(Y) and
(1) For (f,m) € BX(Y) X [LiplOC(Y)]m and g € B’ witha = 1on{f o F # 0} n spt(T),

FyT(f,m) =T(o(f e F),meF)

(2) ForBorelB C Y,

M, (F#TlB) < Lip <F| )m ITINF(V))

F~1(B)nSpt(T)



Proof SupposeT € M, ,c.(X), m =0, Y locally compact metric space

m,lo
F € Lip)yc(X,Y), and F|spt(T) proper. We need to show FyT € M, 15c(Y)

Observe:

My (FyT) = sup D" FyT (fi,n%)

AEA

= supz T(o(fyo F),mt o F)

AEA

< (Lip (F |Spt(a))> Il

This proves (2) and in particular that FxT € Mm,loc(y)

«: Afinite, (f3, m1) € D(X) x [Lip; COI™, 2,1/l < 1, spt(fy) € V

o € D(X),

o =1onF (V) nspt(T)



Let us now show: (1) For (f,m) € BZX(Y) X [LiplOC(Y)]m and 0 € B witho = 1on {f o F # 0} n spt(T),
FyT(f,m) =T(o(f e F),moF)

Indeed, this is true for ¢ € D(X) with g = 1 on {f o F # 0} n spt(T).

Now if 0 € B2°, we can approximate g by T € D(X) and take a limit to prove the statement.

m
Now let us show (2): ForBorel B cY, M, (F#T|B) < Lip (F |F ) ITII(F~1(V))

~1(B)nSpt(T)
Take (f, ) € D(X) X [Lip; (X)]™, 0 = XF-1(B)n{fo-F=0}- Then,

(Fer] ) () = Rl G, m)
=T(o(foF)moF)

m
<|LipF o F|d||IT
(ol ) | g F eI



Lemma (Lang 4.7, Characterizing ||T|]) SupposeT € M 1,c(X), B € X is o-finite with respect to ||T|| or open. Then:

m,lO

ITIB) = sup ) T(f %)

A
Moreover, ||T|B|| = ||IT|||z

Proof Recall 4.4(4)

IT(f,m) < L_l[up (ni Spt(f) | vrian

> T(fun?) < ITI(B)

AEA

Thus

On the other hand, let e > 0.  Let VV open contain B with [|T|[(V\B) < &. Choose a < ||T||(V) and find
(fo, m?) satisfying (x) with

a < z T(fom?) = Z T(xpfa, ) + Z T(xv\sfo ")

Aen e Ten
Z T(XV\BfA» nt)| <e
2en

z T()(Bf,»l,n"l) =>a— ¢

«: Afinite, (fo, m*) € BE x [Lip; COI™, Talfal < x5 =



We've proved that

ITIE) = sup ) T(fin?)

AEA
Now we must prove that ||T|||g = ||T|B]|.

Choose A borel.

ITIl| (@ =1ITIanB) = Supz T(f ) = Supz T(fixs ) = ITIBI(A)
B T=YY TEN

* %k %k

sx: A\ finite, (f,l,n’l) € B’ (X) x [Lipy (XDI™, 25 1fal < xBna
sz A finite, (f3, m1) € BX(X) x [Lip (X)]™, X, 1fal < x4



Ny (T) = My(T) + My (0T)
Nm,loc(X) ={T € D,,(X) : Ny(T) < o forV € X}

N(T) = Nx(T)

Nin(X) =T € Dy (X) : N(T) < o0}



Proposition N,,(X) is a Banach space.
Proof If {T;}in N,,(X) is Cauchy, then {T;} and {0T;} are Cauchy in M,,,(X) and M,,,_,(X) respectively.
So they have limits T* and dT* in M,,,(X) and M,,,_; (X).

T; = T in N,,(X), proving completeness.



Observation IfT € N 1oc&X) and (u,v) € Lippc(X) X [LiplOC(X)]k, then 0(T|(u,v)) = (=1)*(0T|(u,v)) — T|(1, u, v).
Hence

My (0(riwv)) < [ [Win@wiv) [ wdllorl + [ [(Linitvy) tiv@miriiory
i= 4 i=
SoT|(w,v) € Ny 19c(X) ' '

Observation pyshforwards of locally normal currents are locally normal.



Lemma (Lang 5.2, Uniform Continuity of Locally Normal Currents) LetT € N, |4.(X). Then,

(1) For (f, 91,92 - gm) € D(X) X Lip}5c(X) X [Lip; (X)]™7H,

Tl <Lip) [ lgildITl + j £ g, dlIaT]
Spt(f) X

(2) For (f,9),(f,§) € D(X) x [Lip, D™,

IT(f,9) - T(F,9)| < jX If—fIdIITII+;Lip(f) L |gi—gi|d||T||+iZl jX Ifllg: — gildllaT|

pt)



Proof Omitted; not interesting.



Lemma (Lang 5.3, Convergence Criterion) Suppose X is compact, F < Lip;(X) is dense in supremum norm ||| .
Suppose (T},,) is a bounded sequence in N,,(X), m = 0, with M = sup,,N(T;,) < co.
Suppose further that T,,(f, g) has a limit, which we’ll denote T(f, g), for f,g € F X F™.

Then T,, converges weaklytoa T € N,,,(X).

Proof idea We must show that the natural limit T(f, g) = lim T,,(f, g) extends from F X F™ to D™ (X).

So we need local uniform continuity. Use the uniform continuity estimate...

7 9) - T(f.9)] < j If - fIdIITII+ZL1p(f) js ) gi = GildITIl + ) jX f1lg: = GildlloT |
i=1



Theorem (Lang 5.4, Compactness) Suppose (T},) is a sequence in Nloc(X), m = 0, with spt(T;,) separable,
Suppose also sup,, Ny (T,,) < oo, for openV € X.

Then some subsequence converges weaklytoa T € N_ 15c(X)

Proof Assume first X compact, so we can take a countable dense F c Lip;(X). A diagonalization argument yields that

a subsequence T, converges for (f,g) € F X F™.



Integer Rectifiable Currents We say T € D,,,(X) is a locally integer rectifiable current if:

1. T e Mm,loc(X)

2. Whenever B € X is Borel and € Lip(X, R™), we have m4(T|B) = [u] for some u € L}(R™, Z)
3. |IT|| is concentrated on a countably H ™-rectifiable Borel set B c X.

Denote the set of such currents 7, | (X). Define 7,,,(X) = 7., 10c(X) N My, (X)

Facts about Integer Rectifiable Currents

1. Parametric Representation: T € ] 15(X) if and only if

T = z Folu], w € IN(R™Z), F:R™— X bi—Lipschitz, |IT||(4) = zllTi(A)ll
i=1 =1

2. jm,loc(X) NN, 10c(X) is locally compact.



Part Il: an Application to the Heisenberg Group



Theorem (Zust, 1.3) Let X be a quasiconvex compact metric space with ﬂlLlp(X) =0,

and let ¢: (X,dyx) — (H, d¢c) be Holder continuous of order a > 2/3.
Then ¢ factors through a tree.

Proof Outline

Definition We say @: X — Y has property (T) if for x, x" € X with ¢(x) # @(x") there exists
a point y € Y such that ¢ o y passes through y for all curves y: x w x'.

Theorem (Zust 1.1) If X is C-quasiconvex compact with H;(X) = 0 or HlLlp(X) = 0 and

@: X = Y is o-continuous with property (T), then ¢ factors through a tree + estimates and
contractibility

Proposition (Zust 4.1) Let X be quasiconvex compact, H;(X) = 0 or HlLlp(X) =0,
@:X — Y Holder continuous of order @ > 1/2, and suppose (¢ © ¥)4[S*] = 0 for closed
Lipschitz curves y: ST — X. Then ¢ has property (T).

Lemma (Zust 4.6) Let Q c R? be a square and ¢: Q — H Holder continuous of order a > %

Then the pushforward @.[Q] = 0 viewed as a current in R3.




Notice, we have implicitly assumed:

If o: X > Y is a > 1/2 Holder continuous and y: St — X a Lipschitz curve, then (¢ © y)4[S'] is a well-defined 1-current.

This can be done in several conceptually different ways.

We need to make sense of the expression
(@ o V)x[S'I(f,9) = [S'I(fepoyv.gopoy) = Ll(f cpoy)d(gepey)= Slf dg

Riemann-Stieltjes Sobolev Extension

: Mollification
Integration
1 — 1 = —
=Rijdg =1lim | f. dg. =‘151_r)r(1) df Ndg
0 e-0 J, B2

All three give the same number, so take your pick.




Theorem (Zust, 1.3) Let X be a quasiconvex compact metric space with ﬂlLlp(X) =0,

and let ¢: (X,dyx) — (H, d¢c) be Holder continuous of order a > 2/3.
Then ¢ factors through a tree.

Proof Outline

Definition We say @: X — Y has property (T) if for x, x" € X with ¢(x) # @(x") there exists
a point y € Y such that ¢ o y passes through y for all curves y: x w x'.

Theorem (Zust 1.1) If X is C-quasiconvex compact with H;(X) = 0 or HlLlp(X) = 0 and

@: X — Y is o-continuous with property (T), then ¢ factors through a tree (+ estimates and
contractibility)

Proposition (Zust 4.1) Let X be quasiconvex compact, H;(X) = 0 or HlLlp(X) =0,
@:X — Y Holder continuous of order @ > 1/2, and suppose (¢ © ¥)4[S*] = 0 for closed
Lipschitz curves y: ST — X. Then ¢ has property (T).

Lemma (Zust 4.6) Let Q c R? be a square and ¢: Q — H Holder continuous of order a > %

Then the pushforward @.[Q] = 0 viewed as a current in R3.




Proofof 4.1: If p: X - Y a > % Holder continuous, pushes forward Lipschitz loops to zero currents, then ¢ has property (T).

Proof Fix x,x’' € X with @(x) # @(x"). Let yu,u": x +» x' Lipschitz. Now (¢ o u)x[0,1], (¢ o u')4 € D, (Y).
They are non-zero currents since they have non-zero boundary.
But a 1-current cannot have a support consisting of finitely many points.

So thereisay € Y not equal to ¢(x) or ¢(x"), belonging to the support spt((go o u)#[[O,l]])
Clearly y must be in the image of ¢ o u.

ie. (poy)y(S) =0

ety =puxp' 1St > X, 0= (poy)s[S'] = (@ ow)yl0,1] — (@ o u)4[0,1]
Thus (¢ o 11)4[0,1] = (¢ ° u")4[0,1], and so y € spt((¢ o 1)[0,1]) = spt((¢ o u")4[0,1])
So y is also in the image of ¢ o i’

This is property (T) m



Theorem (Zust, 1.3) Let X be a quasiconvex compact metric space with ﬂlLlp(X) =0,

and let ¢: (X,dyx) — (H, d¢c) be Holder continuous of order a > 2/3.
Then ¢ factors through a tree.

Proof Outline

Definition We say @: X — Y has property (T) if for x, x" € X with ¢(x) # @(x") there exists
a point y € Y such that ¢ o y passes through y for all curves y: x w x'.

Theorem (Zust 1.1) If X is C-quasiconvex compact with H;(X) = 0 or HlLlp(X) = 0 and

@: X — Y is o-continuous with property (T), then ¢ factors through a tree (+ estimates and
contractibility)

Proposition (Zust 4.1) Let X be quasiconvex compact, H;(X) = 0 or HlLlp(X) =0,
@:X — Y Holder continuous of order @ > 1/2, and suppose (¢ © ¥)4[S*] = 0 for closed
Lipschitz curves y: ST — X. Then ¢ has property (T).

Lemma (Zust 4.6) Let Q c R? be a square and ¢: Q — H Holder continuous of order a > %

Then the pushforward @.[Q] = 0 viewed as a current in R3.




Again we need to check that we have a well-defined current ¢4 [Q] before proceeding to prove the lemma.

We need to make sense of @4 [Q1(f, 91,92)

0ulQ1(f, 91,92) = [QI(f o9, g1 °®, g2 ° )

¢ = | fdg,ndg
- JQ f dgi 9>
Again, we have options.
Y
~lim | f: dgse A dgae
e-0 0
= Zj fdg, Andg, = lim z f(bo,) | 143G, = j df Adgy Adg,
Q 7 0ém@ Qi @x(0.1)



Theorem (Zust, 1.3) Let X be a quasiconvex compact metric space with ﬂlLlp(X) =0,

and let ¢: (X,dyx) — (H, d¢c) be Holder continuous of order a > 2/3.
Then ¢ factors through a tree.

Proof Outline

Definition We say @: X — Y has property (T) if for x, x" € X with ¢(x) # @(x") there exists
a point y € Y such that ¢ o y passes through y for all curves y: x w x'.

Theorem (Zust 1.1) If X is C-quasiconvex compact with H;(X) = 0 or HlLlp(X) = 0 and

@: X — Y is o-continuous with property (T), then ¢ factors through a tree (+ estimates and
contractibility)

Proposition (Zust 4.1) Let X be quasiconvex compact, H;(X) = 0 or HlLlp(X) =0,
@:X — Y Holder continuous of order @ > 1/2, and suppose (¢ © ¥)4[S*] = 0 for closed
Lipschitz curves y: ST — X. Then ¢ has property (T).

Lemma (Zust 4.6) Let Q c R? be a square and ¢: Q — H Holder continuous of order a > %

Then the pushforward @.[Q] = 0 viewed as a current in R3.




Proof of Lemma (Zust 4.6): Let Q < R? be a square, ¢:Q > Ha > % Holder continuous. Then @4[Q] = 0.

: 1 : . : :
Proof First recall thatan a > 5 Holder continuous curve y: [a, b] —» H is weakly horizontal in the sense that

b
j dye + 2(vydyx — vedyy) = 0
a

L . 1 .
In fact, more can be said: if f: [a, b] - Risa > > Holder continuous, then

b
f f (dyt + Z(Vydyx - deyy)) =0
a

Let f = y, and assume now that y is a closed curve.

b

b b b b b
f Yedye = f 2y5dyy — j 2V VxAVx= j 2y dyy + J Yedyy =3 f Ve dvy
a a a a a a

Similarly . .
j Vydye = —3J ¥y Vs
a a



Proof of Lemma (Zust 4.6): Let Q < R? be a square, ¢:Q > Ha > % Holder continuous. Then @4[Q] = 0.

Proof We proved

b b b b
(*) f YedY, = 3J yidy, j Vydyz = —3j Yy dYx
a a a a

With these we compute, for w4, w,, w3 Lipschitz

0[0](w1dy A dt + wydx A dt + wzdx Ady) = [Q](¢*(widy Adt + wydx A dt + wsdx A dy))
= [Q1(& doy A do,)

This is correct by (*), but
requires more justification = lim a(bQ,)f Ox Ay
n—oo t ]
Qi€Pn(Q) l
_ _ 1
= lim w(bQi)f E(Qoxd‘Py — ¢yde,)
Qi€Pn(Q) 90



Proof of Lemma (Zust 4.6): Let Q c R? be a square, ¢:Q - H, § > % Holder continuous. Then @4[[Q] = 0.
Alternative Proof Let @ = dt + 2(ydx — xdy) be the contact form for H with ker(a) = HH.

Obvious estimates with convolutions, using the Holder continuity of ¢ and the Koranyi metric yield
lpialle, < Ce?¥™1
And also for arbitrary 1-forms k on R3 = H we have

lpsrlle < Ce¥t

Observe that we have dx A dy =%da, dx ANdt = dan—gda,and dy A dt = dy/\a+§da
Thus,

@u[Q](widy Adt + wydx Adt + wsdx Ady) = @4[Q](a Aé + da An)

=lim | @;(ané+nda)
e-0 0

f 02N ) < C llpzallolloéll.
Q

2y-1cy-1-5 0
<C(Ce¢ e =1imf <p;‘(aA€)+1imj ne e d(p:a)
e-0 J, €20 Jg

jQ nege d(pia) = jaQq)z(n @) —jQ o2 (a Adn) y
[ |

< Ce?Y~1 4 Cced3r—2

f ne@.d(pza)
Q



Theorem (Zust, 1.3) Let X be a quasiconvex compact metric space with ﬂlLlp(X) =0,

and let ¢: (X,dyx) — (H, d¢c) be Holder continuous of order a > 2/3.
Then ¢ factors through a tree.

Proof Outline

Definition We say @: X — Y has property (T) if for x, x" € X with ¢(x) # @(x") there exists
a point y € Y such that ¢ o y passes through y for all curves y: x w x'.

Theorem (Zust 1.1) If X is C-quasiconvex compact with H;(X) = 0 or HlLlp(X) = 0 and

@: X — Y is o-continuous with property (T), then ¢ factors through a tree (+ estimates and
contractibility)

Proposition (Zust 4.1) Let X be quasiconvex compact, H;(X) = 0 or HlLlp(X) =0,
@:X — Y Holder continuous of order @ > 1/2, and suppose (¢ © ¥)4[S*] = 0 for closed
Lipschitz curves y: ST — X. Then ¢ has property (T).

Lemma (Zust 4.6) Let Q c R? be a square and ¢: Q — H Holder continuous of order a > %

Then the pushforward @.[Q] = 0 viewed as a current in R3.




