Instantaneous Blowup

Prof. Jerry Goldstein
University of Memphis

The parabolic partial differential equation

\[\frac{\partial u}{\partial t} = \Delta u + \frac{c}{|x|^2}u \] \hspace{1cm} (1)

for \(x \in \mathbb{R}^N, \ t > 0 \) has remarkable scaling and other properties. It was the first example of instantaneous blowup. For

\[c \leq C(N) = \left(\frac{N-2}{2} \right)^2, \]

(1) has many positive solutions, but for \(c > C(N) \), (1) has no nonnegative solutions other than zero. Moreover, suppose \(c > C(N) \) and \(u(x,0) = f(x) \geq 0 \), where \(f \) is not 0 a.e. and \(f \) is a good initial condition (when \(c = 0 \)). Replace \(V(x) = \frac{c}{|x|^2} \) by

\[V_n(x) = \min \{ V(x), cn^2 \}. \]

Then \(\{V_n\} \) is an increasing sequence of bounded functions, and let \(u_n(x,t) \) be the corresponding positive solution of

\[\frac{\partial u}{\partial t} = \Delta u + V_n u. \]

Then

\[u_n(x,t) \to +\infty \quad \text{as} \quad n \to \infty \]

for all \(x \in \mathbb{R}^N, \ t > 0 \). This result is due to P. Baras and J. Goldstein (1984) and was the first example of instantaneous blowup.

The same result holds when \(\mathbb{R}^N \) is replaced by the Heisenberg group \(\mathbb{H}^N \). The underlying space is topologically \(\mathbb{R}^{2N+1} \), but the corresponding Laplacian is the sum of \(2N \) squares of vector fields, not \(2N+1 \) vector fields; thus, the Heisenberg Laplacian is not uniformly elliptic. Nevertheless, with the appropriate potential for the Heisenberg group, instantaneous blowup still holds. The difficult proof is based on extending DeGiorgi-Nash-Moser theory from \(\mathbb{R}^N \) to \(\mathbb{H}^N \). This result will appear soon in the *Annali della Scuola Normale Superiore di Pisa*. The authors are Gisèle and Jerry Goldstein, Alessia Kogoi, Abdelaziz Rhandi and Cristian Tacelli. The complicated proofs will be discussed. Related results for the modified Ornstein-Uhlenbeck equation and some nonlinear equations will also be presented.