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1. INTRODUCTION

Leonhard Euler is one of the greatest and most astounding icons in the history
of science. His work, dating back to the early eighteenth century, is still with us,
very much alive and generating intense interest. Like Shakespeare and Mozart,
he has remained fresh and captivating because of his personality as well as his
ideas and achievements in mathematics. The reasons for this phenomenon lie in
his universality, his uniqueness, and the immense output he left behind in papers,
correspondence, diaries, and other memorabilia. Opera Omnia [E], his collected
works and correspondence, is still in the process of completion, close to eighty
volumes and 31,000+ pages and counting. A volume of brief summaries of his
letters runs to several hundred pages. It is hard to comprehend the prodigious
energy and creativity of this man who fueled such a monumental output. Even
more remarkable, and in stark contrast to men like Newton and Gauss, is the sunny
and equable temperament that informed all of his work, his correspondence, and his
interactions with other people, both common and scientific. It was often said of him
that he did mathematics as other people breathed, effortlessly and continuously. It
was also said (by Laplace) that all mathematicians were his students.

It is appropriate in this, the tercentennial year of his birth, to revisit him and
survey his work, its offshoots, and the remarkable vitality of his themes which are
still flourishing, and to immerse ourselves once again in the universe of ideas that
he has created. This is not a task for a single individual, and appropriately enough,
a number of mathematicians are attempting to do this and present a picture of
his work and its modern resonances to the general mathematical community. To
be honest, such a project is Himalayan in its scope, and it is impossible to do full
Justice to it. In the following pages I shall try to make a very small contribution
to this project, discussing in a sketchy manner Euler’s work on infinite series and
its modern outgrowths. My aim is to acquaint the generic mathematician with
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some Eulerian themes and point out that some of them are still awaiting complete
understanding. Above all, it is the freedom and imagination with which Euler
operates that are most compelling, and I would hope that the remarks below have
captured at least some of it. For a tribute to this facet of Euler’s work, see [C].

The literature on Euler, both personal and mathematical, is huge. The references
given at the end are just a fraction of what is relevant and are in no way intended
to be complete. However, many of the points examined in this article are treated
at much greater length in my book [V], which contains more detailed references.
After the book came out, Professor Pierre Deligne, of the Institute for Advanced
Study, Princeton, wrote to me some letters in which he discussed his views on some
of the themes treated in my book. I have taken the liberty of including here some
of his comments that have enriched my understanding of Euler’s work, especially
on infinite series. I wish to thank Professor Deligne for his generosity in sharing
his ideas with me and for giving me permission to discuss them here. I also wish
to thank Professor Trond Digernes of the University of Trondheim, Norway, for
helping me with electronic computations concerning some continued fractions that
come up in Euler’s work on summing the factorial-like series.

2. ZETA VALUES

Euler must be regarded as the first master of the theory of infinite series. He
created it and was by far its greatest master. Perhaps only Jacobi and Ramanujan
may be regarded as being even close. Before Euler entered the mathematical scene,
infinite series had been considered by many mathematicians, going back to very
early times. However there was no systematic theory; people had only very informal
ideas about convergence and divergence. Also most of the series considered had only
positive terms. Archimedes used the geometric series

4 g 1 1 1

3= IR
in computing, by what he called the method of exhaustion, the area cut off by a
secant from a parabola. Leibniz, Gregory, and Newton had also considered various
special series, among which the Leibniz evaluation,

+e e s

T _q 1 1 1
A A A
was a most striking one. In the fourteenth century people discussed the harmonic
series
1Ly
23

and Pietro Mengoli (1625-1686) seems to have posed the problem of finding the
sum of the series
o s e
22 © 32 T
This problem generated intense interest, and the Bernoulli brothers, Johann and
Jakob, especially the former, appear to have made efforts to find the sum. It came
to be known as the Basel problem. But all efforts to solve it had proven useless,
and even an accurate numerical evaluation was extremely difficult because of the
slow decay of the terms. Indeed, since
1 1 1 1 1 1 1

n n+1 nn+1) n? nn-1 n—-1 n
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we have

1 —~ 1 1
Ni1< 2 m<m
n=N+1
so that to compute directly the sum with an accuracy of six decimal places would
require taking into account at least a million terms.

Euler’s first attack on the Basel problem already revealed how far ahead of
everyone else he was. Since the terms of the series decreased very slowly, Euler
realized that he had to transform the series into a rapidly convergent one to facilitate
easy numerical computation. He did exactly that. To describe his result, let me
use modern notation (for brevity) and write

am—1+1—wi+”“

22 © 32
Then Euler’s remarkable formula is
= 1
_ g
(1) ¢(2) = (log2) +22:1n'_2.27
n=
with
11 =
log2=-+4 -+ — .
5 2 T 8 + + Z .20
The terms i 1n the series are geometric, and the one for log 2 is obtained by taking the
value x 5 in the power series for —log(1 — ). However formula (1) lies deeper.

Using this he calculated ((2) accurately to six places and obtained the value
((2) =1.644944. ...
To derive (1) Euler introduced the power series
12

x
T + 27

n

Z M
N n?’

n=1

which is the generating function of the sequence (1/n?). This is an idea of great
significance for him because, throughout his life, especially when he was attempting
to build a theory of divergent series, he regarded infinite series as arising out of
generating functions by evaluation at special values. In this case the function in
question has an integral representation: namely

oo

(2) > =Lis(a)

n=1

L) / log.,(l—f // dtidts
ig(z) 1=
’ 0 t 0<ta<t, <z ti(1—t2)

It is the first appearance of the dilogarithm, a special case of the polylogarithms
which have been studied recently in connection with multizeta values (more about
these later). Clearly

where

¢(2) = Liz(1).
The integral representation allowed Euler to transform the series as we shall see
now. He obtained the functional equation

(3) Liz(z) 4+ Lio(1 — ) = —log zlog(1 — x) + Liy(1),
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which leads, on taking x = 3, to
oo

¢(2) = (log2)?

The formula (3) is easy to prove. We write

¢(2) = /Ou Mdm+/l :l_og_(l;z)dw'

T T

We then change = to 1 — z in the second integral and integrate it by parts to get
(1). More than the specific result, the significance of Euler’s result lies in the fact
that it lifted the entire theory of infinite series to a new level and brought new ideas
and themes.

Still Euler was not satisfied, since he was far from an exact evaluation. Then
suddenly, he had an idea which led him to the goal. In his paper that gave this new
method for the solution of the explicit evaluation he writes excitedly at the begin-
ning: So much work has been done on the series ((n) that it seems hardly likely
that anything new about them may still turn up. ... I, too, in spite of repeated ef-
forts, could achieve nothing more than approzimate values for their sums. ... Now,
however, quite unexpectedly, I have found an elegant formula for ((2), depending
on the quadrature of a circle [i.e., upon 7| (from Andre Weil’s translation).

Euler’s idea was based on an audacious generalization of Newton’s formula for
the sums of powers of the roots of a polynomial to the case when the polynomial
was replaced by a power series. Writing a polynomial in the form

1_0‘5+552—"'ipsk=(1_2)<1_%)_._(1_;>

we have
1 1 1 1 1
=ik =g =, B=—=+—+...
a b r ab  ac
and so on. In particular
1 1 9
ﬁ‘}-gﬁ-}- +;2-:Oz - 20

and more generally
Ss =a®—3aB+ 37,5, =a* — 40?8 + day + 26 —

and so on, where

0~ i bt
k= ok 7 IR s

Euler’s idea was to apply these relations wholesale to the case when the polynomial
18 replaced by a power series
1—as+p8s%—...,

indeed, to the power series

i ~dnee=1-ng &

—sins=1-— —— ..
6

The function 1 — sin s has the roots (all roots are double)

T 3T 3_7r57r5_7r
2727 27 27 27 27""
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and so the above formulas give the following. First,

4 1 1
=fle=bos, | =1
7r< BTE ) '

which is Leibniz’s result. But now one can keep going and get

8 11
S|l+gtgt)=1

which leads at once to

One can go on and on, which is what Euler did, calculating ¢(2k) up to 2k = 12.
In particular

1 1 md
C(4)—1+24+34+ =5
The same method can be applied to sin s and leads to the same results.

Euler communicated these (and other) results to his friends (the Bernoullis in
particular), and very soon everyone that mattered knew of Euler’s sensational dis-
coveries. He knew that his derivations were open to serious objections, many of
which he himself was aware of. The most important of the objections were the
following: (1) How can one be sure that 1 — sin s does not have other roots besides
the ones written? (2) If f(s) is any function to which this method is applied, f(s)
and e® f(s) both have the same roots and yet they should lead to different formu-
lae. Nevertheless the numerical evaluations bolstered Euler’s confidence, and he
kept working to achieve a demonstration that would satisfy his critics. It took him
about ten years, but he finally succeeded in obtaining the famous product formula

for sin s:

(4) Sizx - ﬁ (1 - nf—;> .

n=1

Once this formula is established, all the objections disappear, as he himself re-
marked.
The proof of (4) by Euler was beautiful and direct. He wrote
e _ (4 5)" - (1-%)°

= lim - o
T n—oo 2ix

and factorized explicitly the polynomials

(1+2)" - (%)

n n

4n(@) = 2ix

to get

P 2 2km
2% 1+ cos =X
— 1— —‘n :2 1 %
n(T) k|:|1< 21 —oos QZW) (n=2p+1)

The formula (4) is obtained by letting n go to oo term by term in the product. As
would be natural to expect, Euler does not comment on this passage to the limit; a
modern rigorous argument would add just the observation that the passage to the
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limit termwise can be justified by uniform convergence, as can be seen from the
easily established estimate

1:2

1 + cos 2=
.—_— - C—
k2m2

2k
n

1 — cos

where C is an absolute constant. The method is applicable to a whole slew of
trigonometric as well as hyperbolic functions and allowed Euler to reach all the
formulae obtained earlier by his questionable use of Newton’s theorem. Among

these are
sin s e S S
1-—= ][ (1————><1—————>.
sino 2% 2nt+ o0 2nt+mTm—0

For convergence purposes this should be rewritten as

. oo
sin s s s s
=(1-DM( -5 15—
sino < o nI;Il< 2n7r+0> ( T 27z7r—0>
s s
X —_ 14 —7—).
H( 2n—1)7r—0'>< +(271—1)71'—}-0)

From the product formula (4) one can calculate by Newton’s method the values of
C(2k) explicitly; there are no problems (as everything in sight is absolutely conver-
gent), and Euler did this. These evaluations, especially the value

691 12
6825 x 93555 =

must have suggested to him that the Bernoulli numbers were lurking around the
corner here, since

¢(12) =

691
2730°

Euler then succeeded in getting a closed formula for all the ((2k).
The main idea is to logarithmically differentiate (4) (as was also observed imme-
diately by Nicholas Bernoulli) to get (replacing = by s)

(5) 7rc0ts7r—%+i< £t ) (0<s<1).

Bz = —

n+s n—3s
n=1

The formula is written in such a way that absolute convergence is manifest; Euler
did not bother with such niceties and wrote it as
— 1

(6) wcotsw:Z .
~s +n

It is definitely more convenient to do this, interpreting the sum as a principal value.
We shall do so from now on, omitting the reference to principal values for brevity.
Expressing the cotangent in terms of exponentials leads one to the function

_ By, g2k
3 Z(% .
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The By are the Bernoulli numbers, introduced by Jakob Bernoulli many years
before Euler; Euler suggested they be called Bernoulli numbers. For the first few
we have

1 1 1 1 ) 691
By=-,By=——, Bg=-—, Bg=—-—, Bijg= —, Bjg = ——V—_.
2 6’ 4 307 6 427 8 30, 10 66’ 12 2730
Then -
2mi 4 , (2mwis)2k—2
T cot st — S 27risB(2mS) = 27TZ]CZ_:1B2]CT]€)!.

Calculating derivatives at s = 0 we get Euler’s surpassingly beautiful formula

B (_1)k—122k—lB k
(7) (k) = "~ ™.

Nowadays it is customary to treat s as a complex variable and establish (5) or
(6) by complex methods, using periodicity and Liouville’s theorem. I think however
that Euler’s method is unrivaled in its originality and directness. For a treatment of
these formulae that is very close to Euler’s and even more elementary in the sense
that one works entirely over the real field, see Omar Hijab’s very nice book [Hi].
One should also note that the results of Euler may be viewed as the forerunners
of the work of Weierstrass and Jacobi, of infinite products with specified zeros and
poles, with sums over lattices in the complex plane replacing sums over integers (p
and v-functions).

In addition to the zeta values Euler also determined the values

I 1
L(2k+1)=1—w+w—

These are the very first examples of twisting, namely replacing a series by one where
the coefficients are multiplied by a character mod N: '

>y X
S S
n>1 i n>1 =

where y is a character mod N, more generally a function of period N. The transition
from ¢ to L corresponds to a character mod 4:

(n) = (=1)(»=D/2 if n is odd
& o if n is even.

I shall talk more about these when I discuss Euler products. The method for the
sums L(2k+1) is the same as for the zeta values and starts with the partial fraction

g = 1
sin s sS+n
—oo

obtained by logarithmically differentiating the infinite product

. oo
sin & T

1-— = - ) ([ = ————
sin s nn < 2n7r+s) ( 2n7r+7r—s)

=—00

at z = 0 and then changing s to s7.
It was natural for Euler to explore if the partial fraction expansions
oo
1

oo
T 1
8 :g -1)" g t :E
®) sin s _Oo( )s+n reotsm ~stn
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could be established by other methods. This he did in several beautiful papers, and
his derivations take us through a whole collection of beautiful formulae in integral
calculus, including the entire basic theory of what Legendre would later call the
Eulerian integrals of the first and second kind, namely, the theory of the beta and
gamma functions.

The starting point of the new derivation is the pair of formulae

1 p—1_ q—p-1 o0
T +
—d = —1 7 0
/0 T _EOO( )p+nq (¢>p>0)
(9) 1
gP~1 — ga—p-1 ha 1
———dr = >p > 0).
/0 11—z = §p+nq (a>p )

These are derived by expanding

1
1 =54

as power series and integrating term by term. One has to be a bit careful in the
second of these formulae since the integrals do not converge separately. It is then
a question of evaluating the integrals directly to obtain the formulae

1, .p—1 q—p—1
/ e dz = ——~ (¢g>p>0),
(10) 0 1+ 9 gsin(p/q)m
1 p—1 _ .qg—p—1 t
/ ’ 7 jq dg = 70 (p/q)m (g>p>0).
0 - q

We then obtain (7) with s = p/q. For Euler this was sufficient; we would add to his
derivation a remark about justifying the continuity of both sides of the formulae in
S.

For proving (10) Euler developed a method based on a beautiful generalization
of the familiar formula (indefinite integration)

/ dx
—— = arctanz.
1422

Euler obtains for
T xm—l
/ Tl (2m > n > 0.m,n integers)
0 1 +x n

the formula

- | m—1 "1
(# 2 cos(2k — l)m% log (1 + 2z cos(2k — 1)% 4 wz)
(=)™t & T zsin(2k — 1) &
., 2k -1 — arct n
+ . kz_:lsm( )m2n arctan 1+ 2 cos(2k — 1)%

The formula is obtained using partial fractions and the factorization of (1 + 22").
We now let # — oo in this formula. Using the identities (which Euler derived as
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special cases of a whole class of trigonometric identities)

n

Zcos (2k — 1)mn —if

2n
k=1

i(2k — 1)sin (2k — )mm _ (-1)m"1In
2n gin 2%
k=il n

we get, with Euler,

(e <] l,m—l d T
= - .
o l+a?m 2nsin 25

2n
We put p = m, ¢ = 2n and rewrite this as

o0 a:”_ld 7r
= >p>0).
/0 14 x4 * qsin% l4=>7 )

Here ¢ is even; but if ¢ is odd, the substitution 2 = y? changes the integral to one
with the even integer 2¢, and we obtain the above formula for odd ¢ also. Euler
does not stop with this of course; he goes on to evaluate all the integrals of the

form i
oo l_p—
——dx.
/o (T+anf ™
In particular he finds

/°° ™1 msin 220 (1 — w)
0

1 — 22" cosw + x2n nsinwsin@'

For w = 7 this reduces to the previous formula.

The derivation of the second integral in (10) is similar but more complicated since
we have to take into account the fact that the integrals do not converge separately.
It is based on getting a formula for

z xm—l
/ >—dx
0 ]. — T
and we omit the details. The result is
/1 zm-1 _ $2n—m—1d T . mr
T = — cot —,
0 1—z2n 2n 2n
which leads as before to the second formula in (10). It is to be noted that in this
method also the factorization of (1+x2") enters decisively, exactly as in his original
proof of the infinite product for sin z.

Finally one could also obtain (10) as a consequence of the theory of the gamma
function, using only formulae that were known to Euler. We are used to writing

I'(s+1)= / € “xide,
0

but Euler always preferred to write it as

1
[8] =8l = / (—logz)*dz
0
and think of it as an interpolation for n! He knew the functional equation

[s] = (s +1)[s - 1]
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as well as the formula

™

I'(s)I(1—s) =

sin s

ORe

1225 - m
(1 = i
< + ’”) m]fl}lx (IN + l)(”' i 2> - (”' T ”)

(the corollary)

and the limit formula

m

(n+1)

which he would write as

) 1.2m 217111.3))1 “lfm(“ L ])m
[m] = lim .
m—oom+1 m+2 m +n
In fact it is in this form he introduces the Gamma function in one of his early letters
to Goldbach. The derivation of (10) is now a straightforward consequence of the
theory of these integrals. One gets

1 x4 -p—1 » 00 .I,pfl
/ ——dz = / dx
Jo T+ae ™~ i T+as
so that

1 p—1 .q—p—1 gee p—1
1 + 2 : 1 ) 7
/ ——dr = / : dr=-B <1.1—‘2> = ;
Jo 1+ x4 Jo 14ad q q q gsin(p/q)m

Once again the treatment of the second integral in (10) is more delicate.
The partial fractions (9) can be differentiated and specialized to yield explicit
values for many infinite series. Euler worked out a whole host of these, with or

without the twisting mentioned earlier. The sums he treated are of the form
Z /7(/1)
nqg—+p)"
nez ( 1 ])
where h is a periodic function, and their values are of the form
.
gm
where g is a cyclotomic number. The series he obtains are actually Dirichlet series
corresponding to various characters mod ¢ and their variants. Thus, with y as the
non-trivial character mod 3, extended to Z by 0,

2r (1) Ix(n) T __i\(n)
'5\/§ - n=1 L l 3\/§ N n=1 4 l
which he would write as

2r - 1 1 " 1 N 1 1 1 N
33 2 4 5 78 10 11

T 1 1 1 1 1
2 ml-gd =t
3vV3 2 4 5, { 8

;\15()
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where
+1 if n=+1mod 8 +1 if n=+1 mod 12
xs(n) =< —1 ifn=+3 mod 8 Xi12(n) =< —1 if n = 45 mod 12
0 if otherwise 0 if otherwise,

which he would write as

@ 1 1 1
m~l*§§—5—2+ﬁ+...
2 —1 1 1+ 1 "
6v/3 52 72 T 112 '

and so on.

Multizeta values. Throughout his life Euler tried to determine the zeta values
at odd integers, ((3),((5),... but was unsuccessful. He obtained many formulae
linking them but was unable to get a breakthrough. Late in his life, almost thirty
years after his discoveries, he wrote a beautiful paper where he introduced what
are now called multizeta values. The double zeta values are nowadays defined as

|
((a,b) = g e (a,beZ,a>2,b>1).
men
m>n>0

This is a slight variant of Euler’s definition which we write as (g(a,b), in which he
would sum for m > n and write the sum as

L (] g PR I
92a 2b 3a 2!; 3I> e

Cr(a,b) =C(a,b) + ((a+Db).

He proved the beautiful relation

so that

€(2,1) =¢(3)
as well as the more general
(b )+Cp—1,2)+---+¢2,p-1)=((p+1)

from which he derived the relations

2Ap-L)=@-1¢E) - > (a¢p-aq).

2<q<p—2

In recent years people have defined the multizeta values by

1
51,82, ...,! $p) = ——— (8, €Z,51>2,8,>1).
C(51,82 ") ”l>”2;>”r>o 703 a2 s v T (s € ! 82 1)
The Euler identities have been generalized, new identities have been discovered by
Ecalle and others, and considerable progress has been made about the nature of
these numbers, including the odd zeta values. I mention the results that ((3) is
irrational [A], that an infinity of the odd zeta values are irrational [BR], and that
at least one of ((5),((7),...,{(21) is irrational [R]. The multizeta values have been
interpreted as period integrals, and this interpretation may possibly lead to a better
understanding of them [KZ], [D1]. For more details and references see [V].



