# Around Hall algebras in 23 slides

Boris Tsvelikhovskiy



## Hall Algebras

Let  $\mathcal{C}$  be a small abelian category, such that

- gldim( $\mathcal{C}$ ) <  $\infty$ , i.e. Ext<sup>n</sup>(A, B) = 0 for any  $A, B \in Ob(\mathcal{C})$  and  $n \gg 0$ ;
- $|\operatorname{Ext}^i(A,B)| < \infty$  for any  $A,B \in Ob(\mathcal{C})$  and all  $i \geq 0$ .

**Definition.** The multiplicative Euler form  $\langle \cdot, \cdot \rangle : K(\mathcal{C} \times \mathcal{C}) \to \mathbb{C}$  is the form given by

$$\langle A, B \rangle := (\prod_{i=0}^{\infty} |Ext^{i}(A, B)|^{(-1)^{i}})^{1/2}.$$



Let  $\mathcal{C}^{iso}$  be the set of isomorphism classes of objects in  $\mathcal{C}$  and consider the vector space  $\mathcal{H}(\mathcal{C}) := \bigoplus_{A \in \mathcal{C}^{iso}} \mathbb{C}[A]$ . The following operation defines the structure of an associative algebra on  $\mathcal{H}(\mathcal{C})$ :

$$[A] \star [B] := \langle A, B \rangle \sum_{C} P_{A,B}^{C}[C],$$

where  $\mathcal{P}_{A,B}^{C}$  is the number of short exact sequences (SES)  $0 \to B \to C \to A \to 0$ 

and 
$$P_{A,B}^C := \frac{\mathcal{P}_{A,B}^C}{|\operatorname{End}(A)||\operatorname{End}(B)|}$$
.

**Remark.** The unit  $i : \mathbb{C} \to \mathcal{H}(\mathcal{C})$  is given by  $i(\lambda) = \lambda[0]$ , where 0 is the initial object of  $\mathcal{C}$ .



**Example.** Let C be the category of finite-dimensional vector spaces over a finite field  $\mathbb{k} = \mathbb{F}_q$ . The classes of objects in  $C^{iso}$  are given by  $\{V_n\}_{n\geq 0}$  with  $V_n := \mathbb{k}^n$ . We notice that  $Ext^{>0}(V_n, V_m) = 0$ , while  $|Ext^0(V_n, V_m)| = |Hom(V_n, V_m)| = q^{nm}$ . Moreover, the number of SES

$$0 \to V_n \to V_s \to V_m \to 0$$

is zero, unless s = m + n. In case s = m + n the number of SES as above, up to isomorphism of the first and third term, is  $|Gr_{\mathbb{k}}(n, m+n)|$ , where  $Gr_{\mathbb{k}}(n, m+n)$  is the Grassmannian of n-dimensional subspaces in (m+n)-dimensional vector space. We conclude that  $[V_m] \star [V_n] = q^{nm/2} {n+m \brack n}_q V_{n+m}$ , where  ${n+m \brack n}_q := (q^n-1)(q^{n-1}-1)$ 

$$\frac{[n+m]_q!}{[n]_q![m]_q!} \ with \ [n]_q! := \frac{(q^n-1)(q^{n-1}-1)\dots(q-1)}{(q-1)^n} \ is \ the \ q-binomial \ coefficient.$$

It is equal to the number of points on  $Gr_{\mathbb{k}}(n, m+n)$ .

### Boris Tsvelikhovskiy



**Remark.** Notice that similar to the binomial coefficients, their 'q-analogs' satisfy the equality  $\begin{bmatrix} n+m \\ n \end{bmatrix}_q = \begin{bmatrix} n+m \\ m \end{bmatrix}_q$ . It follows that  $[V_m] \star [V_n] = [V_n] \star [V_m]$  and the Hall algebra  $\mathcal{H}(\mathcal{C})$  is commutative. Moreover, the algebra  $\mathcal{H}(\mathcal{C})$  is generated by  $[V_1]$  and isomorphic to the ring of polynomials in one variable  $\mathbb{C}[x]$ . It is straightforward to check that  $[V_1]^{*n} = \sqrt{q^{\frac{n(n-1)}{2}}} [n]_q! [V_n]$  (notice that  $[n]_q!$  is the number of points on the variety of complete flags over  $\mathbb{F}_a$  and  $q^{\frac{n(n-1)}{2}} =$  $q^{1\cdot 1}q^{1\cdot 2}\dots q^{1\cdot (n-1)}$ ). Hence, the isomorphism of algebras  $\varphi:\mathbb{C}[x]\xrightarrow{\sim}\mathcal{H}(\mathcal{C})$  with  $\varphi(x) = [V_1] \ has \ \varphi(x^n) = q^{\frac{n(n-1)}{4}} [n]_q! [V_n].$ 



### Quivers

**Definition.** A quiver  $Q = (Q_0, Q_1)$  is a finite directed graph with finitely many vertices enumerated by the set  $Q_0$  and finitely many edges indexed by  $Q_1$ . Each edge is uniquely determined by the pair of vertices it connects, which we will denote by t(a) and h(a) standing for 'tail' and 'head', respectively. A representation of a quiver Q consists of a collection of vector spaces  $\{V_i\}_{i\in Q_0}$  and linear homomorphisms  $\alpha_a \in Hom(V_{ta}, V_{ha})$  for each arrow  $a \in Q_1$ .

Such representations form a category with morphisms being collections of  $\mathbb{C}$ -linear maps  $\psi_i: V_i \to W_i$  for all  $i \in Q_0$  such that the diagrams







This category will be denoted by Rep(Q). There is a natural way to associate a Kac-Moody Lie algebra  $\mathfrak{g}_Q$  to Q. Namely, the Cartan matrix for  $\mathfrak{g}_Q$  is  $C = 2 \cdot I - A_Q - A_Q^T$ , where  $A_Q$  is the adjacency matrix of Q.

**Definition.** A path p in a quiver  $Q = (Q_0, Q_1)$  is a sequence  $a_{\ell}a_{\ell-1} \dots a_1$  of arrows in  $Q_1$  such that  $t(a_{i+1}) = h(a_i)$  for  $i = 1, 2, \dots, \ell - 1$ . In addition, for every vertex  $x \in Q_0$  we introduce a path  $e_x$ .

The **path** algebra  $\mathcal{P}_Q$  is a  $\mathbb{k}$ -algebra with a basis labeled by all paths in Q. The multiplication in  $\mathcal{P}_Q$  is given by

$$p \cdot q := \begin{cases} pq, & \text{if } t(p) = h(q) \\ 0, & \text{otherwise,} \end{cases}$$

where pq stands for the concatenation of paths subject to the conventions that  $pe_x = p$  if t(p) = x, and  $e_x p = p$  if h(p) = x.

**Remark.** Notice that  $\mathcal{P}_Q$  is of finite dimension over  $\mathbb{k}$  if and only if Q has no oriented cycles. The path algebra has a natural grading by path length with the subring of grade zero spanned by the trivial paths  $e_x$  for  $x \in Q_0$ . It is a semisimple ring, in which the elements  $e_x$  are orthogonal idempotents.

**Theorem.** The category Rep(Q) is equivalent to the category of finitely-generated left  $\mathcal{P}_Q$ -modules. In particular, Rep(Q) is an abelian category.

**Remark.** If Q has no oriented cycles, then the category Rep(Q) is hereditary, i.e.  $Ext^i(A, B) = 0$  for any  $i \geq 2$  and  $A, B \in Rep(Q)$ .

**Example.** Let Q be the quiver  $\bullet_1 \longrightarrow \bullet_2$ . An object in Rep(Q) is a pair of vector spaces  $(V_1, V_2)$  together with a linear map  $a \in Hom(V_1, V_2)$ . There are two simple objects  $S_1 : \mathbb{k} \to 0$  and  $S_2 : 0 \to \mathbb{k}$  and one (up to isomorphism) indecomposable, which is not simple  $I_{12} = \mathbb{k} \xrightarrow{id} \mathbb{k}$ . The adjacency matrix  $A_Q = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$  gives rise to Cartan matrix  $C = 2 \cdot I - A_Q - A_Q^T = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$ corresponding to Lie algebra  $\mathfrak{sl}_3$  of traceless  $3 \times 3$  matrices. The path algebra,  $\mathcal{P}(Q)$ , is of dimension 3 over  $\mathbb{k}$ . It is generated by two idempotents  $e_1, e_2$  and an element a subject to relations  $ae_1 = e_2a = a$ ,  $e_1^2 = e_1$ ,  $e_2^2 = e_2$  and  $ae_2 = e_1$  $e_1 a = a^2 = 0.$ 

**Remark.** Notice that we have a natural bijection between simple roots  $E_1 =$ 

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, E_2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \text{ and simple objects in } Rep(Q).$$



Let  $U_q(\mathfrak{g})$  be the quantized enveloping algebra with  $\mathfrak{g}$  the Lie algebra associated to the Dynkin diagram formed by Q. We denote the simple roots of  $\mathfrak{g}$  by  $E_i$  and simple representations of Q by  $\{S_i\}_{i\in Q_0}$ .

The following result was obtained by Ringel and Green.

**Theorem.** Let  $\mathbb{k}$  be a finite field and  $v = \sqrt{|\mathbb{k}|}$ . There is an embedding of algebras  $\varphi : U_v(\mathfrak{n}_+) \hookrightarrow \mathcal{H}(Rep_{\mathbb{k}}(Q))$  with  $\varphi(E_i) = [S_i]$  (here  $\mathfrak{n}_+$  is the standard maximal nilpotent subalgebra in  $\mathfrak{g}$ ).

Let C = R-mod be a category of finite-dimensional left modules over a fixed finite-dimensional, associative  $\mathbb{C}$ -algebra R. There is a way to associate a Hall algebra  $\mathcal{H}(C)$  to C. The construction was sketched by Kapranov and Vasserot and later given in detail by Joyce. Notice that if Q has no oriented cycles, then its path algebra  $\mathcal{P}(Q)$  has the required property, therefore, we can associate a Hall algebra to the category of finite-dimensional left modules over this algebra. The latter is equivalent to Rep(Q).

**Theorem.** There is an embedding of algebras  $\varphi: U(\mathfrak{n}_+) \hookrightarrow \mathcal{H}(Rep_{\mathbb{C}}(Q))$ .





## McKay correspondence

Let  $G \subset GL_n(\mathbb{C})$  be a finite subgroup and consider the affine variety  $X = \mathbb{C}^n/G := Spec(\mathbb{C}[x_1, x_2, \dots, x_n])^G$ . We are interested in examples with the following properties

- 1. X has an isolated singularity at 0;
- 2. there exists a projective resolution  $\pi: Y \to X$
- 3. there is a bijection

{irr. comp. of 
$$\pi^{-1}(0)$$
}  $\stackrel{1:1}{\longleftrightarrow}$  { $\rho \in \operatorname{Irr}(G) \setminus \operatorname{triv}$ }



A good candidate for such a resolution Y is the G-Hilbert scheme G-Hilb( $\mathbb{C}^n$ ).

**Definition.** A cluster  $\mathcal{Z} \subset \mathbb{C}^n$  is a zero-dimensional subscheme and a **G**-cluster is a G-invariant cluster, s.t.  $H^0(\mathcal{O}_{\mathcal{Z}}) \simeq \mathcal{R}$  (the regular representation of G). The **G-Hilbert scheme** (G-Hilb( $\mathbb{C}^n$ )) is the fine moduli space parameterizing G-clusters.

**Example.** Let  $G = \mathbb{Z}_r$  be embedded into  $SL_2(\mathbb{C})$  via

$$\varphi: \mathbb{Z}_r \hookrightarrow SL_2(\mathbb{C}), \ \varphi(1) = \begin{pmatrix} \zeta & 0 \\ 0 & \zeta^{-1} \end{pmatrix} \text{ with } \zeta = e^{\frac{2\pi i}{r}}.$$

Then  $X = Spec(\mathbb{C}[x,y])^G \simeq \mathbb{C}[u,v,w]/(uv-w^r)$  with  $u = x^r, y = v^r, w = xy$ .

Using the definition of G-Hilb, we get

$$Y := G - \operatorname{Hilb}(\mathbb{C}^2) = \{ I_{\mathcal{Z}} \subset \mathbb{C}[x, y] \mid H^0(\mathcal{O}(\mathcal{Z})) = \mathbb{C}[x, y] / I_{\mathcal{Z}} \simeq \mathcal{R} \},$$

where 
$$\mathcal{R} \simeq \bigoplus_{i=0}^n \rho_i$$
 for  $\rho_i : \mathbb{Z}_r \to \mathbb{C}^*$ ,  $\rho_i(1) = \zeta^i$ .

**Fact.** Y is smooth and the map  $\pi: Y \to X$  given by  $\pi(I_{\mathbb{Z}}) = supp(I_{\mathbb{Z}})$  is a projective resolution. Moreover, X has an isolated singularity at the origin. The central fiber is

$$\pi^{-1}(0) = \bigcup_{j=1}^{r-1} I_{\lambda_j, \mu_j}$$

with 
$$I_{\lambda_j,\mu_j} = \langle \lambda_j x^j - \mu_j y^{r-j}, xy, x^{j+1} \rangle \simeq \mathbb{P}^1 = [\lambda_j : \mu_j].$$

#### **Boris Tsvelikhovskiy**



**Remark.** 
$$I_{\lambda_j,\mu_j} \cap I_{\lambda_k,\mu_k} = \begin{cases} pt, & |k-j| = 1 \\ \varnothing & otherwise. \end{cases}$$



dual

 $\pi^{-1}(0)$ , type A<sub>4</sub> Kleinian singularity



Dynkin diagram A<sub>4</sub>

**Fact.** Let  $G \subset SL_2(\mathbb{C})$  be a finite subgroup,  $\pi : G \operatorname{-}Hilb(\mathbb{C}^2) \to X$  the crepant projective resolution. Then

- 1. the number of irreducible components  $(E_i)$  of  $\pi^{-1}(0)$  coincides with the number of nontrivial irreps of G;
- 2. the graph, dual to the intersection graph of  $E_i$ 's is the Dynkin diagram (subgraph of McKay quiver Q = (G, V)), in particular, the Cartan matrix is the negative of the intersection matrix (with entries  $E_{ij} := E_i \cdot E_j$ ):

Example. Type A
$$C_{n} = \begin{pmatrix} 2 & -1 & 0 & 0 & \dots & 0 \\ -1 & 2 & -1 & 0 & \dots & 0 \\ 0 & -1 & 2 & -1 & \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & -1 & 2 & -1 \\ 0 & 0 & \dots & 0 & -1 & 2 \end{pmatrix} \text{ and } E_{n} = \begin{pmatrix} -2 & 1 & 0 & 0 & \dots & 0 \\ 1 & -2 & 1 & 0 & \dots & 0 \\ 0 & 1 & -2 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & 1 & -2 & 1 \\ 0 & 0 & \dots & 0 & 1 & -2 \end{pmatrix}$$

## McKay Quiver

**Definition.** Let  $G \subset GL(V)$  be a finite abelian subgroup. The McKay quiver Q(G,V) is the graph given by the following

$$\{vertices\ of\ Q\} \stackrel{1:1}{\longleftrightarrow} \{irreps\ of\ G\}$$

$$\#\{edges\ i \to j\} = dim(Hom_G(\rho_i \otimes V, \rho_j))$$

A representation of Q is an additional collection of data: assign a vector space  $V_{\rho}$  of dimension  $dim(\rho) = 1$  to every vertex (according to the irrep  $\rho$  it is associated to) and a linear map (number)  $x_{ij} \in Hom(V_{\rho_i}, V_{\rho_j})$  to every edge  $i \to j$  subject to the relations

$$\langle x_{jk}x_{ij} = x_{kj}x_{ik} \rangle.$$



**Remark.** Representations of G are one-dimensional and correspond to characters of G:

$$char(G) := \{ \chi : G \to \mathbb{C}^* \}.$$

In particular, as a representation of G, we have  $\mathbb{C}^n = \bigoplus_{i=1}^n \mathbb{C}\chi_i =: \bigoplus_{i=1}^n \mathbb{C}e_i$  and let  $x_1, x_2, \ldots, x_n \in (\mathbb{C}^n)^*$  be the dual basis to  $\{e_1, e_2, \ldots, e_n\}$  with  $R = \mathbb{C}[x_1, x_2, \ldots, x_n]$  the coordinate ring of  $\mathbb{C}^n$ . The chain of isomorphisms  $Hom_G(\chi_k \otimes \mathbb{C}^n, \chi_\ell) \simeq Hom_G(\chi_k \otimes \bigoplus_{i=1}^n \mathbb{C}e_i, \chi_\ell) \simeq \bigoplus_{i=1}^n Hom_G(\chi_k \otimes \mathbb{C}e_i, \chi_\ell)$  provides a natural identification of the maps assigned to the arrows in the McKay quiver  $Q(G, \mathbb{C}^n)$  with multiplication by  $x_i$ 's and, hence, impose the relations corresponding to commutation of the latter that we imposed on the previous slide.

### Modern formulation of McKay correspondence

Let  $Coh_G(\mathbb{C}^n)$  be the category of G-equivariant coherent sheaves on  $\mathbb{C}^n$ , and Coh(Y) be the category of coherent sheaves on Y. The McKay correspondence is the derived equivalence

$$\Psi: D^b(Coh_G(\mathbb{C}^n)) \to D^b(Coh(Y))$$

Any finite-dimensional representation V of G gives rise to two equivariant sheaves on  $\mathbb{C}^n$ : the skyscraper sheaf  $V^0 = V \otimes_{\mathbb{C}} \mathcal{O}_0$ , whose fiber at 0 is V and all the other fibers vanish, and the locally free sheaf  $V = V \otimes_{\mathbb{C}} \mathcal{O}_{\mathbb{C}^n}$ .

Remark. There is an equivalence of abelian categories

$$\Theta: Rep(Q(G, \mathbb{C}^n), \mathcal{R}) \simeq Coh_G(\mathbb{C}^n).$$



### Known results

The McKay correspondence holds in the following cases:

- 1.  $G \subset SL_2(\mathbb{C})$ , any G (KV '98)
- 2.  $G \subset SL_3(\mathbb{C})$ , any  $G, Y = G Hilb(\mathbb{C}^3)$  (BKR '01)
- 3.  $G \subset SL_3(\mathbb{C})$ , any abelian G (CI '04)
- 4.  $G \subset SP_{2n}(\mathbb{C})$ , Y is a crepant symplectic resolution (BK '04)
- 5.  $G \subset SL_n(\mathbb{C})$ , any abelian G, Y is a projective crepant symplectic resolution (Kawamata)



A natural question: what are the images of  $\widetilde{\rho}$  and  $\rho^0$  ( $\rho \in \operatorname{Irr}(G) \backslash triv$ ) under the equivalence?

- 1.  $\Psi(\tilde{\rho})$  is a vector bundle of dimension  $\dim(\rho)$  and is called a tautological or GSp-V sheaf (after Gonzales-Sprinberg and Verdier).
- 2. Relatively little is known about  $\Psi(\rho^0)$ .

The following results are due to Kapranov, Vasserot and Logvinenko.

- **Theorem.** 1. Let  $G \subset SL_2(\mathbb{C})$  be a finite subgroup and  $\rho \in Irr(G) \setminus triv$ . Then  $\Psi(\rho^0) \simeq \mathcal{O}_{\mathbb{P}^1_{\rho}}(-1)[1]$ .
  - 2. Let  $G \subset SL_3(\mathbb{C})$  be a finite abelian subgroup, s. t.  $X = \mathbb{C}^3/G$  has an isolated singularity at the origin. Then for any  $\rho \in Irr(G) \setminus triv$ , the object  $\Psi(\rho^0) \in D^b(Coh(Y))$  is pure (here  $Y = G Hilb(\mathbb{C}^3)$  and an object is called **pure** provided all cohomology groups, except one, vanish).

**Remark.** The KV result gives a natural way to associate nontrivial irreps with irreducible components of the central fiber (this is consistent with the correspondence that we established earlier).



Suppose  $G \subset SL_3(\mathbb{C})$  satisfies the following assumptions:

- 1. the McKay quiver  $Q(G, \mathbb{C}^3)$  contains a subquiver Q' (without oriented cycles) with  $\mathcal{R} \cap \mathcal{P}_{Q'} = 0$ ;
- 2.  $\Psi$  sends the skyscraper sheaves  $\chi^! \in Coh_G(\mathbb{C}^n)$ , corresponding to the simple representations in  $Rep(Q(G,\mathbb{C}^3),\mathcal{R})$  supported at the vertices of Q', to pure sheaves concentrated in the same degree.

Kapranov and Vasserot have also observed that if  $C_1$  and  $C_2$  are  $\mathbb{C}$ -linear finitary abelian categories, there is a derived equivalence  $\Psi: D^b(C_1) \to D^b(C_2)$  and a collection of objects  $\{a_1, \ldots, a_n\}$  in  $C_1$ , s.t.  $\Psi(a_i)$  are all pure and concentrated in the same degree, then the Hall algebra generated by the objects  $\{a_1, \ldots, a_n\}$  is isomorphic to the Hall algebra generated by their images  $\{\Psi(a_1), \ldots, \Psi(a_n)\}$ .





Let  $\mathcal{H}\langle\{\Psi(\chi_i^!)\}_{i\in Q_0'}\rangle$  be the Hall algebra generated by the images of sheaves corresponding to simple representations of Q' under  $\Psi$  and  $\mathfrak{n}_+\subset\mathfrak{g}_{Q'}$  stand for the corresponding nilpotent subalgebra of  $\mathfrak{g}_{Q'}$ . It follows from the discussion above that one has an isomorphism of algebras:

$$\Theta: U(\mathfrak{n}_+) \to \mathcal{H}\langle \{\Psi(\chi_i^!)\}_{i \in Q_0'}\rangle.$$

In [2] I have found an infinite collection of cyclic finite abelian subgroups of  $SL_3(\mathbb{C})$  satisfying the aforementioned conditions for each simply laced Dynkin diagram Q' of affine type except  $\widetilde{D}_4$ . If you would like to learn more about Hall algebras, [1] is an excellent place to start!

### References

- [1] O. Schiffmann, Lectures on Hall algebras, Geometric methods in representation theory. II, Sémin. Congr., vol. 24, Soc. Math. France, Paris, 2012, pp. 1–141 (English, with English and French summaries).
- [2] B. Tsvelikhovskiy, The universe inside Hall algebras of coherent sheaves on toric resolutions, arXiv:2201.07847v2 (2022).



