The L^p-Boundedness of the Dyadic Martingale Square Function

Abstract: In this talk we will establish the following Burkholder-type inequality:

$$C_{p,n}^{-1} \|f\|_{L^{p}(\mathbb{R}^{n})} \leq \left\| \left(\sum_{k \in \mathbb{Z}} |D_{k}(f)|^{2} \right)^{1/2} \right\|_{L^{p}(\mathbb{R}^{n})} \leq C_{p,n} \|f\|_{L^{p}(\mathbb{R}^{n})},$$

for every $f \in L^p(\mathbb{R}^n)$, where $p \in (1, \infty)$ and D_k is the dyadic martingale difference operator at scale $k \in \mathbb{Z}$. The proof relies on the orthogonality of Rademacher functions through the use of Khintchine's inequalities, and will be in large part, self-contained.