Logarithmically Improved Extension Criteria Involving the Pressure for the Navier-Stokes Equations in \mathbb{R}^3

Tatsuki Yamamoto
Waseda University, Japan
	tatsu-yamamoto@akane.waseda.jp

Abstract

In the talk, several new extension criteria involving the pressure for the non-stationary 3D Navier-Stokes equations are presented. We shall show that, for example, if a strong solution u on $[0, T)$ and the pressure π associated with u satisfy the condition

$$\int_0^T \frac{\|\pi(\tau)\|_{B^{-\frac{3}{p}}_\infty}^{\frac{2}{r}}}{\log(e + \|u(\tau)\|_{H^s})} d\tau < \infty$$

for $2 \leq p \leq \infty$, then there is $T' > T$ such that u can be continued to the strong solution on $[0, T')$. Our method of the proof is based on the interpolation inequality in Besov spaces due to Gérard-Meyer-Oru [1]. This is a joint work with Dr. Ryo Kanamaru.

References
