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Abstract. In a recent paper in this Journal, [2], the authors discuss a relax-

ation oscillator which apparently has not been put in standard Lienard form.
They use geometric perturbation theory to analyze this model. Their main

result is the existence and uniqueness of a periodic solution for small values
of two parameters, δ and ε, and the behavior of this solution as δ and ε tend

to zero. We show how standard ode methods can be used to give shorter and

more direct proofs of these results. Along the way we give a new proof of a
more general result.

1. Introduction

Nonlinear systems of two differential equations with unique periodic solutions
have been widely studied. One of the earliest and most important of these is van
der Pol’s equation, which may be written in system form as

(1.1)
u′ = −εv

v′ = u−
(

v3

3 − v
)

.

It is well known that for any ε > 0 there is a unique nontrivial periodic solution.
More generally, much work has been done on what are called Lienard equations,
which we may write as

u′ = −f (v)

v′ = u− g (v) .

Starting with Lienard, various authors gave conditions on f and g which ensure
that this system also has a unique periodic solution. See [6] for a discussion and
references. All the proofs of uniqueness which we have seen for systems in this
generality have used “energy” functions of some kind, perhaps in complicated ways,
which means that considerable ingenuity may be necessary to use these methods
for more general systems.

In this paper we will consider the case of “relaxation oscillations”, which are seen
in (1.1) when ε is small. Such systems have a parameter, say ε, such that if ε = 0
then one of the equations is degenerate in some way. We will not attempt to give a
general definition of relaxation oscillations. The motivation for this paper was the
work [2], where a system which to our knowledge has not been put in Lienard form
was studied using the methods of geometric perturbation theory. This system was
considered earlier, for example in [7], as a model of glycolytic oscillations.

The geometry of the phase plane for this model is similar to that of (1.1). This
means that it is easy to give a geometric argument to show the existence of a
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periodic solution, assuming only that the equilibrium point is unstable. However
proving uniqueness and stability of this solution is more challenging.

Our first result, Theorem 1, is for a class of relaxation oscillators which includes
the one studied in ([2]). The result is probably not new; see Remark 2 below
for some citations of related work. However our proof of uniqueness and stability
is simpler than others we have seen, because we don’t require either geometric
perturbation theory or asymptotic expansions around certain turning points in the
problem as described below.

In the case studied in [2] there is a second small parameter, “δ”. Following the
proof of Theorem 1 we have a short section showing that it applies to the model
of [2] for δ in the specific range (0, 1√

8
). For each δ in this range there is a unique

periodic solution for sufficiently small ε. But more interestingly, in Theorem 3.1 the
authors of [2] have been able to show that the range of existence and uniqueness
in the (ε, δ) plane includes a region of the form 0 < ε < ε̃0δ, for small δ, thus
estimating ε in terms of δ.

The methods used in [2] require a detailed examination of the three dimensional
system obtained by adding δ as a third dependent variable, with its own differential
equation, δ′ = 0. The result then depends on several rescaling regimes and “blow-
up” methods of some complexity. The principle goal of this paper is to give a shorter
and more direct proof of the main result in [2], Theorem 3.1, using standard ode
methods in the plane.1 Theorem 2 below restates the result in slightly different
terminology, and its proof occupies the last half of this paper.

2. A general result

The equations we consider are of the form

(2.1)
a′ = εA (a, b)
b′ = B (a, b) .

We make the following five assumptions on A and B.

C1: These functions are continuous with continuous second partial derivatives
in a rectangle R = {(a, b) | c1 ≤ a ≤ c2, d1 ≤ b ≤ d2} .

C2: The set Γ = {(a, b) in R | B (a, b) = 0} is an S-shaped curve with two
turning points. More precisely, this set is the graph of a continuous function
a = γ (b) defined on [d1, d2] with γ (d1) = c1 and γ (d2) = c2. The function γ
has exactly one local maximum, at a point (b1, a2), and one local minimum,
at (b2,a1) , where c1 < a1 < a2 < c2 and d1 < b1 < b2 < d2. (See Figure
1.)

C3: ∂A
∂a ≤ 0, ∂A

∂b < 0, and ∂B
∂a > 0 in the interior of R.

C4: Let Γ1, Γ2, and Γ3 be the “branches” of Γ in [d1, b1] , [b1, b2] , and [b2, d2],
respectively. Then:

(i) ∂B
∂b < 0 on Γ1 and Γ3 and ∂B

∂b > 0 on Γ2, except at the turning points
(ii)∂2B

∂b2 (a2, b1) > 0 and ∂2B
∂b2 (a1, b2) < 0.

1We thank a referee for calling our attention to an omission in what we originally proved, and

for some helpful citations and other comments.
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Conditions C1, C3 and C4 imply that the function γ in C2 has continuous
first and second derivatives which satisfy

(2.2)
γ′ > 0 in [d1, b1), γ′ < 0 in (b1, b2) ,

γ′ > 0 in (b2, d2], γ′′ (b1) < 0, and γ′′ (b2) > 0.

C5: The system (2.1) has a unique equilibrium point in R. This equilibrium
point, say (a∗, b∗) , is on the interior of Γ2.

Conditions C2 and C3 imply that on a vertical line in R which crosses the interior
of all three branches, B is positive below Γ1 and changes sign at each crossing of Γ.

Theorem 1. Under conditions C1-C5 there is an ε0 > 0 such that if 0 < ε < ε0,
then the system (2.1) has a unique periodic solution in R. This solution is asymp-
totically orbitally stable. As ε → 0 the orbit of the periodic solution approaches the
piecewise smooth curve, or ”singular solution”, shown below in Figure 1.

The proof of this result will be given in the following sections.

Remark 1. These conditions are a generalization of the examples (1.1) and (3.1).
The latter, analyzed in section 3, was studied in [2], and in the proof that follows
the reader may find it helpful to consider this particular case.

Remark 2. A result of this type appears in [5]. The proof there is complicated be-
cause it requires use of matched asymptotic expansions. In [2] a result like Theorem
1 for the case of the system (3.1) is stated, and for proof an earlier paper, [3] is
cited. The proof in [3] is very short but relies heavily on Theorem 2.1 in [4]. The
proof of that result requires a substantial amount of geometric perturbation theory
and takes 12 pages. We are not aware of a proof of a result like Theorem 1 which
is as direct and short as ours.

We consider the initial value problem consisting of (2.1) with initial conditions

(2.3) a (0) = a∗, b (0) = β

where a∗ is introduced in condition C5, and from now on we will assume that (a∗, β)
is in R and below Γ1. For such a β, let

pβ (t) = (a (t) , b (t)) = (a (t, β) , b (t, β))

be the unique solution of (2.1) and (2.3). Standard geometric arguments (briefly
outlined in Section 2.1 below) ensure that for sufficiently small ε > 0 there is at
least one β1 such that pβ1 is periodic.2 Also, if (a∗, β∗) is on Γ1, then β1 < β∗,
and if β̄ is the smallest such β1 then

∣∣β̄ − β∗
∣∣ → 0 as ε → 0. Our goal then is to

prove in Section 2.2 that for sufficiently small ε there is a unique β1 such that pβ1

is periodic.

2.1. Proof of existence of a periodic solution, and its limiting orbit as
ε → 0. The proof that for a fixed sufficiently small ε there is at least one solution
is readily constructed by considering Figure 1, consulting standard references such
as [5] if necessary. To discuss the limiting behavior of all periodic solutions, an
argument is needed to exclude the existence of a small periodic orbit around (a∗, b∗) .
This is provided by the following lemma, the proof of which will also be useful when
we consider the system in [2].

2For van der Pol’s equation, R can be as large as desired, which implies that existence of a
periodic solution can be proved for any ε ∈ (0, ε1) , where ε1 is given in C5. But this, and

uniqueness, are well known in this case.
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Lemma 1. For sufficiently small ε, (a∗, b∗) is an unstable node. The matrix

M =
(

εAa εAb

Ba Bb

)
|(a∗,b∗)

has eigenvalues λ2 > λ1 > 0 where λ1 = O (ε) and λ2 = Bb (a∗, b∗)+O (ε) as ε → 0.
An eigenvector v =(v1, v2) corresponding to λ2 has slope m2 ≤ − c

ε for some c > 0
independent of ε. Assume that v2 < 0 and let ∆ε denote the unique trajectory of
(2.1) which is tangent to v at (a∗, b∗) . Then for sufficiently small ε, solutions (a, b)
on ∆ε have a′ > 0, b′ < 0 as long as b ≥ b1 and continue with a′ > 0, b′ < 0 until
they cross the branch Γ1 of Γ.

The trajectory ∆ε is pictured for two values of ε in Figure 1. The main content
of this lemma is that for small ε this trajectory continues downward to cross Γ1,
(the red trajectory in Figure 1), instead of bending right to cross Γ2 (the green
trajectory).

Proof. The claims in the first three sentences result from routine calculations using
the properties C3 and C4 (i). To verify the last sentence we first choose an ε1

small enough that (a∗, b∗) is an unstable node. The eigenvectors necessarily have
negative slope, and the one corresponding to λ2 has the steepest slope. However if
ε1 is not sufficiently small, the trajectory ∆ε1 will first cross Γ2 rather than Γ1.

Note that
∂

∂ε

(
B (a, b)
εA (a, b)

)
> 0

whenever B < 0 and A > 0. Further, d
dεm2 > 0. It follows that for 0 < ε < ε1,

the trajectory ∆ε lies below ∆ε1 as long as b is decreasing and a is increasing on
∆ε1 . Suppose that a∗ < ā < a2 and the line a = ā is to the left of where ∆ε1 first
intersects Γ2, if this intersection occurs while a′ > 0.

In the set where a∗ ≤ a ≤ ā, b ≥ b1, and (a, b) is below ∆ε1 ,
B
εA → −∞ as

ε → 0+, uniformly. Hence for sufficiently small ε the trajectory ∆ε descends to
below b = b1 before a = ā. The rest of the lemma follows from the phase plane. �

For sufficiently small ε the trajectory ∆ε just described blocks any possible pe-
riodic solution from crossing Γ2 to the right of b∗, and so a phase plane argument
shows that there are no small periodic solutions. The statement about limiting
behavior in the theorem follows because for small ε either p (t) is close to Γ or else
p′ (t) is nearly vertical. On or near Γ1, A > 0, while on or near Γ3, A < 0.

For use below suppose that for each small η > 0,

Λη =
{

(a, b) ∈ R | min
(x,y)∈Γ

‖(a, b)− (x, y)‖ < η

}
,

where we use the euclidean norm on R2. We require that

(2.4) η < min{a1 − c1, c2 − a2,
1
κ
},

where κ is the maximum curvature of Γ.3 This ensures that if the boundary of Λη is
∂Λη, then ∂Λη consists of two smooth curves, one on either side of Γ. (See Figure 2.)
The limiting argument above implies that for small ε (depending on η), a periodic
trajectory can be considered to start in Λη with a (0) = a∗ and b (0) < β∗.

3Our hypotheses imply that κ is finite.
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Figure 1. blackcurves:nullclines; red: γε; green: γε1 . The singular
solution consists of the two vertical blue lines and the upper and
lower curves which connect them. The red and green trajectories
are described in the text.

2.2. Proof of uniqueness of the periodic solution. Using the same notation
as that introduced just after (2.3), the spiralling behavior seen from phase plane
analysis shows that for each (α∗, β) below Γ1 there is a unique first τ = τ (β) > 0
such that

(2.5) a (τ, β) = a∗ and b (τ, β) < β∗.

A solution is periodic only if

(2.6) b (τ (β) , β) = β.

For small ε, any β for which (2.6) holds must be close to β∗. Let

(2.7) φ (β) = b (τ (β) , β)− β.

Uniqueness and asymptotic orbital stability follow by showing that there is an ε0

such that if 0 < ε < ε0 and pβ1 is periodic, then φ′ (β1) < 0.
The criterion for this is well-known. The periodic solution (a (t, β1) , b (t, β1)) is

asymptotically orbitally stable if

(2.8) I (β1) :=
∫ τ(β1)

0

Bb (a (s, β1) , b (s, β1)) ds < 0.

(See for example [1].) If every periodic solution is asymptotically orbitally stable,
then there is only one periodic solution.

We have the following key lemma:

Lemma 2. Suppose that conditions C1-C5 are satisfied. Then there are positive
numbers k1, k2, ν, and ε2 such that for any ε with 0 < ε < ε2, and any β1 in
(0, β∗) such that pβ1 is periodic,

k1

ε
< τ (β1) <

k2

ε

I (β1) < −ν

ε
.

Proof. The delicate part of the analysis is to consider the parts of the periodic
trajectory which are close to the turning points (a1, b2) and (a2, b1). Indeed, these
play an important role in all detailed studies of relaxation oscillations, such as [2]
and [5]. In those papers, as in others, the equations are rescaled in these regions
and either geometric perturbation theory or matched asymptotic analysis is used.
In proving Theorem 1 we use no rescaling.
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We will carry out this part of our analysis around the turning point (a2, b1) , the
other turning point being similar.

Figure 2. The region Λη between the two thin curves cuts
through the disk D with Bb < 0 below the graph of f . Sη is
the compact region between the vertical line and the right-most
section of ∂Λη. A(a, b) > 0 in this region.

Recall the definitions of Γ and Λη in Section 2.1. Conditions C1-C5 imply that
Bb (a2, b1) = 0, and that in some disk D centered at (a2, b1) the set of all points
where Bb = 0 is a smooth curve b = f (a) which intersects the boundary of D at
exactly two points. (See Figure 2.)

The graph of f divides D into upper and lower parts. Because the tangent to
Γ is vertical at (a2, b1) and Bbb (a2, b1) > 0, the subset of D where Bb < 0 is the
lower part of D, and also we can choose the diameter of D small enough to ensure
that Bb < 0 on D ∩ Γ ∩ {b < b1} . (See Figure 2.) In addition we require that
diam(D) < a2 − a∗. Note that D and the function f do not depend on η or ε.
For small η, any trajectory in Λη below Γ1 passes through D, and along such a
trajectory Bb < 0 until after a = a2.

For each small η, let Sη be the closure of the part of Λη to the right of a = a2.
There is an η1 such that if 0 < η ≤ η1 then Sη lies completely below the curve
A (a, b) = 0, and so A (a, b) > 0 in the compact set Sη1 . We also require that η1

satisfy (2.4). Let
A1 = min

(a,b)∈Sη1

A (a, b) .

The result about limiting behavior implies that for each η ∈ (0, η1) we can choose
an ε2 (η) such that if 0 < ε < ε2 (η) then any periodic solution with a (0) = a∗,
b (0) = β1 < β∗ remains in Λη until after the point where it crosses b = b1. Let the
entire orbit of the solution be Q, and let Q1 be the part of the orbit before it enters
D. Let Q2 be the part of the orbit between the boundary of D and a = a2. Note
that Bb < 0 on Q2, so that ∫

Q2

Bbds < 0.

As long after leaving Q2 as (a (t) , b (t)) is in Sη, a′ (t) ≥ εA1. As a result, the
solution pβ1spends a time of at most η

εA1
in Sη, and when it exits Sη, to the right

of a = a2 and above b = b1, it also exits Λη. For small ε the slope of p′β1
is then

large and positive until pβ1 crosses A = 0, and then it is large and negative until
pβ1 is close to Γ3 and the solution re-enters Λη.
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Let Q3 be the part of the orbit of pβ1 which is in Sη. If

M = max
(a,b)∈R

Bb (a, b) ,

then ∫
Q3

Bbds ≤ M
η

εA1
.

Recall that Bb is negative on the relative interior of Γ1. Hence, Bb is bounded
above by a negative number on that part of Γ1 outside of D. It follows that there
is an η2 ∈ (0, η1) such that Bb < 0 on

∆η2 = Λη2 ∩D′ ∩ {b ≤ b1}
where D′ is the closure of the complement of the disk D. Recalling that D does not
depend on η and Bb < 0 on Γ1\D, we see that

− lim
η→0

sup
∆η

Bb

is positive. Hence we can find an η3 ∈ (0, η2) and a ν > 0 such that if 0 < η < η3,
(a, b) ∈ ∆η, and A2 = maxR A, then

−Bb (a, b)
a2 − a∗ − diam (D)

A2
> M

η

A1
+ ν.

Suppose that 0 < η < η3. Then for sufficiently small ε any periodic solution
spends a time of at least a2−a∗−diam(D)

εA2
in Q1, and∫

Q1+Q2+Q3

Bbds ≤ −ν

ε
.

A similar argument is applied along the entire top branch Γ3, where also dB
∂b < 0,

and A < 0. Along the part of the solution in Λη near Γ1 and to the left of a∗ another
large negative contribution is made to I (β1) =

∫
Q

Bbds. We may have to choose
smaller ν, η3, and ε2 (η) . Having fixed η, we saw earlier that within one period the
solution spends a bounded time (independent of ε) outside of Λη, which implies
that

I (β1) < −2
ν

ε
+ H

for some constant H which is independent of ε and β1.
The lower bound on τ (β1) in the statement of the lemma has also been estab-

lished. An upper bound follows easily since |A| is bounded below by a positive
number on Λη1 ∩ (Γ1 ∪ Γ3) . This completes the proofs of Lemma 2 and Theorem
1. �

3. The model of Kosiuk and Szmolyan

3.1. Application of Theorem 1. In [2] the functions εA and B contain additional
parameters µ and δ, and are given by

(3.1)
εA (a, b) = ε

(
µδ2 − (1− µ) a2b2

)
B (a, b) = a2b2

(
1 + δ2 − b

)
+ δ2

(
δ2 − b

)
The parameter µ lies in (0, 1) . We will show that properties C1-C5 can then be
verified for the A and B given above provided that 0 < δ < 1√

8
and

(3.2) µ− 2µ2 − δ2 > 0.
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In particular, this can only be true if µ < 1
2 .

For δ ∈
(
0, 1√

8

)
let c1 = 0, c2 =

√
1− δ2, d1 = δ2 and d2 = 1. It follows that C1

is satisfied and that if

(3.3) a2 = γ (b)2 =
δ2
(
b− δ2

)
b2 (1 + δ2 − b)

then Γ ⊂ R, γ (d1) = c1 and γ (d2) = c2, as in C2. We will check the rest of
C2 below. The inequalities in C3 and C4 are either immediately obvious or follow
because in this model ∂B

∂b is quadratic in b and negative when b ≤ 0. We need no
further condition on δ to obtain a unique periodic solution for small ε.

In [2] there are results about the behavior of the solution as ε and δ → 0. In order
to prove their entire main theorem, we must discuss this aspect of the problem, but
first we complete our discussion of C1-C5. To check the remainder of C2 it must be
shown that for 0 < δ < 1√

8
the set of solutions to B = 0 is an S - shaped curve. We

look for turning points by differentiating B (a, b) = 0 with respect to b implicitly
and setting da

db = 0. This gives

(3.4) a2
(
2b
(
1 + δ2

)
− 3b2

)
= δ2.

Combining (3.3) and (3.4) gives

(3.5) 2b2 −
(
1 + 4δ2

)
b + 2δ4 + 2δ2 = 0.

There will be two turning points if(
1 + 4δ2

)2 − 16
(
δ4 + δ2

)
> 0,

which is true if δ2 < 1
8 , as mentioned before.

To check C5 it must be shown that there is a unique equilibrium point and it lies
on the middle branch Γ2 of Γ, where γ′ < 0. (This will ensure that for small ε the
equilibrium point is an unstable node or spiral.) The equilibrium point is found to
be

(3.6) (a∗, b∗) =
(

σδ

µ + δ2
, µ + δ2

)
,

where

(3.7) σ =
√

µ

1− µ
< 1.

The middle branch is characterized by having Bb > 0, and requiring that Bb (a∗, b∗) >
0 results in the inequality (3.2).

Finally we consider the case of small δ, and we find that the solutions of (3.5)
are

(3.8) b1 = 2δ2 + O
(
δ4
)

and

(3.9) b2 =
1
2

+ O
(
δ2
)

as δ → 0. From this and (3.3) it follows that

a1 = 2δ + O
(
δ3
)

(3.10)

a2 =
1
2

+
1
4
δ2 + O

(
δ4
)

(3.11)
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as δ → 0. In fact, from (3.3) we see that limδ→0 γ (b) = 0 uniformly for b in
any closed subinterval of (0, 1). Also, (3.3) implies that b (1− b) → 0 as δ → 0
uniformly for a in any compact subinterval of

(
0, 1

2

)
, and this, coupled with (3.8)-

(3.11), implies that the singular solution of (3.1) tends as δ → 0 to the boundary
C0 of the rectangle 0 ≤ a ≤ 1

2 , 0 ≤ b ≤ 1.

3.2. A more precise estimate. The goal here is to complete the proof of Theorem
3.1 of [2] by showing that for the system (3.1), the ε0 found in Theorem 1 can be
chosen to depend linearly on δ, for small δ. For this it is convenient to follow [2]
and set

(3.12) ε = ε̃δ

in (3.1). We therefore consider the system

(3.13)
a′ = ε̃δ

(
µδ2 − (1− µ) a2b2

)
b′ = a2b2

(
1 + δ2 − b

)
+ δ2

(
δ2 − b

)
.

Theorem 2. For each µ with 0 < µ < 1
2 there are positive numbers ε̃0 and δ0

such that if 0 < ε̃ < ε̃0 and 0 < δ < δ0, then the system (3.13) has a unique
periodic solution and this solution is asymptotically orbitally stable. Further, ε̃0

can be chosen so that for each η > 0 there is a δ0 such that if 0 < δ < δ0 then the
orbit P of the periodic solution satisfies

(3.14) dist(P,C0) < η,

where
dist(P,C0) = min

(p1,p2)∈P,(c1,c2)∈C0

max {|p1 − c1| , |p2 − c2|} .

Proof. (Figure 3 may be helpful in following the argument.) A straightforward
computation shows that for any ε̃0 there is a δ0 such that if 0 < ε̃ < ε̃0 and
0 < δ < δ0, then the equilibrium point of (3.13) is an unstable node. The existence
of a periodic solution then follows from the standard phase plane argument, using
the Poincaré-Bendixson theorem.

Figure 3. The red and blue curves are nullclines. Pieces P1, .., P5

from the lower right are green, purple, green, purple, yellow. The
black curve on the left is described in the text.
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Next we must modify Lemma 1. We do this in two parts.

Lemma 3. There are ε̃0 and δ0 such that if Rε̃0,δ0 is the rectangle defined by
0 < ε̃ < ε̃0 and 0 < δ < δ0, and (ε̃, δ) ∈ Rε̃0,δ0 then (a∗, b∗) is an unstable node,
and the matrix

M =
(

ε̃δAa ε̃δAb

Ba Bb

)
|(a∗,b∗)

has eigenvalues λ2 > λ1 > 0. Also, λ1 = O (ε̃δ) and λ2 = Bb (a∗, b∗) + O (ε̃δ) as
ε̃δ → 0 within Rε̃0,δ0 . An eigenvector v =(v1, v2) corresponding to λ2 has slope
m2 ≤ − c

ε̃δ for some c > 0 independent of δ and ε̃ in Rε̃0,δ0 .

Lemma 4. Also, (ε̃0, δ0) can be chosen so that solutions (a, b) on the unique tra-
jectory ∆ε̃,δ tangent to v at (a∗, b∗) have a′ > 0, b′ < 0 as long as b ≥ 5

3δ2. Further,
b = 5

3δ2 before a = −δ log δ. From b = 5
3δ2, b continues to decrease, and a increase,

until the trajectory crosses Γ1. In particular, the orbit does not cross Γ2.

Remark 3. Any number strictly between δ2 and 2δ2 can replace 5
3δ2.

From the phase plane and (3.8) it is clear that the trajectory considered in
Lemma 4 crosses Γ1 and then continues to the right and upward at least until
a = a2, at which point b < b1. We prove these lemmas at the end of this section.

3.3. Proof of limiting behavior assuming lemmas 3 and 4. Henceforth in
this paper it will always be assumed that (ε̃, δ) ∈ Rε̃0,δ0 . Thus, a restriction on ε̃0

or δ0 is automatically a restriction on ε̃ or δ.
Since the orbit of a periodic solution must contain the equilibrium point (in its

inside as a Jordan curve), Lemmas 3 and 4 imply that for sufficiently small ε̃0 and
δ0 a closed orbit must also surround the turning point (a2, b1) , because the orbit
described in Lemma 4 blocks any possible smaller periodic solution. We can now
assume that a periodic solution p = (a, b) starts with a (0) = a2 and 0 < b (0) < b1.
From (3.11) a2 > 1

2 if δ0 is sufficiently small, and from (3.8) b1 = 2δ2 + O
(
δ4
)
, as

δ → 0. Recall that we denoted the orbit of p by P. We will divide this orbit into
five pieces, which we denote by Pi, i = 1..5.

From the phase plane we see that starting at (a (0) , b (0)) , both a and b increase
until the maximum of a, where a′ = 0. Our first piece, P1, is this segment of the
orbit. We have the following bound as a start towards the limiting behavior result.
Note that in this lemma δ0 depends on ε̃0.

Lemma 5. For each η > 0, and any ε̃0, δ0 can be chosen so that if (a, b) is a
periodic solution, then a (t) ≤ 1

2 + η for all t.

Proof. Let Λ =
{
(a, b) | a2 ≤ a, 0 ≤ b ≤ 1

2

}
. Then for small δ, B ≥ 0 in Λ, by the

definition of a2. Also note that ∂B
∂a = 2ab2

(
1 + δ2 − b

)
≥ 1

2b2 in Λ, since a2 > 1
2 .

Hence B ≥ 1
2b2 (a− a2) in Λ. Also a′ ≤ ε̃δ3µ, and so while a′ > 0 and b ≤ 1

2 ,

db

da
≥ b2 (a− a2)

2ε̃µδ3
.

Separating variables and integrating gives

(3.15) b ≥ b (0)

(
1− b (0) (a− a2)

2

4ε̃µδ3

)−1

≥ δ2

(
1− δ2 (a− a2)

2

4ε̃0µδ3

)−1
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as long as a′ > 0 and b ≤ 1
2 . But a′ = 0 at b = σδ

a . Hence (3.8) and (3.15) imply
that for any η we can choose δ0 small, while keeping ε̃0 fixed, to insure that a′ = 0
before a = 1

2 + η. This proves Lemma 5. �

Thus for sufficiently small ε̃0 and δ0, the first piece of the orbit, P1, ends at the
unique point where a′ = 0 and a2 < a < 1

2 + η. From (3.13) it is seen that at this
point, where P2 begins, b = a−1σδ.

From there b continues to increase, while a decreases. First consider (a, b) in the
range a ≥ 1

4 , say, and a−1σδ < b ≤ 1
2 . From (3.13) we find that in this region

db

da
≤ −

(
a2b− δ2

)
b + O

(
δ4
)

(1− µ) ε̃0δa2b2
≤ − c

δ

for some c independent of ε̃ or δ. We conclude that for small δ0, b = 1
2 before

a = 1
2 −

√
δ0.

In the region 1
2 ≤ b ≤ 1−

√
δ0,

0 > a′ ≥ −ε̃0δ0 (1− µ) a2

b′ ≥ 1
4
a2
√

δ0 + O
(
δ2
0

)
as δ0 → 0. It follows that as long as a ≥ 1

4 ,

db

da
≤
−a2

√
δ + O

(
δ2
)

4ε̃δ (1− µ) a2
≤ − 1

4ε̃0

√
δ0

+ O
(
δ2
0

)
as δ0 → 0, uniformly for ε̃ < ε̃0. Hence, for ε̃0 ≤ 1

2 and small δ0, b = 1−
√

δ0 before
a = 1

2 − 2
√

δ0. This is where P2 ends. For small δ0, P1 ∪ P2 lies in

(3.16)
{

(a, b) | 1
2
− 2
√

δ0 ≤ a ≤ 1
2

+ η and δ2 ≤ b ≤ 1−
√

δ0

}
.

From the end of P2, a decreases at least until a = a1. (See (3.10).) Meanwhile,
b increases until P crosses Γ3 above b = 1 −

√
δ0, and then b′ < 0 at least until

b = b1. (See (3.9). Let P3 denote the section of P from the end of P2 until b = 2
3

The relevance of b = 2
3 will be seen later.

That the orbit has the behavior just described is seen from the phase plane
(Figure 3). Since the solution is squeezed above Γ3, it follows by the algebra of
the previous section that as (ε̃0, δ0) tends to (0, 0), P3 approaches the union of the
section of line b = 1 from a = 0 to a = 1

2 and the section of the b - axis from b = 2
3

to b = 1.
Piece P4 of the orbit continues from b = 2

3 down until b = 5
3δ2, which occurs by

Lemma 4 if ε̃0 and δ0 are sufficiently small. From there, where b′ < 0, the trajectory
P first crosses a′ = 0 and then Γ1, after which a and b increase and (a, b) returns
to the starting point, where a = a2. The final piece P5 of P is that section from
b = 5

3δ2 to a = a2.
Since P4 ∪ P5 lies left of and below Γ2, the algebraic argument of the previous

section also shows that this union approaches the L - shaped path comprising the
b axis from b = 2

3 to b = 0 and the a - axis from a = 0 to a = 1
2 . This completes

the proof of the limiting behavior of the solution as δ → 0, subject to the proofs of
Lemmas 3 and 4.
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3.4. Proofs of Lemmas 3 and 4.

Proof of Lemma 3. We use (3.6) and (3.13) to conclude that the linearized matrix
at (a∗, b∗) is

M =

(
−2ε̃δ2

√
µ (1− µ)

(
µ + δ2

)
− 2ε̃µδ3

µ+δ2

2
√

µ (1− µ)
(
µ + δ2

)
δ 1−2µ

1−µ δ2 + O
(
δ4
) )

as δ → 0, uniformly for ε̃ < ε̃0. Hence, as (ε̃, δ) → (0, 0), and recalling (3.7),

λ1 + λ2 =
(

1− 2µ

1− µ
+ O (ε̃)

)
δ2 + O

(
δ4
)

= Bb (a∗, b∗) + O
(
ε̃δ2
)

+ O
(
δ4
)

λ1λ2 = ε̃µ
(
−2σ (1− 2µ) + 4

√
µ (1− µ)

)
δ4 + O

(
ε̃δ6
)
,

again uniformly in Rε̃0,δ0 . Since 0 < µ < 1
2 in our theorem, ε̃0 and δ0 can be

chosen so that the conclusions of the first two sentences of the lemma hold. Also,
an eigenvector v corresponding to λ2 satisfies

v2 =
Ba (a∗, b∗)

λ2 −Bb (a∗, b∗)
v1.

Because Aa (a∗, b∗) < 0, Bb (a∗, b∗) > 0, and ε̃δAa + Bb = λ1 + λ2, it follows that
λ2 < Bb and so the slope of v is negative and satisfies the final conclusion of the
lemma. �

Proof of Lemma 4.

Lemma 6. Suppose that 0 < b̂ < µ. Let r = 1
2 (1 + σ) . Then (ε̃0, δ0) can be chosen

so that the trajectory ∆ε̃,δ stays to the left of a = r
b∗ a∗ as long as b ≥ b̂.

Proof. For this proof it is convenient to use a scaling similar to ones used in [7] and
[2], letting τ = δ2t and

(3.17)
a (t) = δP (τ)
b (t) = Q (τ) .

Then

(3.18)
P ′ = ε̃

(
µ− (1− µ) P 2Q2

)
Q′ = P 2Q2

(
1 + δ2 −Q

)
+ δ2 −Q.

From (3.6) it is seen that the equilibrium point for this system is

(p∗, q∗) =
(

σ

µ + δ2
, µ + δ2

)
.

Note that q∗ = b∗. We consider (3.18) in the compact region 1 ≤ P ≤ r
q∗ p∗,

b̂ ≤ Q ≤ 2
3 . In that region, this system is a regular perturbation from the case

δ = 0. For δ = 0, q∗ = µ, and the argument used in the proof of Lemma 1 shows
that on the orbit ∆ε as defined in Lemma 1, for sufficiently small ε̃0, Q decreases
to Q = b̂ before P = r

q∗ p∗. The same is then true for sufficiently small δ0 (with
possibly a smaller ε̃0), and changing back to the (a, b) coordinates completes the
proof of Lemma 6. �
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Note that in contrast to the proof of Lemma 1, this argument is not valid down
to b1, because when δ = 0 in (3.18) there is no second turning point. Hence, to
complete the proof of Lemma 4 we must continue the solution from b = b̂ (to be
chosen later) to b = 5

3δ2 (where obviously we must assume that 5
3δ2 < b̂).

We will show that for sufficiently small ε̃0 and δ0, b = 5
3δ2 before a = −δ log δ.

Since b1 = 2δ2 + O
(
δ4
)

as δ → 0, a simple phase plane analysis then shows that
the solution must cross the lower branch Γ1 of the b - nullcline.

As long as a′ > 0 we can write

(3.19)
db

da
=

(
a2b
(
1 + δ2

)
− a2b2 − δ2

)
b + δ4

ε̃δ (µδ2 − (1− µ) a2b2) .

If a′ > 0 then the denominator of (3.19) is less than ε̃µδ3. For the numerator we
need to estimate a2b from the point where b = b̂. Using (3.13) we find that

(3.20)
d

dt

(
a2b
)
≤ 2ε̃δ3µab + a2δ4 +

(
−δ2 + a2b

(
1 + δ2

))
a2b.

By Lemma 6 and (3.6), if a = â when b = b̂ then a∗ < â ≤ κδ, where κ = r
µ2 σ.

Let b̂ = 1
6κ2 . Then â2b̂

(
1 + δ2

)
≤ 1

3δ2 (for δ < 1). If 5
3δ2 ≤ b ≤ b̂, then

(3.21) a2δ4 ≤ 3
5
δ2a2b.

Also it is easily seen that for small δ0, a∗ ≥ 2δ. If a ≥ 2δ then

2ε̃δ3µab ≤ ε̃µδ2a2b.

Hence, as b decreases from b̂, if a2b
(
1 + δ2

)
≤ 1

3δ2 then(
a2b
)′ ≤ (−1 +

1
3

+
3
5

+ ε̃µ

)
δ2
(
a2b
)

< 0.

Thus, a2b
(
1 + δ2

)
≤ 1

3δ2 as long as b ≥ 5
3δ2 and ε̃0µ < 1

15 .

To complete the proof of Lemma 4 we will show that b reaches 5
3δ2 before a =

−δ log δ. We now see that

b′ ≤
(
a2b
(
1 + δ2

)
− δ2

)
b + δ4

≤ −2
3
δ2b + δ4 ≤

(
−2

3
+

3
5

)
δ2b

as long as b ≥ 5
3δ2.

As we saw earlier, if a′ > 0 then a′ < ε̃µδ3, and so

db

da
≤ − 1

15ε̃µδ
b.

Integrating this inequality from â to −δ log δ and using the choice of b̂ given above
shows that we need

1
6κ2

(eκδ)
1

15ε̃µ ≤ 5
3
δ2.

This will be true for small δ0 if 15ε̃0µ < 1
2 , completing the proof of Lemma 4. �
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3.5. Uniqueness and stability. As discussed in Section 2.2, to complete the proof
of Theorem 2 we must show that ε̃0 and δ0 can also be chosen so that if (a, b) is a
periodic solution, say with period T, then∫ T

0

Bb (a (t) , b (t)) dt < 0.

Here

(3.22) Bb (a, b) = 2a2b
(
1 + δ2

)
− 3a2b2 − δ2

As before, it is always assumed that (ε̃, δ) ∈ Rε̃0,δ0 . We begin now with piece
P3, starting at b = 1 −

√
δ0, a ≥ 1

2 − 2
√

δ0. The situation is in some ways easier
than that considered in Section 2.2. Observe that Bb (a, b) < 0 if b ≥ 2

3 . Also, (3.3)
implies that if a > 2

√
δ and b ≥ 1

2 then b ≥ 1−
√

δ0 for all sufficiently small δ.
It further is seen from (3.22) that if b ≥ 1−

√
δ0 then

(3.23) Bb (a, b) = −a2 + O
(√

δ0

)
as δ → 0, uniformly in any compact subinterval of 0 < a < 1

2 . Also, our bounds on
µ, a, and b show that on P3 ∩

{
b ≥ 1−

√
δ0

}
,

(3.24) 0 > a′ > −ε̃0δ0.

Further, Bb is negative on all of P3.
Since a′ < 0 on P3, and so the inverse t (a) of a exists,∫

P3

Bbdt :=
∫ t1

t0

Bb (a (t) , b (t)) dt =
∫

P3

Bb

a′
da :=

∫ a(t1)

a(t0)

Bb (a, b (t (a)))
a′ (t (a))

da

where a (t0) and a (t1) are the values of a at the right and left endpoints of P3. It
follows from (3.23) that

(3.25) lim
(ε̃0,δ0)→(0,0)

ε̃δ

∫
P3

Bbdt ≤
∫ 0

1
2

a2da = − 1
24

.

The piece P4 descends from b = 2
3 to b = 5

3δ2. We wish to show that it does
not come too close to the equilibrium point (a∗, b∗) . For this purpose we again use
(3.17). We consider the solution with (P (0) , Q (0)) =

(
a1
δ , b2

)
, which is the left

upper turning point of the nullcline Q′ = 0. At this point, Q′ = 0, P ′ < 0, but
writing

dQ

dP
=

P 2Q2
(
1 + δ2 −Q

)
+ δ2 −Q

ε̃ (µ− (1− µ)P 2Q2)
except at P ′ = 0, it is easily shown that for small δ0 and ε̃0 the solution turns
down and rapidly descends, say to Q = b̂, the number chosen during the proof of
Lemma 4. For sufficiently small ε̃0 we can conclude that a = δP ≤ 1

2 (a1 + a∗) as
long as b ≥ b̂. This solution, which is shown in black on Figure 3 starting at about
(a, b) = (.1, .5) , blocks the periodic orbit from coming too close to (a∗, b∗) . To say
this carefully, there is a c > 0 (perhaps different from previous c’s we have used)
such that on the piece P4, for sufficiently small δ(

a− a∗

δ

)2

+ (b− b∗)2 ≥ c
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as long as (a, b) ∈ P4 and b ≥ b̂. This follows because for Q ≥ b̂ the system for
(P,Q) is a regular perturbation from the case δ = 0, and P = a

δ , Q = b.
We then conclude, for some further positive c’s independent of δ and ε, that with

τ = δ2t,
(

dP
dτ

)2
+
(

dQ
dτ

)2

≥ c. Hence (P,Q) is in P4 for a τ - interval of length

∆τP4 ≤ c. In the original variable, ∆tP4 ≤ c
δ2 . On P4, a ≤ δ |log δ| and b ≤ 2

3 , so
from (3.22), Bb (a.b) = O

(
δ2 log2 δ

)
and

(3.26)
∫

P4

Bbdt = O
(
log2 δ

)
as δ → 0, uniformly for 0 < ε̃ < ε̃0. While this is not small, it is dominated by the
negative estimate obtained from (3.25).

On P5, Bb < 0. One way to see this is to show that Bbb(a2, b) > 0 for b ≤ b1

(using (3.8) ), and so Bb (a2, b) < 0 for 0 < b < b1. Then show that Bba > 0 for
b < b1, implying that Bb < 0 to the left of the segment a = a2, 0 < b < b1. Hence,

(3.27)
∫

P5

Bbdt < 0.

Finally, consider P̂ = P1 ∪ P2. We only have to look at the region where pos-
sibly Bb > 0, which is to say b ≤ 2

3 , and we write this as
(
P̂ ∩

{
b ≤ 25δ2

})
∪(

P̂ ∩
{
25δ2 < b ≤ 2

3

})
. If b ≤ 25δ2 then Bb ≤ 50a2

(
1 + δ2

)
δ2. Also, a′ ≥ ε̃δ

(
µδ2 − 252δ4

)
,

since a2 ≤ 1. We can then chose δ0 so small that a′ ≥ 1
2 ε̃µδ3 in the interval under

discussion. In fact, we can take a2
(
1 + δ2

)
< 1, and so by the bounds just above,∫

P̂∩{b≤25δ2}
Bbdt ≤

∫ 1
2+η

a1

2Bb (a, b)
ε̃µδ3

da ≤ 100η

ε̃µδ
.

We choose η so that 100η < µ
26 , and obtain that∫
P̂∩{b≤25δ2}

Bbdt ≤ 1
26ε̃δ

.

Recall from (3.16) that a ≥ 1
2−2

√
δ0 on P̂ , and so if b > 25δ2 then for sufficiently

small δ0, δ2b < 1
6a2b2 on P̂ . If in addition b ≤ 2

3 then

B ≥ a2b2

(
1 + δ − 2

3

)
− 1

6
a2b2,

and so for sufficiently small ε̃0 and δ0,

Bb

B
≤

12a2b
(
1 + δ2

)
a2b2

≤ 13
b

on P̂ ∩
{
25δ2 < b ≤ 2

3

}
. Hence∫

P̂∩{b>25δ2}
Bbdt ≤

∫ 2
3

25δ2

13
b

db = O (− log δ)

as δ → 0. The constant in this bound is independent of ε̃0, which implies that for
sufficiently small δ0,

(3.28)
∫

P1∪P2

Bbdt ≤ 1
25ε̃δ

.
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Combining (3.25), (3.26), (3.27), and (3.28) completes the proof of Theorem 2.
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