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Abstract

We give two results that indicate that the relaxation time for the flow governed by the
Navier-Stokes-Voigt (NSV) model is sinificantly larger than for the Navier-Stokes equations.
We first show that for the Green-Taylor vortex decay problem, NSV admits an exact solution
which has a significantly larger half life than for true fluid flow. Second, we observe in a channel
flow test that NSV provides more regular solutions than usual Navier-Stokes solutions but NSV
approximations take significantly longer to reach the steady state.

1 Introduction

An evolution equation ut +N(u) = f can be smoothed by the pseudoparabolic regularization

uαt + α2Auαt +N(uα) = f,

where α > 0 is small and A is a positive operator. This regularization occurs naturally in the
modified equations of many splitting methods, whose literature extends to the late 1950’s. An
early systematic study of it was in [5].

As a numerical tool, it can arise by adding numerical diffusion at one time level and antidiffusing
at the previous level, and its use has seen success when used with Navier-Stokes equations (NSE)
[10], ocean models [1], MHD [9], and other related systems. This pseudoparabolic regularization of
the NSE was proposed by Voigt in 1892 for certain viscoelastic fluids [15] and analyzed by Oskolkov
[12]. The resulting Navier-Stokes-Voigt (NSV) model takes the form

vt − α2∆vt + v · ∇v +∇q − ν∆v = f, (1.1)

∇ · v = 0. (1.2)

Here v and q are the NSV velocity and pressure, f the forcing, ν the kinematics viscosity, and
α > 0 is a regularization parameter with units of length. The usual NSE are recovered when α = 0.

The NSV model has the same steady state solutions as the NSE, is globally well-posed under
homogeneous Dirichlet boundary conditions, and thus does not need additional or ad-hoc boundary
conditions, [3]. Finite element methods analysis of NSV in [10, 9] shows that when temporally
discretized with Crank-Nicolson, i) NSV implementation is a simple change from a Crank-Nicolson
discretization of usual NSE, as it only involves changing coefficients, ii) it acts as a stabilization
method that improves conditioning for higher Reynolds number problems, and iii) the error (to the
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NSE solution) introduced by NSV is no worse asymptotically than that of the NSE discretization
itself if Taylor-Hood mixed finite elements are used and α is chosen of the order of the mesh width.

These attractive properties led to preliminary tests in [8] of NSV as a tool for ‘spin up’. The
question was: Does the NSV (α > 0) solution approach equilibrium or statistical equilibrium faster
than the Navier-Stokes (α = 0) solution? Surprisingly, in [8], the opposite was reported. Our
aim herein is to explain through simple examples, including the Green-Taylor vortex and a simple
channel flow experiment, why this was observed.

2 Taylor-Green vortex

Figure 1: Velocity field and
pressure contours of the
Taylor-Green vortex, with
n=2.

We consider first the Green-Taylor vortex decay problem [6, 14],
which is an exact solution of the NSE with no forcing and periodic
boundary conditions. In Ω = (0, 1)× (0, 1), solutions take the form

u1(x, y, t) = − cos(nπx) sin(nπy)e−2n
2π2νt

u2(x, y, t) = sin(nπx) cos(nπy)e−2n
2π2νt

p(x, y, t) = −1

4
(cos(2nπx) + cos(2nπy))e−4n

2π2νt

where n can be chosen as any positive integer. This exact NSE
solution is made of an n × n array of oppositely signed vortices
that decay as t→∞. Figure 1 shows the velocity field and pressure
contours for the test problem, with n = 2. It has been used as a
numerical test in [4], [13], and [7], and many other papers. The
Green-Taylor vortex solution above is easily extended to an exact
solution of the NSV given by

v1(x, y, t) = − cos(nπx) sin(nπy)e
−2n2π2νt

1+2n2π2α2

v2(x, y, t) = sin(nπx) cos(nπy)e
−2n2π2νt

1+2n2π2α2

q(x, y, t) = −1

4
(cos(2nπx) + cos(2nπy))e

−4n2π2νt

1+2n2π2α2 .

Note that the NSE (α = 0) solution and the NSV (α > 0) solu-
tion have the same spacial patterns, but differ in time. The NSV
solutions decay at a slower rate. We calculate the half life of the

respective solutions to be, respectively,

TNSE1/2 =
log(2)

4n2π2ν
, TNSV1/2 =

log(2)

4n2π2ν
(1 + 2n2π2α2),

and so
TNSV1/2 = (1 + 2n2π2α2)TNSE1/2 > TNSE1/2 .

Thus, the NSV solution can take significantly longer to reach equilibrium than the NSE solution.
Further, the larger α becomes and the smaller the spacial scales present (as n increases) in the
solution, the longer the relaxation time required.
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3 A channel flow test

We test here NSV on a channel flow with a cold start. Due to the cold start, the nonlinearity
is active until the flow reaches a Poiseuille steady state (for which the nonlinearity is zero). We
compare approximations of NSV and NSE found by a common discretization method: Crank-
Nicolson in time, (P2, P1) Taylor-Hood finite elements in space (see, e.g. [11]). In addition to being
a very common discretization method, it is quite attractive for use with NSV because changing an
NSE code to NSV involves simply changing two coefficients, as seen below in (3.1). For a regular,
conforming triangulation τh of a domain Ω, defining (Xh, Qh) := (P2(τh)2, P1(τh)) to be the usual,
LBB stable Taylor-Hood pair to approximate velocity and pressure spaces. The timestepping
scheme we use is as follows: Denoting the L2(Ω) inner product by (·, ·) and φn+1/2 := 1/2(φn+φn+1),
for a given timestep ∆t > 0 and regularization parameter α (choose α = 0 for NSE, α > 0 for
NSV), and vnh ∈ Xh satisfying (∇ · vnh , rh) = 0 ∀rh ∈ Qh, find vn+1

h , qn+1
h ∈ Xh × Qh satisfying

∀χh, rh ∈ Xh ×Qh,

1

∆t

(
vn+1
h − vnh , χh

)
+
(
v
n+1/2
h · ∇vn+1/2

h , χh

)
− (qn+1

h ,∇ · χh)

+

(
ν

2
+
α2

∆t

)(
∇vn+1

h ,∇χh
)

+

(
ν

2
− α2

∆t

)
(∇vnh ,∇χh) =

(
f(tn+1/2), χh

)
, (3.1)

(∇ · vn+1
h , rh) = 0. (3.2)

For more specifics on this well-known and widely used scheme for the NSE, see [11], and for NSV
see [9, 10].
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Figure 2: Convergence to the steady solution for
NSE (α = 0) and NSV with varying α. As α is
increases, convergence is slowed in time.

The domain for this test problem is Ω =
(0, 4) × (0, 1), which represents a channel. We
enforce a parabolic inflow

u(0, y, t) =

(
1
2ν y(1− y)

0

)
, t > 0,

no slip boundary conditions on the walls, a zero-
traction outflow enforced weakly with the ‘do-
nothing’ condition, and start the flow from rest
(u0 = 〈0, 0〉T ). For our tests, we choose ν =
0.002, which is sufficiently small so that the NSE
flow development is not initially smooth.

We compute using (3.1)-(3.2) with a Delau-
nay mesh with 4,104 degrees of freedom, ∆t =
0.01 and endtime T = 3. It has been observed
[2] that the true velocity reaches a steady state
given by

u(x, y, t) =

(
1
2ν y(1− y)

0

)
.

We run the computations with α=0, 0.1, 0.2, and 0.4, and compare solutions in the plots
below. First, we plot the difference between the approximated solutions and the steady (Poiseuille)
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solution, versus time, in figure 3. Here we observe that all solutions appear to be tending towards
the correct steady solution, but for larger α convergence is much slower. Figure 3 shows velocity
streamlines over speed contours for the NSE and NSV (with α = 0.4), respectively, at t=0.1, 0.2,
0.5 and 1.0. Here we observe that NSV provides smoother solutions, particularly at earlier times
when the NSE is still developing, but it takes longer for the higher speed from the inlet to progress
through the channel.

NSE at t=0.1, 0.2, 0.5 and 1.0
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NS-Voigt (α = 0.4) at t=0.1, 0.2, 0.5 and 1.0
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Figure 3: Speed contours for the NSE and NSV (α = 0.4) solutions at t=0.1, 0.2, 0.5, and 1.0. For
NSV, it takes longer for the high speed, central core flow to reach the end of the channel.

In Figure 3 we illustrate the mode of convergence by giving the evolution of the speed contours.
Note the difference between that the fastest, central part of the two flows. The NSE solution is
rougher but the fast, central flow moves rapidly across the channel. The NSV solution is smoother
but develops significantly more slowly.

4 Conclusions

Knowing a model’s drawbacks is as important as knowing a model’s positive features We have
found that flow evolution governed by NSV can have significant temporal error compared to true
fluid flow due to longer relaxation time. Specifically, NSV gives an accurate approximation of long
time averaged statistical properties of a flow but its predicted evolution to statistical equilibrium
is significantly modified as described above.
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