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Abstract. We present methods for the optimal control / parameter identification of systems
governed by partial differential equations with random input data. We consider several identification
objectives that either minimize the expectation of a tracking cost functional or minimize the difference
of desired statistical quantities in the appropriate spatial-Lp norm (including higher order moments,
hence allowing to match any statistics, e.g., the variance, skewness, kurtosis, etc.).

A specific problem of parameter identification of a linear elliptic PDE that describes flow of
a fluid in a porous medium with uncertain permeability field is examined. We present numerical
results to study the consequences of the moment-tracking approximation and the efficiency of the
method. The stochastic parameter identification algorithm integrates an adjoint-based deterministic
algorithm with the sparse grid stochastic collocation mixed-FEM approach.

We also derive rigorous error estimates for fully discrete problems, using the Fink-Rheinboldt
theory for the approximation of solutions of a class of nonlinear problems.

Key words.

AMS subject classifications.

1. Introduction. Driven by the needs from applications both in industry and
other sciences, the field of inverse problems has undergone a tremendous growth within
the last two decades, where recent emphasis has been laid more than before on nonlin-
ear problems. Advances in this field and the development of sophisticated numerical
techniques for treating the direct problems allow to address and solve industrial in-
verse problems on a level of high complexity.

Parameter estimation is an important field in the area of modeling physical or
biological processes. The set of parameters that maximize the model’s agreement
with experimental data, i.e. the ideal parameter set, can be used to yield important
insight into a given system. It can help scientists more clearly describe the behavior of
the system, predict behavioral changes in the system during pathological situations,
and assess the efficacy of various corrective options. In addition, once those ideal
parameters have been found, other mathematical techniques can be used to obtain
further insight into the system’s behavior. Local sensitivity analysis at the optimal
parameter set can be used to assess the local importance of the parameters.

As mathematical/computational models become more complex in order to better
describe physical systems, parameter estimation can grow in difficulty and cost due to
the increase in number of parameters and consequently computational runtime. The
problem of calibrating a model in a reasonable amount of time depends more and
more on efficient methods of parameter estimation.

There is a vast literature on estimating parameters that arise in partial differential
equations using different techniques. The most studied approach to stochastic inverse
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problems is the Bayesian approach [57, 42, 56, 35, 14, 10, 37, 46, 45, 47, 44, 6, 23, 51,
17, 24, 39, 3, 43, 2, 11].

Following [28], we consider the other approach - the adjoint-variable method. It
relies on deterministic simulators, and unlike the Bayesian approach, requires no a
priori assumptions on the design variables. The first type of cost functional we in-
vestigate with this approach, which is in ubiquitous use in the literature (see e.g.,
[5, 13, 12, 34, 33, 59]), is defined as the expected value of a cost functional used
in deterministic control and identification problems. The second type, we apply the
deterministic cost functional to the expected value of the mismatch, we attempt to
minimize the spatial L2 mismatch of the expected values (and/or higher-order mo-
ments) of the solutions of the PDE and the given target function. This type of
functional was considered from a computational point of view and for a small number
of parameters in [60].

The adjoint variable-based method solves a large class of optimization, inverse
problems, parameter estimation and optimal control problems. It is one of the
gradient-based techniques in which gradient vector of the cost functional with respect
to the unknown parameters is calculated indirectly by solving an adjoint equation.
Although an additional cost arises from solving the adjoint equation, the gradients
of the cost functional can be altogether achieved with respect to each parameter.
Thus, the total cost to obtain these gradients is independent of the number of pa-
rameters and amounts to the cost of solving two partial differential equations (PDEs)
roughly. From a control theory point of view, the algorithm is based on the Pontrya-
gin maximum principle, since it tries to iteratively solve the necessary conditions for
optimality. From an optimization point of view, the algorithm consists of a gradient
descent, in which the gradient of the cost functional is efficiently computed via the
adjoint variable-based method.

The paper is organized as follows. In §2, we state the specific PDE we consider
as a constraint for the stochastic inverse problems, and also list assumptions about
that PDE and the nature of the stochastic inputs we consider. In §3, we precisely
state the stochastic control and identification problems we consider, including the
definitions of the two types of cost functionals. Existence and uniqueness results are
stated and the first-order optimality conditions which optimal states and controls or
parameters, as the case may be, must satisfy are derived. Finally, in §5, we provide
some numerical examples which we use to illustrate the better matching results as
well as the better computational efficiency resulting from using the second approach
for defining stochastic cost functionals.

2. Problem setting. Let D be a convex bounded polygonal domain in Rd,
d = 1, 2, 3, and (Ω,F , P ) a complete probability space, where Ω is the set of outcomes,
F ⊂ 2Ω is the σ-algebra of events and P : F → [0, 1] is a probability measure. The
general framework for the stochastic inverse problem is the following: we seek random
parameters, coefficients κ(ω, x) and/or forcing terms f(ω, x), with x ∈ D, ω ∈ Ω, that
minimize the mismatch between stochastic measured and simulated data. We denote
by W (D) a Banach space of functions v : D → R and define the stochastic Banach
space L2

P (Ω;W (D)), consisting of Banach valued functions that have finite second
moments:

L2
P (Ω;W (D)) =

{
v : Ω→W (D) | v is strongly measurable,∫

Ω

‖v(ω, ·)‖2W (D)dP (ω) < +∞
}
.
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2.1. State Equations. Soil properties are difficult to measure on the whole spa-
tial domain, therefore the material properties used in the simulation of groundwater
flows are usually flawed by uncertainties. There has been recently an increasing inter-
est in the modeling and computational aspects of the uncertainties of the groundwater
flow [32, 50, 52] and porous media, see e.g., [18, 26, 54, 38, 53, 58].
We consider the groundwater flow problem in a region D ⊂ Rd, where the flux is
related to the hydraulic head gradient by Darcy’s law. We model the uncertainties in
the soil by describing the conductivity coefficient κ as a random field denoted κ(ω, x).
Similarly, the stochastic forcing term f(ω, x) models the uncertainty in the sources
and sinks (see, e.g. [1, 55, 15] and the references therein). Therefore the hydraulic
head p and velocity u are also random fields satisfying the elliptic stochastic partial
differential equation (SPDE):

(2.1)

u(ω, x) = −κ(ω, x)∇p(ω, x) in Ω×D,
∇ · u = f in Ω×D,

p = 0 on Ω× ∂D.

In order to write an appropriate weak formulation for (2.1), we need to introduce the
Hilbert space (see [27])

H(div,D) =
{
v ∈ (L2(D))d | ∇ · v ∈ L2(D)

}
with the corresponding norm

‖v‖H(div,D) = (‖v‖2L2(D) + ‖∇ · v‖2L2(D))
1/2.

Currently, numerical methods for Darcy flow consider two different approaches: the
first one using the primal, single-phase formulation for pressure, which involves solv-
ing a Poisson equation for pressure, and the second one using a mixed, two-phase
formulation, with velocity and pressure as the variables of interest.
We will now make the following assumptions concerning the abstract state equations
given by (2.1):

A1) the solution u, p to (2.1) has realizations in the Banach spaces H(div,D) and
L2(D) respectively, i.e., u(ω, ·) ∈ H(div,D), p(ω, ·) ∈ L2(D) almost surely
and ∀ω ∈ Ω

‖u(ω, ·)‖H(div,D) + ‖p(ω, ·)‖L2(D) ≤ C‖f(ω, ·)‖L2(D)

where C is a constant independent of the realization ω ∈ Ω.
A2) the forcing term f ∈ L2

P (Ω;L2(D)) is such that the solution u, p is unique
and bounded in L2

P (Ω;H(div,D)) and L2
P (Ω;L2(D)) respectively.

The linear elliptic SPDE (2.1) with κ(ω, ·) uniformly bounded and coercive, i.e., there
exists κmin > 0 and κmax <∞ such that

(2.2) P
[
ω ∈ Ω : κmin ≤ κ(ω, x) ≤ κmax ∀x ∈ D

]
= 1,

and f(ω, ·) square integrable with respect to P , satisfies assumptions A1 and A2 (see
[4, 49]).
We shall assume that D is a bounded and open subset of Rd, either with smooth
boundary (of class C2 for instance) or convex. This implies that for every f ∈
L2
P (Ω;L2(D)), problem (2.1) has a unique solution (u, p) ∈ L2

P (Ω;H(div,D)) ×
3



L2
P (Ω;L2(D)).

We will denote the expected value of a random variable X(ω) with probability density
function (p.d.f.) ρ by

E [X] =

∫
Ω

X(ω)dP (ω) =

∫
R
xρ(x)dx.(2.3)

The usual multiplication by test functions v ∈ H(div,D) and w ∈ L2(D) and
subsequent application of Green’s Theorem in the system (2.1) yield the standard
weak mixed formulation, namely: find u(ω, x) ∈ L2

P (Ω;H(div,D)) and p(ω, x) ∈
L2
P (Ω;L2(D)) such that

(2.4)

E
[(
κ−1u, v

)
(L2(D))d

−
(
p,∇ · v

)
L2(D)

]
= 0, ∀v ∈ H(div,D)

E
[(
∇ · u,w

)
L2(D)

]
= E

[(
f, w

)
L2(D)

]
, ∀w ∈ L2(D).

Throughout the rest of this chapter, for simplicity of notation, the inner product in
L2(D) or (L2(D))d will be denoted by (·, ·).

3. Generalized stochastic inverse problems. First we define the admissible
set of conductivity coefficients given by

(3.1) Aad = {κ ∈ L∞(Ω;L∞(D)) | κ(ω, x) satisfies (2.2)} ,

then given κ ∈ Aad let the admissible set of states and controls be defined as

Bad =
{

(u, p, f) | u ∈ L2
P (Ω;H(div,D)), p ∈ L2

P (Ω;L2(D)), f ∈ L2
P (Ω;L2(D))

}
.

(3.2)

Finally, given f ∈ L2
P (Ω;L2(D)) let the admissible set of states and coefficients be

described as

Cad =
{

(u, p, κ) | u ∈ L2
P (Ω;H(div,D)), p ∈ L2

P (Ω;L2(D)), κ ∈ Aad
}
.(3.3)

We also introduce the stochastic target functions p ∈ L2
P (Ω;L2(D)) a given possible

perturbed observation of the pressure, and u ∈ L2
P (Ω;H(div,D)) a given possible

perturbed observation of the Darcy velocity.

3.1. Stochastic optimal control problems. In this section we consider a
general class of minimization problems for solving the stochastic inverse problem for
the random forcing function f(ω, x) and the solution (u(ω, x), p(ω, x)) satisfying a.s.
(2.1). Here we assume as given the input random process κ ∈ Aad and the targets
p ∈ L2

P (Ω;L2(D)) and u ∈ L2
P (Ω;H(div,D)) and we want to recover (u∗J , p

∗
J , f

∗
J ) such

that

(3.4) (u∗J , p
∗
J , f

∗
J ) = inf

(u,p,f)∈Bad
{J(u, p, f) : subject to (2.1)}

where J(u, p, f) is a given stochastic functional constructed to track the desired ran-
dom fields (u, p) or the statistical quantities of interest (QoI) of such stochastic func-
tions. This leads to the following definition.
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Definition 3.1 (Stochastic optimal control). A 3-tuple (u∗J , p
∗
J , f

∗
J ) ∈ Bad sat-

isfying (2.1) a.s., for which the infimum in (3.4) is attained is called the stochastic
optimal solution and the control f∗J is referred as stochastic optimal control. In what
follows we will describe two functionals, denoted J1(u, p, f) and J2(u, p, f), used to
solve stochastic optimal control problems. The first functional, defined in (3.5), is
based on the standard classical approach based on stochastic least squares approxi-
mation. The second functional, defined in (3.8), uses statistical tracking objectives
and is easily generalizable for higher order moments, similarly to (3.20). We will de-
rive the corresponding adjoint equations, state the necessary conditions for existence
and uniqueness of the stochastic optimal solution and prove the necessary conditions
for optimality.

3.1.1. The optimal control problem using stochastic least squares mini-
mization. For κ ∈ Aad given data, we consider the following optimal control problem
associated with a stochastic elliptic boundary value problem:

Minimize the cost functional(P.1)

J1(u, p, f) = E
[1

2
‖u(ω, ·)− u(ω, ·)‖2(L2(D))d +

1

2
‖p(ω, ·)− p(ω, ·)‖2L2(D)

]
(3.5)

+ E
[α

2
‖f(ω, ·)‖2L2(D)

]
,

on all (u, p, f) ∈ Bad subject to the stochastic mixed state equations (2.1).

Using standard techniques (see e.g. [40, 41, 7, 9, 48, 31, 30, 29]) one can prove
that the problem (3.5)-(2.1) has a unique optimal solution that is characterized by a
maximum principle type result.
We introduce the co-state elliptic equations, written in weak mixed form:

(3.6)
E
[
(κ−1q, v)− (z,∇ · v)

]
= −E [(u− u, v)] , ∀v ∈ H(div,D),

E [(∇ · q, w)] = E [(p− p, w)] , ∀w ∈ L2(D).

We now state the necessary conditions for optimality in problem (P.1).

Proposition 3.2. (û, p̂, f̂) is the unique optimal solution in problem (3.5)-(2.4)
if and only if there exists a co-state (q, z) ∈ L2

P (Ω;H(div,D)) × L2
P (Ω;L2(D)) such

that (û, p̂, f̂ , q, z) satisfies the following optimality conditions:

E
[
(κ−1û, v)− (p̂,∇ · v)

]
= 0, ∀v ∈ H(div,D)

E [(∇ · û, w)] = E
[
(f̂ , w)

]
, ∀w ∈ L2(D)

E
[
(κ−1q, v)− (z,∇ · v)

]
= −E [(û− u, v)] , ∀v ∈ H(div,D),

E [(∇ · q, w)] = E [(p̂− p, w)] , ∀w ∈ L2(D)

E
[
(z + αf̂, fs − f̂)

]
≥ 0, ∀(û, p̂, fs) ∈ Bad.

(3.7)

The proof of this result follows in similar manner with the next result, Theorem 1.
We note that it is possible to solve the coupled optimality system in one-shot, see e.g.
[40].

3.1.2. The optimal control problem utilizing statistical tracking ob-
jectives. Now we aim at matching expected values, i.e., we consider the following
problem:

Minimize the cost functional(P.2)
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J2(u, p, f) =
1

2
‖Eu(·, x)− Eu(·, x)‖2(L2(D))d +

1

2
‖Ep(·, x)− Ep(·, x)‖2L2(D)(3.8)

+
α

2

∫
D

Ef2(·, x)dx,

on all (u, p, f) ∈ Bad subject to the stochastic mixed state equations (2.1).

Remark 3.1. Note that we have∫
D

[
Eu(·, x)− Eu(·, x)

]2
dx ≤ E

(
‖u− u‖2L2(D)

)
,∫

D

[
Ep(·, x)− Ep(·, x)

]2
dx ≤ E

(
‖p− p‖2L2(D)

)
,

which justifies the functional (3.8).

Theorem 3.3. The 3-tuple (ũ, p̃, f̃) is the unique optimal solution in prob-
lem (3.8)-(2.4) if and only if there exists a co-state (q, z) ∈ L2

P (Ω;H(div,D)) ×
L2
P (Ω;L2(D)) such that (ũ, p̃, f̃ , q, z) satisfies the following optimality conditions:

E
[
(κ−1ũ, v)− (p̃,∇ · v)

]
= 0, ∀v ∈ H(div,D)

E [(∇ · ũ, w)] = E
[
(f̃ , w)

]
, ∀w ∈ L2(D)

E
[
(κ−1q, v)− (z,∇ · v)

]
= −E [(Eũ− Eu, v)] , ∀v ∈ H(div,D),

E [(∇ · q, w)] = E [(Ep̃− Ep, w)] , ∀w ∈ L2(D)

E
[
(z + αf̃, fs − f̃)

]
≥ 0, ∀(ũ, p̃, fs) ∈ Bad.

(3.9)

Proof. The sensitivity equations corresponding to the state equations (3.6) are{
E
[
(κ−1us, v)− (ps,∇ · v)

]
= 0, ∀v ∈ H(div,D)

E [(∇ · us, w)] = E [(fs, w)] , ∀w ∈ L2(D),
(3.10)

where fs ∈ L2
P (Ω, L2(D)), ps ∈ L2

P (Ω, L2(D)) and us ∈ L2
P (Ω, H(div,D)). Then the

optimality condition for problem (3.8) writes

0 ≤
dJ2(u|f̃ , p|f̃ , f̃)

df
fs ≡

dJ2(ũ, p̃, f̃)

d(u, p, f)
(us, ps, fs)

(3.11)

=

∫
D

E[us(·, x)]E[ũ(·, x)− u(·, x)]dx+

∫
D

E[ps(·, x)]E[p̃(·, x)− p(·, x)]dx

+ α

∫
D

E[f̃fs]dx

=

∫
D

E
[
us(·, x)E[ũ(·, x)− u(·, x)]

]
dx+

∫
D

E
[
ps(·, x)E[p̃(·, x)− p(·, x)]

]
dx

+ α

∫
D

E
[
f̃fs

]
dx (since E[ũ(·, x)− u(·, x)] is deterministic)

=

∫
D

E
[
− us(·, x)κ−1q + z∇ · us

]
dx+

∫
D

E
[
ps(·, x)∇ · q

]
dx+ α

∫
D

E
[
f̃fs

]
dx

(by (3.9) with v = us)
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= E
[ ∫

D

−us(·, x)κ−1q + z∇ · usdx
]

+ E
[ ∫

D

ps(·, x)∇ · qdx
]

+ αE
[ ∫

D

f̃fsdx

]
(by Fubini’s theorem)

= E
[ ∫

D

−us(·, x)κ−1qdx+

∫
D

∇ · uszdx
]

+ E
[ ∫

D

κ−1us(·, x)qdx

]
+ E

[ ∫
D

αf̃fsdx

]
(by (3.10))

= E
[ ∫

D

fszdx

]
+ E

[ ∫
D

αf̃fsdx

]
(by (3.10))

= E
[ ∫

D

(
z + αf̃

)
fsdx

]
= E

[(
z + αf̃, fs

)]
, ∀(us, ps, fs) ∈ TanBad

(
ũ, p̃, f̃

)
, z + αf̃ ∈ NBad ,

where we have used the fact that E [ũ(·, x)− u(·, x)] is a deterministic quantity, the
adjoint equations (3.9), Fubini’s theorem, the sensitivity equation (3.10) and the
definition of normal cone. Here TanBad denotes the tangent cone, while NBad is the
normal cone (see [16]).

The necessary and sufficient conditions (3.9) resemble the optimality system (3.7),
the difference is only in the adjoint equations which have a deterministic right-hand
side. Nevertheless, the adjoint variables (q, z) are still stochastic quantities.

3.2. Stochastic parameter identification problems. We also study the i-
dentification of the coefficient κ in the stochastic boundary value problem (2.1). In
the deterministic case, for the direct problem, where κ is given, the existence and
uniqueness results are well known, see e.g. [36]. The linear deterministic inverse
problem related to (2.1) has been studied in e.g. [7, 48], for the nonlinear deterministic
see e.g. [8].

For the identification problem, we are given possible perturbed observations u, p
corresponding to the state variables u, respectively p, and we must determine κ in
(2.1) such that u(κ) = u and p(κ) = p in Ω×D. Of course, such a κ may not exist.

3.2.1. Parameter identification using stochastic least squares minimiza-
tion. The least squares approach leads us to the minimization problem:

Minimize the cost functional(P.3)

J3(u, p, κ) = E
[

1

2
‖u(ω, ·)− u(ω, ·)‖2(L2(D))d +

1

2
‖p(ω, ·)− p(ω, ·)‖2L2(D)

]
(3.12)

+ E
[
β

2
‖κ(ω, ·)‖2L2(D)

]
,

on all (u, p, κ) ∈ Cad subject to the stochastic mixed state equations (2.1).

We introduce the co-state elliptic equations for this problem (P.3):

(3.13)


E
[
((κ∗)−1q, v)− (η,∇ · v)

]
= E

[
− (u∗ − u, v)

]
, ∀v ∈ H(div,D)

E
[(
∇ · q, w

)]
= E

[
(p∗ − p, w)

]
, ∀w ∈ L2(D).

7



Theorem 3.4. Let (u∗, p∗, κ∗) be an optimal solution in problem (3.12)-(2.4).
Then there exists a co-state (q, η) ∈ L2

P (Ω;H(div,D)) × L2
P (Ω;L2(D)) such that

(u∗, p∗, κ∗, q, η) satisfies the following optimality conditions:

E
[
((κ∗)−1u∗, v)− (p∗,∇ · v)

]
= 0, ∀v ∈ H(div,D)

E
[
(∇ · u∗, w)

]
= E

[
(f, w)

]
, ∀w ∈ L2(D)

E
[
((κ∗)−1q, v)− (η,∇ · v)

]
= E

[
− (u∗ − u, v)

]
, ∀v ∈ H(div,D)

E
[(
∇ · q, w

)]
= E

[
(p∗ − p, w)

]
, ∀w ∈ L2(D)

κ∗(ω, x) = max{κmin,min{ 1
β (κ∗)−2u∗(ω, x)q(ω, x), κmax}},

(3.14)

a.e. in Ω×D.
Proof. The sensitivity equations are

E
[(

(κ∗)−1us − (κ∗)−2κsu
∗, v
)
− (ps,∇ · v)

]
= 0, ∀v ∈ H(div,D)

E
[
(∇ · us, w)

]
= 0, ∀w ∈ L2(D),

(3.15)

where (us, ps, κs) ∈ Tan Cad
(
u∗, p∗, κ∗

)
.

Let Sad = {(u, p, κ) ∈ Cad : (u, p, κ) satisfy the state equations (2.1)} be set of
admissible states and parameters to problem (3.12). We introduce the tangential
cone to the set Sad at (u, p, κ) ∈ Sad

TanSad(u, p, κ) = {(us, ps, κs) which satisfy the sensitivity equations (3.15),

us ∈ L2
P (Ω;H(div,D)), ps ∈ L2

P (Ω;L2(D)), κs ∈ TanAad}.
(3.16)

Recall that if

J(u∗, p∗, κ∗) = inf
(u,p,κ)∈Sad

J(u, p, κ)

and the functional J(u, p, κ) is Gâteaux differentiable, then necessarily

dJ(u∗, p∗, κ∗)

d(u, p, κ)
(us, ps, κs) ≥ 0 for all (us, ps, κs) ∈ TanSad(u∗, p∗, κ∗),(3.17)

where dJ(u∗,p∗,κ∗)
d(u,p,κ) ≡ dJ(u(κ∗),p(κ∗),κ∗)

dκ stands for the Gâteaux derivative of J at

(u∗, p∗, κ∗) ∈ Sad, and (u∗, p∗, κ∗) ≡ (u(κ∗), p(κ∗), κ∗). Applying the optimum prin-
ciple given by (3.17) it follows that the optimality condition for problem (3.12) writes

0 ≤ dJ3(u(κ∗), p(κ∗), κ∗)

dκ
κs ≡

dJ3(u∗, p∗, κ∗)

d(u, p, κ)
(us, ps, κs)

= E
[ ∫

D

us(·, x)
(
u∗(·, x)− u(·, x)

)
dx

]
+ E

[ ∫
D

ps(·, x)
(
p∗(·, x)− p(·, x)

)
dx

]
8



+ E
[
β

∫
D

κ∗(·, x)κs(·, x)dx

]
= E

[
−
∫
D

us(·, x)(κ∗)−1(·, x)q(·, x) + η(·, x)∇ · us(·, x)dx

]
+ E

[ ∫
D

ps(·, x)∇ · q(·, x)dx

]
+ βE

[ ∫
D

κ∗(·, x)κs(·, x)dx

]
(by (3.13) with v = us and w = ps)

= E
[
−
∫
D

us(·, x)(κ∗)−1(·, x)q(·, x)dx

]
+ E

[ ∫
D

ps(·, x)∇ · q(·, x)dx

]
+ βE

[ ∫
D

κ∗(·, x)κs(·, x)dx

]
(by (3.15) with w = η)

= E
[
−
∫
D

(κ∗)−2(·, x)κs(·, x)u∗(·, x)q(·, x)dx−
∫
D

ps(·, x)∇ · q(·, x)dx

]
+ E

[ ∫
D

ps(·, x)∇ · q(·, x)dx

]
+ βE

[ ∫
D

κ∗(·, x)κs(·, x)dx

]
(by (3.15) with v = q)

= E
[ ∫

D

(
− (κ∗)−2(·, x)u∗(·, x)q(·, x) + βκ∗(·, x)

)
κs(·, x)

]
,

for all (us, ps, κs) ∈ TanBad
(
u∗, p∗, κ∗

)
. Here we have used the adjoint equations

(3.13), the sensitivity equations (3.15).

3.2.2. Parameter identification utilizing statistical tracking objectives.
For the identification problem matching expected values, given a possible perturbed
observation (u, p) corresponding to the state variables u, p, we seek κ in (2.1) such
that Eu(κ) = Eu and Ep(κ) = Ep in D. Therefore we consider the problem:

Minimize the cost functional(P.4)

J4(u, p, κ) =
1

2

∫
D

[
Eu(·, x)− Eu(·, x)

]2
dx+

1

2

∫
D

[
Ep(·, x)− Ep(·, x)

]2
dx(3.18)

+
β

2

∫
D

Eκ2(·, x)dx,

on all (u, p, κ) ∈ Cad subject to the stochastic state equations (2.1).

Theorem 3.5. Let (̊u, p̊, κ̊) be an optimal solution in problem (2.1) and (3.18).
Then there exists a co-state (q, η) ∈ L2

P (Ω;H(div,D)) × L2
P (Ω;L2(D)) such that

(̊u, p̊, κ̊, q, η) satisfies the following optimality conditions:

E
[
(̊κ−1ů, v)− (p̊,∇ · v)

]
= 0, ∀v ∈ H(div,D)

E
[
(∇ · ů, w)

]
= E

[
(f, w)

]
, ∀w ∈ L2(D)

E
[
(̊κ−1q, v)− (η,∇ · v)

]
= E

[
− (Eů− Eu, v)

]
, ∀v ∈ H(div,D)

E
[(
∇ · q, w

)]
= E

[
(Ep̊− Ep, w)

]
, ∀w ∈ L2(D)

κ̊(ω, x) = max{κmin,min{ 1
β (̊κ)−2ů(ω, x)q(ω, x), κmax}}, a.e. in Ω×D.

(3.19)
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Proof. See the proof of Theorem 3.6.
For the problem of matching covariance, and/or higher order moments, the cost

functional used in problem (3.18) can be generalized as follows. Assume we are
interested in L-order moments, and f ∈ LLP (Ω;L2L−2(D)), then

Minimize the cost functional(P.5)

J5(u, p, κ) =

L∑
`=1

αu,`
2`

∫
D

[
Eu`(·, x)− Eu`(·, x)

]2
dx(3.20)

+

L∑
`=1

αp,`
2`

∫
D

[
Ep`(·, x)− Ep`(·, x)

]2
dx+

β

2

∫
D

Eκ2(·, x)dx,

on all (u, p, κ) ∈ Cad subject to the stochastic state equations (2.1).

We introduce the co-state elliptic equations for this problem (P.5):

(3.21)


E
[
((κ∗)−1q, v)− (η,∇ · v)

]
= −E

[ L∑
`=1

αu,`(u
∗)`−1(E(u∗)` − Eu`, v)

]
,

E
[(
∇ · q, w

)]
= E

[ L∑
`=1

αp,`(p
∗)`−1(E(p∗)` − Ep`, w)

]
,

for all v ∈ H(div,D), w ∈ L2(D).
Theorem 3.6. Let (u∗, p∗, κ∗) be an optimal solution in problem (3.20)-(2.4).

Then there exists a co-state (q, η) ∈ L2
P (Ω;H(div,D)) × L2

P (Ω;L2(D)) such that
(u∗, p∗, κ∗, q, η) satisfies the following optimality conditions:



E
[
((κ∗)−1u∗, v)− (p∗,∇ · v)

]
= 0, ∀v ∈ H(div,D)

E
[
(∇ · u∗, w)

]
= E

[
(f, w)

]
, ∀w ∈ L2(D)

E
[
((κ∗)−1q, v)− (η,∇ · v)

]
= −E

[ L∑
`=1

αu,`(u
∗)`−1(E(u∗)` − Eu`, v)

]
,

∀v ∈ H(div,D)

E
[(
∇ · q, w

)]
= E

[ L∑
`=1

αp,`(p
∗)`−1(E(p∗)` − Ep`, w)

]
, ∀w ∈ L2(D)

κ∗(ω, x) = max{κmin,min{ 1
β (κ∗)−2u∗(ω, x)q(ω, x), κmax}}, a.e. in Ω×D.

(3.22)

Proof. The sensitivity equations are
E
[(

(κ∗)−1us − (κ∗)−2κsu
∗, v
)
− (ps,∇ · v)

]
= 0, ∀v ∈ H(div,D)

E
[
(∇ · us, w)

]
= 0, ∀w ∈ L2(D),

(3.23)
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where (us, ps, κs) ∈ Tan Cad
(
u∗, p∗, κ∗

)
. Applying the optimum principle given by

(3.17) it follows that the optimality condition for problem (3.20) writes

0 ≤ dJ5(u(κ∗), p(κ∗), κ∗)

dκ
κs ≡

dJ5(u∗, p∗, κ∗)

d(u, p, κ)
(us, ps, κs)

=

L∑
`=1

∫
D

αu,`E
[
us(·, x)(u∗)`−1(·, x)

]
E
[
(u∗)`(·, x)− u`(·, x)

]
dx

+

L∑
`=1

∫
D

αp,`E
[
ps(·, x)(p∗)`−1(·, x)

]
E
[
(p∗)`(·, x)− p`(·, x)

]
dx

+ β

∫
D

E
[
κ∗(·, x)κs(·, x)

]
dx

=

L∑
`=1

∫
D

αu,`E
[
us(·, x)(u∗)`−1(·, x)E

(
(u∗)`(·, x)− u`(·, x)

)]
dx

+

L∑
`=1

∫
D

αp,`E
[
ps(·, x)(p∗)`−1(·, x)E

(
(p∗)`(·, x)− p`(·, x)

)]
dx

+ β

∫
D

E
[
κ∗(·, x)κs(·, x)

]
dx

=

∫
D

E
[
− us(·, x)(κ∗)−1(·, x)q(·, x) + η(·, x)∇ · us(·, x)

]
dx

+

∫
D

E
[
ps(·, x)∇ · q(·, x)

]
dx+ β

∫
D

E
[
κ∗(·, x)κs(·, x)

]
dx

(by (3.21) with v = us and w = ps)

= E
[ ∫

D

−us(·, x)(κ∗)−1(·, x)q(·, x) + η(·, x)∇ · us(·, x)dx

]
+ βE

[ ∫
D

κ∗(·, x)κs(·, x)dx

]
= E

[
−
∫
D

us(·, x)(κ∗)−1(·, x)q(·, x)dx

]
+ E

[ ∫
D

ps(·, x)∇ · q(·, x)dx

]
+ βE

[ ∫
D

κ∗(·, x)κs(·, x)dx

]
(by (3.23) with w = η)

= E
[
−
∫
D

(κ∗)−2(·, x)κs(·, x)u∗(·, x)q(·, x)dx−
∫
D

ps(·, x)∇ · q(·, x)dx

]
+ E

[ ∫
D

ps(·, x)∇ · q(·, x)dx

]
+ βE

[ ∫
D

κ∗(·, x)κs(·, x)dx

]
(by (3.23) with v = q)

= E
[ ∫

D

(
− (κ∗)−2(·, x)u∗(·, x)q(·, x) + βκ∗(·, x)

)
κs(·, x)

]
,

for all (us, ps, κs) ∈ TanBad
(
u∗, p∗, κ∗

)
. Here we have used the adjoint equations

(3.21), the sensitivity equations (3.23).

4. Error estimates for the parameter identification problems under
open-interval parameter and finite-dimensional noise assumptions. For reader’s
convenience, we provide a brief derivation of error estimates [28] under the following
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assumptions

(i) (Finite-dimensional noise) κ(ω, x) and f(x, ω) can be expressed in terms of a
finite number of independent random variables with bounded support y1(ω),
. . . , yN (ω).

(ii) The coefficient κ belongs to the open interval (κmin, κmax), i.e.,

P
[
ω ∈ Ω : κmin < κ(ω, x) < κmax ∀x ∈ D

]
= 1.(4.1)

Using the finite-dimensional noise assumption(i), the solution u, p of (2.1) depends
on the realization ω ∈ Ω through the value taken by the random vector y(ω) =(
y1(ω), . . . , yN (ω)

)
, i.e., u = u(y(ω), x), p = p(y(ω), x). Therefore, we can replace

the probability space (Ω,F , P ) with (Γ,B(Γ), ρ(y)dy), where Γ = y(Ω) denotes the
image of the random variable y, B(Γ) denotes the Borel σ-algebra on Γ, and ρ(y)dy
denotes the distribution measure of the vector y with ρ(y) : Γ → R+ denoting the

joint probability density function for y. Then the stochastic domain Γ =
∏N
n=1 Γn,

where Γn = yn(Ω) denotes the image of the random variable yn, and also ρ(y) =∏N
n=1 ρn(yn), where ρn(yn) : Γn → R+ denotes the probability density function for

the random variable yn.

Denoting by

κ1 =
1

2

(
κmin + κmax

)
, κ2 =

1

π

(
κmax − κmin

)
,(4.2)

we have that under the assumption (ii)

κ(ω, x) = κ1 + κ2 arctan(ν(ω, x)),(4.3)

is a bijection from R onto (κmin, κmax), and yields a re-parametrization of problems
(P.3)-(P.5) without any restriction on the new variable ν

min
(u,p,κ)∈Cad

{Ji(u, p, κ) : subject to (2.4)} = min
(u,p,ν)∈Cνad

{Ji(u, p, κ(ν)) : (2.4), (4.3)},

where

Cνad =
{

(u, p, κ) | u ∈ L2
P (Ω;H(div,D)), p ∈ L2

P (Ω;L2(D)), κ ∈ L∞(Ω)× L∞(D)
}
.

The optimality systems for problems (P.3)-(P.5) can be now be expressed in terms of
ν instead of κ. For i = 3, 4, 5, we denote by νJi the optimal parameter, uJi , pJi the
corresponding state variables, and qJi , ηJi the adjoint states.

In view of (2.3) and the above considerations, the state equations (2.4) are

(4.4)

∫
D

((
κ1+κ2 arctan(νJi(y, x))

)−1
uJi(y, x) · v(x)− pJi(y, x)∇ · v(x)

)
dx = 0,∫

D

∇ · uJi(y, x)w(x) dx =

∫
D

f(y, x)w(x) dx,

12



for all v ∈ H(div,D), w ∈ L2(D), ρ-a.e. in Γ. Similarly, the adjoint equations are

∫
D

((
(κ1 + κ2 arctan(νJi(y, x))

)−1
qJi(y, x) · v(x)− ηJi(y, x)∇ · v(x)

)
dx

=



−
∫
D

(
uJ3(y, x)− u(y, x)

)
v(x) dx,

−
∫
D

(
EuJ4(·, x)− Eu(·, x)

)
v(x) dx,

−
∫
D

L∑
`=1

αu,`(uJ5(y, x))`−1
(
E(uJ5(·, x))` − E(u(·, x))`

)
v(x) dx,

∫
D

∇·qJi(y, x)w(x) dx=



∫
D

(
pJ3(y, x)− p(y, x)

)
w(x) dx,∫

D

(
EpJ4(·, x)− Ep(·, x)

)
w(x) dx,

∫
D

L∑
`=1

αp,`p
`−1
J5

(y, x)
(
Ep`J5(·, x))− Ep`(·, x)

)
w(x) dx,

(4.5)

and the optimality condition writes

νJi(y, x) = tan
( 1

κ2

((
1
βuJi · qJi

) 1
3 − κ1

))
.(4.6)

In particular, using (4.3) and (4.6), we have that

(κmin, κmax) 3 κ(νJi) =
( 1

β
uJi · qJi

) 1
3

a.s., a.e.,(4.7)

hence the optimality system for problems (P.3)-(P.5) can be written as∫
D

(( 1

β
uJi(y, x) · qJi(y, x)

)− 1
3uJi(y, x) · v(x)− pJi(y, x)∇ · v(x)

)
dx = 0,∫

D

∇ · uJi(y, x)w(x) dx =

∫
D

f(y, x)w(x) dx,∫
D

(( 1

β
uJi(y, x) · qJi(y, x)

)− 1
3 qJi(y, x) · v(x)− ηJi(y, x)∇ · v(x)

)
dx

=



−
∫
D

(
uJ3(y, x)− u(y, x)

)
v(x) dx,

−
∫
D

(
EuJ4(y, x)− Eu(y, x)

)
v(y, x) dx,

−
∫
D

L∑
`=1

αu,`(uJ5(y, x))`−1
(
E(uJ5(y, x))` − E(u(y, x))`

)
v(x) dx,

∫
D

∇·qJi(y, x)w(x)dx =



∫
D

(
pJ3(y, x)− p(y, x)

)
w(x) dx,∫

D

(
EpJ4(y, x)− Ep(·, x)

)
w(x) dx,

∫
D

L∑
`=1

αp,`p
`−1
J5

(·, x)
(
Ep`J5(·, x))− Ep`(·, x)

)
w(x)dx.

13



The error estimates we derive make use of the Fink-Rheinboldt theory [19, 20,
21, 22] concerning the approximation of a class of nonlinear problems. For the sake
of completeness, we state the relevant results of that theory, specialized to our needs.

The parameter-dependent nonlinear problems considered are of the type

(4.8) F (θ) ≡ F (ζ, λ) = 0,

where F : Θ = Z ×Λ→ Ξ is a Cr, r ≥ 1, Fredholm mapping of index 1 from an open
subset S of a real Banach space Θ into another Banach space Ξ. In our context, Z is
an infinite-dimensional space whereas Λ ⊂ R is a one-dimensional parameter space.
We are interested in approximations of solutions of the infinite-dimensional problem
(4.8) obtained by solving a finite-dimensional (discretized) approximate problem

(4.9) F̃ (θ) ≡ F̃ (ζ̃, λ) = 0,

where F̃ is a mapping from the discretized space Θ̃ = Z̃ × Λ into another discretized
space Ξ̃.

Suppose we have a point θ0 ∈ Θ which may not solve the problem (4.8) but
instead certainly solves the problem

(4.10) F (θ) ≡ F (ζ0, λ0) = ξ0 with ξ0 := F (θ0)

so that it lies on the solution manifold Mξ0 of this equation. If DF (θ) ∈ L (Θ,Ξ)
denotes the total Fréchet derivative of F at the point θ, then a point θ ∈ S is referred
to as a a regular point of F if DF (θ) is surjective; a point ξ ∈ Ξ is a regular value
of F if F (−1)(ξ) contains only regular points. If ξ ∈ Ξ is a regular value of F , then
Mξ ≡ F (−1)(ξ) is an m-dimensional Cr-manifold in X without boundary.

A basis on Λ can serve as a local coordinate system for the manifold Mξ0 at a
point θ0 ∈Mξ0 provided that kerDζF (θ0) = {0}, where DζF (θ0) ∈ L (Z, Y ) denotes
the Z-partial derivative of F at the point θ0.

Theorem 4.1. [20] Let ξ0 denote a regular value of F and let θ0 ∈Mξ0 . Suppose
that Θ = Z × Λ → Ξ, dim Λ = 1, is a splitting such that kerDζF (θ0) = {0}. Set
θ0 = (ζ0, λ0) with ζ0 ∈ Z and λ0 ∈ Λ. Then, there exist open neighborhoods B ⊂ Λ of
λ0 and U ⊂ Θ of θ0 and a unique Cr-function ζ : B → Z such that ζ(λ0) = ζ0 and

Mξ0 ∩ U = {θ ∈ Θ : θ =
(
ζ(λ), λ

)
, λ ∈ B}.

Any θ0 ∈ S where kerDζF (θ0) = {0} is referred to as a nonsingular point of F
(with respect to the splitting X = Z ⊕ Λ); otherwise, θ0 is called a singular point.
Thus, if θ0 ∈ S is a nonsingular point, then kerDζF (θ0) is an isomorphism of Z onto
Ξ.

We next choose a finite-dimensional subspace Z̃ ⊂ Z, a projection Q̃Z → Z̃ of
Z onto Z̃, and an isomorphism J : Z → Ξ. With Θ̃ = Z̃ × Λ, Ξ̃ = JZ̃, and the
projection P̃ : Ξ→ Ξ̃ specified by P̃ = JQ̃J−1, we then define a function F̃ : S → Ξ̃
by F̃ (θ) = P̃F (θ), θ ∈ S. Then, corresponding to (4.9), we have the finite-dimensional
(discretized) problem

(4.11) F̃ (θ0) = ξ̃0 with ξ̃0 := F̃ (θ0).

Theorem 4.2. [20] Suppose that the mapping F is of class Cr, r ≥ 2, and that
the second Fréchet derivative D2

θF is bounded on bounded subsets of its domain S.
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Consider a point θ0 ∈ S such that ξ0 = F (θ0) is a regular value of F and assume that
kerDζF (θ0) = {0}. Set θ0 = (ζ0, λ0), λ0 ∈ Λ, and let θ : B ⊂ Λ→ S, θ(λ) =

(
ζ(λ), λ

)
denote the solution of (4.8) as given by Theorem 4.1. Set Z̃ = Z∩Θ̃ and suppose that

ker P̃DζF (θ0)|Z̃ = {0}. Then, there exist a closed ball B0 ⊂ B centered at λ0 and a

Cr-function ζ̃ : B0 → Z̃ such that θ̃(λ) =
(
ζ̃(λ), λ

)
solves (4.10) for each λ ∈ B0 and

‖ζ(λ)− ζ̃(λ)‖Z ≤ C‖(IZ − Q̃)(ζ(λ)− ζ0)‖Z ∀λ ∈ B0,(4.12)

where C is a constant independent of λ.

We focus on the optimality system corresponding to optimal parameter identifica-
tion problem (P.4). The error analyses for problems (P.3) and (P.5) are very similar.
Also, the optimal control problems (P.1) and (P.2) can be treated in a similar, albeit
simpler, manner. Thus, for the sake of economy of exposition, from now on we drop
the subscript (·)J4 so that, e.g., now uJ4 = u, pJ4 = p, qJ4 = q, ηJ4 = η.

We recast the optimality system (4.4)-(4.6) into a form that fits the above frame-
work so that we can apply Theorem 4.2, without major modifications, to derive an
error estimate for solutions of the optimality system for the parameter identification
problem (P.4).

We begin by choosing the state space Z = [L2
ρ

(
Γ;H(div,D)

)
×L2

ρ

(
Γ;L2(D)

)
]2 and

also Λ = R+ with ζ = (u, p, q, η) and λ = 1/β so that Θ = Z×Λ = [L2
ρ

(
Γ;H(div,D)

)
×

L2
ρ

(
Γ;L2(D)

)
]2×R+. Then, the range space Ξ is the dual space of Z with respect to

the standard duality pairing

(
ψ,ϕ

)
=

∫
D

∫
Γ

ϕψρ(y)dydx for ϕ ∈ Z and ψ ∈ Ξ.(4.13)

We also choose the space S = [L6
ρ

(
Γ;H(div,D)∩L6(D)

)
×L2

ρ

(
Γ;L2(D)

)
]2×R+ ⊂ Θ.

For convenience, we choose to define the function F (θ) and its derivatives weakly
in terms of the duality pairing. Following (4.6) and (4.3), for each θ =

(
(u, p, q, η), β

)
∈

Θ, we denote

ν(θ) = tan
( 1

κ2

((
1
βu · q

) 1
3 − κ1

))
and κ(θ) = κ1 + κ2 arctan(ν(θ)),(4.14)

and define F (θ) by

(4.15)

(
F
(
(u, p, q, η), β

)
, (ǔ, p̌, q̌, η̌)

)
=
(
κ−1(θ)u , ǔ

)
−
(
p,∇ · ǔ

)
+
(
∇ · u− f, p̌

)
+
(
κ−1(θ) q , q̌

)
−
(
η,∇ · q̌

)
+
(
Eu− Eu , q̌

)
,

+
(
∇ · q − (Ep− Ep) , η̌

)
∀ (ǔ, p̌, q̌, η̌) ∈ Z

so that the optimality conditions (4.4)-(4.6) for problem (P.4) become: seek (u, p, q, η) ∈
Z = [L2

ρ

(
Γ;H(div,D)

)
× L2

ρ

(
Γ;L2(D)

)
]2 such that

(4.16)
(
F
(
(u, p, q, η), β

)
, (ǔ, p̌, q̌, η̌, )

)
= 0 ∀ (ǔ, p̌, q̌, η̌) ∈ Z.

Let Z̃ ⊂ Z denote a finite-dimensional subspace. Then, from (4.15), for any θ ∈ Θ,
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the discrete operator F̃ (θ) = P̃F (θ) is defined by

(4.17)

(
F̃
(
(u, p, q, η), β

)
, (ǔ, p̌, q̌, η̌)

)
=
(
κ−1(θ)u , ǔ

)
−
(
p,∇ · ǔ

)
+
(
∇ · u− f, p̌

)
+
(
κ−1(θ) q , q̌

)
−
(
η,∇ · q̌

)
+
(
Eu− Eu , q̌

)
,

+
(
∇ · q − (Ep− Ep) , η̌

)
∀ (ǔ, p̌, q̌, η̌) ∈ Z̃

and the discrete problem (4.9) becomes: seek (ũ, p̃, q̃, η̃) ∈ Z̃ ⊂ Z such that

(4.18)
(
F̃
(
(ũ, p̃, q̃, η̃), β

)
, (ǔ, p̌, q̌, η̌)

)
= 0 ∀ (ǔ, p̌, q̌, η̌) ∈ Z̃.

Note that, through the use of the weak definition of the various mappings, the
projection operator Q̃ and the isomorphism J are implicitly induced through the
duality pairing. In fact, we have that J is the Riesz mapping connecting Z =
[L2
ρ

(
Γ;H(div,D)

)
×L2

ρ

(
Γ;L2(D)

)
]2 with its dual space and Q̃ : Z → Z̃ is the projec-

tion with respect to the inner product in [L2
ρ

(
Γ;H(div,D)

)
× L2

ρ

(
Γ;L2(D)

)
]2.

To derive error estimates by applying Theorem 4.2 to our setting, we first need
to verify the assumptions of that theorem and those of Theorem 4.1.

The first partial Fréchet derivative DζF (θ0) ∈ L(Θ,Ξ) is given by, with ζ =
(u, p, q, η), θ0 =

(
(u0, p0, q0, η0), β0

)
, θ1 =

(
(u1, p1, q1, η1), β1

)
,

(4.19)

(
DζF (θ0)θ1, ζ̌

)
=
(
κ−1(θ0)u1 , ǔ

)
+
(
κ̃(θ0, θ1)u0 , ǔ

)
− (p1,∇ · ǔ) + (∇ · u1, p̌)

+
(
κ−1(θ0)q1 , q̌

)
+
(
κ̃(θ0, θ1)q0 , q̌

)
− (η1,∇ · q̌) + (Eu1, q̌)

+ (∇ · q1 − Ep1, η̌)

for all ζ̌ = (ǔ, p̌, q̌, η̌) ∈ Z, where

κ̃(θ0, θ1) = − 1

3β0
κ−4(θ0)

(
u1 · q0 + u0 · q1

)
.

The Fréchet derivative DF (θ0) ∈ L(Θ,Ξ) is then given by(
DF (θ0)θ1, ζ̌

)
=
(
DζF (θ0)θ1, ζ̌

)
+
(
DβF (θ0)θ1, ζ̌

)
,

where (
DβF (θ0)θ1, ζ̌

)
=

β1

3β2
0

(
κ−4(θ0)u0 · q0 u0, ǔ

)
+

β1

3β2
0

(
κ−4(θ0)u0 · q0 q0, q̌

)
.

The second Fréchet derivative D2
θF (θ) ∈ L(Θ×Θ,Ξ), with θ2 =

(
(u2, p2, q2, η2), β2

)
,

is given by

(4.20)

(
D2
θF (θ0)θ1θ2 , ζ̌

)
=
(
χ(θ0, θ1, θ2)u0 , ǔ

)
+
(
ψ(θ0, θ2)u1 + ψ(θ0, θ1)u2 , ǔ

)
+
(
χ(θ0, θ1, θ2)q0 , q̌

)
+
(
ψ(θ0, θ2)q1 + ψ(θ0, θ1)q2 , q̌

)
for all ζ̌ = (ǔ, p̌, q̌, η̌) ∈ Z, where

χ(θ0, θ1, θ2) =
β2

3β2
0κ

4(θ0)

(
u1 · q0 + u0 · q1

)
+

β1

3β2
0κ

4(θ0)

(
u2 · q0 + u0 · q2

)
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− 1

3β0κ4(θ0)

(
u1 · q2 + u2 · q1 +

2β1β2

β2
0

u0 · q0

)
+

4

9β2
0κ

7(θ0)

(
u1 · q0 + u0 · q1 −

β1

β0
u0 · q0

)(
u2 · q0 + u0 · q2 −

β2

β0
u0 · q0

)
,

and

ψ(θ0, θi) =
1

3κ4(θ0)

( βi
β2

0

u0 · q0 −
1

β0
ui · q0 −

1

β0
u0 · qi

)
,

with i = 1, 2, and κ(θ) defined as in (4.14).
Proposition 4.3. The mapping (4.15) F : Θ→ Ξ, where

Θ ≡ Z × Λ = [L2
ρ

(
Γ;H(div,D)

)
× L2

ρ

(
Γ;L2(D)

)
]2 × R+,

Ξ = Z∗ (duality with respect to (4.13)),

is of class C2 on S ⊂ Θ

S = [L6
ρ

(
Γ;H(div,D) ∩ L6(D)

)
× L2

ρ

(
Γ;L2(D)

)
]2 × R+,

and D2
θF is bounded on all bounded sets of S.

Proof. Starting with (4.20), straightforward but somewhat tedious calculation
shows that F is C2 mapping on S, and D2

θF is bounded on bounded sets of S.
Proposition 4.4. Let θ0 =

(
(u0, p0, q0, η0), β0

)
be a point in S such that ξ0 =

F (θ0) is a regular value of F . Then, kerD(u,p,qη)F (θ0) = {0}. Moreover, if Z̃ ⊂ Z,

then kerD(u,p,q,η)F̃ (θ0)|Z̃ = {0} as well.
Proof. Without loss of generality [20], i.e., by redefining the origin in Θ, we may

choose θ0 =
(
(u◦, p◦, q◦, η◦), β◦

)
with β◦ in an bounded interval of R+ and u◦, q◦

such that
(

1
β◦
u◦ · q◦

) 1
3 = 1

2

(
κmin + κmax). Then from (4.2) and (4.14) we have that

κ(θ0) = κ1, and therefore (4.19) writes(
DζF (θ0)θ1, ζ̌

)
=

1

κ1

(
u1 , ǔ

)
− 1

3β◦κ4
1

(
(u1 · q◦ + u◦ · q1)u◦ , ǔ

)
− (p1,∇ · ǔ)

+ (∇ · u1, p̌) +
1

κ1

(
q1 , q̌

)
− 1

3β◦κ4
1

(
(u1 · q◦ + u◦ · q1)q◦ , q̌

)
− (η1,∇ · q̌) + (Eu1, q̌) + (∇ · q1 − Ep1, η̌), ∀ ζ̌ = (ǔ, p̌, q̌, η̌) ∈ Z

from which it easily follows that kerD(u,p,q,η)F (θ0) = {0}. The result for the discrete

operator F̃ follows in the same manner.
We have now verified all the assumptions of Theorems 4.1 and 4.2 specialized to

our setting. Then, the following error estimate follows directly from Theorem 4.2.
Theorem 4.5. Let

(
u(β), p(β), q(β), η(β)

)
∈ Z = [L2

ρ

(
Γ;H(div,D)

)
×L2

ρ

(
Γ;L2(D)

)
]2

and
(
ũ(β), p̃(β), q̃(β), η̃(β)

)
∈ Z̃ ⊂ Z denote solutions of the optimality system (4.16)

and its discretization (4.18). Then,

(4.21)

‖u(β)− ũ(β)‖L2
ρ(Γ,H(div,D)) + ‖p(β)− p̃(β)‖L2

ρ(Γ,L2(D))

+ ‖q(β)− q̃(β)‖L2
ρ(Γ,H(div,D)) + ‖η(β)− η̃(β)‖L2

ρ(Γ,L2(D))

≤ C inf
(ǔ,p̌,q̌,η̌)∈Z̃

{
‖u(β)− ǔ(β)‖L2

ρ(Γ,H(div,D)) + ‖p(β)− p̌(β)‖L2
ρ(Γ,L2(D))

+ ‖q(β)− q̌(β)‖L2
ρ(Γ,H(div,D)) + ‖η(β)− η̌(β)‖L2

ρ(Γ,L2(D))

}
.

17



5. Numerical Experiments.

5.1. Sensitivity Analysis for the Parameter Estimation. Consider the
state equations:

(5.1)


u = −κ∇p in Ω×D,

∇ · u = f in Ω×D,
p = 0 on Ω× ∂D.

We introduce the adjoint equations:

(5.2)


∇ · q = p− p in Ω×D,

κ−1q +∇η = −(u− u) in Ω×D,
η = 0 on Ω× ∂D.

Define the cost functional:

J3(Yi, i = 1 . . . N) =
1

2
E
[
‖u(Yi, ·)− u(Yi, ·)‖2L2(D)

]
+

1

2
E
[
‖p(Yi, ·)− p(Yi, ·)‖2L2(D)

]
+
β

2
E
[
‖κ(Yi, ·)‖2L2(D)

]
.

We assume that the map κ→ u is differentiable. Then, the sensitivity equations are
the following:

(5.3)


u+ εus = − ((κ+ εκs)∇(p+ εps)) in Ω×D,

∇ · (u+ εus) = f in Ω×D,
ps = 0 on Ω× ∂D.

Multiplying out and using the state equations (5.1), we get:

(5.4)


κ−1us − κ−2κsu = −∇ps in Ω×D,

∇ · us = 0 in Ω×D,
ps = 0 on Ω× ∂D.

Next, we multiply by the adjoint variables q, η and integrate over D:

(5.5)


∫
D
κ−1usq −

∫
D
κ−2κsuq = −

∫
D
∇psq in Ω×D,∫

D
∇ · usη = 0 in Ω×D,

ps = 0 on Ω× ∂D.

Integrate by parts:

(5.6)


∫
D
κ−1usq −

∫
D
κ−2κsuq =

∫
D
ps∇ · q in Ω×D,∫

D
us∇η = 0 in Ω×D,

ps = 0 on Ω× ∂D.

There are no boundary terms since η = 0 and ps = 0 on Ω× ∂D.
Take expectation and add the first two identities of (5.6):

E
[∫

D

us
(
κ−1q +∇η

)]
− E

[∫
D

κ−2κsuq

]
= E

[∫
D

ps∇ · q
]
.
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Using the adjoint equations (5.2), the previous identity becomes:

−E
[∫

D

us(u− u)

]
− E

[∫
D

κ−2κsuq

]
= E

[∫
D

ps(p− p)
]
.

We give below the pseudocode for the Adjoint variable-based Algorithm, as in
[25]:

INITIALIZATION: i ← 1, RelError ← 1000, Choose initial conditions for Y,
ε = 1, ε← 2ε/3
while RelError > tol do
ε← 3ε/2, i← i+ 1
Solve Adjoint Equations (for the adjoint variables)
Solve Standard Gradient Update, i.e. Yi+1 = Yi − ε dJdYi
Solve State Equations
Evaluate Jn(i)

while J
(i)
n > J

(i−1)
n do

ε← ε/10
Solve Standard Gradient Update
Solve State Equations
Evaluate Jn(i)

end while
RelError ←

∣∣∣J (i)
n − J (i−1)

n

∣∣∣ / ∣∣∣J (i)
n

∣∣∣
end while

The numerical experiments were performed using MATLAB R2012a and were solved
on a square domain [0, 1] × [0, 1]. The convergence is computed on a 40 × 40 spatial
mesh, with Dirichlet boundary conditions. For solving the equation (5.1) numeri-
cally, an upwind scheme is used to find the effective diffusion coefficient and central
difference for finding the hydraulic gradient. We assume the true random diffusion
coefficient κ and the exact solution p to be given by:

κ(ω, x) = (1 + x2 + y2) +
1

N
∗

N∑
n=1

cos (nπx) · cos (nπy)Yn(ω)

p(ω, x) =

N∑
n=1

sin (nπx) · sin (nπy)Yn(ω)

and then we calculate the source f(ω, x).

To understand the dynamics that the computational model produces, we first present
some sample simulations. The tolerance was taken 10−4, the step size for the adjoint
algorithm is ε = 1 and the coefficient β = 10−6 in the cost functional formula.

5.2. Numerical Experiments for the Deterministic Elliptic Case. The
exact values used for producing simulated measurements were 0.5 for the Yi, i =
1, . . . , N in the formula for the diffusion coefficient k. Figures 5.1(a) and 5.1(b) show
the plot for the cost functional J and the logarithm of J to base 10. The trajectories
of the N = 5 Ys, the cross-section of target solution versus estimated solution, the
cross-section of target diffusion versus estimated diffusion are presented in figures
5.1(c), (d) and (e) respectively.
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Fig. 5.1: Deterministic Case: (a)Cost functional J, (b)Log10(J), (c)N=5 trajectories of Y’s,
(d)cross-section of target solution versus estimated solution, (e)cross-sections of target diffusion ver-
sus estimated diffusion for a 40x40 grid; tol=10−4, ε = 1, β = 10−6. The exact values of Ys are
0.5.
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5.3. Numerical Experiments for the Stochastic Elliptic Case. The exact
values used for producing simulated measurements were considered uniformly dis-
tributed random numbers for the Yi, i = 1, . . . , n. To understand the dynamics that
the computational model produces, we present sample simulations on a 40x40 spatial
mesh, where we first considered 10 realizations (see Figures 5.2 and 5.3) and then 50
realizations (see Figures 5.4 and 5.5) for our stochastic model.

In the first simulation where only 10 realizations were considered, we observed
that for achieving the same tolerance of 10−4 for the relative error, the cost functional
J3 only needs to do 27 iterations, whereas J4 and J5 require 76 and 61 iterations
respectively. By plotting cross-sections, we observed that our estimated solutions
corresponding to either J3, J4 or J5 approximate very well the mean of the target
solution, while the variance of the target solution is better approximated when using
the solution corresponding to J3 cost functional. When considering the cross-sections
for the diffusion coefficient, the mean and variance of our estimated diffusion were not
doing so well in approximating the mean and variance of the target diffusion coeffi-
cient. One explanation would be the fact that our cost functionals try to minimize
the difference between the estimated and target solutions, whereas the difference be-
tween the estimated and target diffusion coefficient is never taken into account in the
formulas of the cost functionals.

In the second simulation with 50 realizations being considered, the cost func-
tional J3 only needs 22 iterations, whereas J4 and J5 require 47 and 95 iterations
respectively. By plotting cross-sections, again it was observed that our estimated so-
lutions corresponding to either J3, J4 or J5 approximate really well the mean of the
target solution, whereas for the variance, it seems the solution corresponding to J5

is closer to the variance of the target solution. By looking at the cross-sections for
the diffusion coefficient, we can see the mean and variance of our estimated diffusion
are not doing so great in approximating the mean and variance of the target diffusion
coefficient.
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Fig. 5.2: (a)J , (b)Log10(J) and cross-sections for: (c)target solution, (d)target diffusion, (e)mean
of target diffusion vs. mean of estimated diffusion, (f)variance of target diffusion vs. variance of
estimated diffusion. Grid considered is 40x40, tol=10−4, ε = 1, β = 10−6, runs=10. The target
values of N=5 Ys are random.
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Fig. 5.3: cross-sections for: (a)mean of target solution vs. mean of estimated solution, (b)variance
of target solution vs. variance of estimated solution, (c)forcing function f, (d)mean convergence in
L2 norm of estimated solution. Grid considered is 40x40, tol=10−4, ε = 1, β = 10−6, runs=10. The
target values of N=5 Ys are random.
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Fig. 5.4: (a)J , (b)Log10(J) and cross-sections for:(c)target solution, (d)target diffusion, (e)mean
of target diffusion vs. mean of estimated diffusion, (f)variance of target diffusion vs. variance of
estimated diffusion. Grid considered is 40x40, tol=10−4, ε = 1, β = 10−6, runs=50. The target
values of N=5 Ys are random.
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Fig. 5.5: cross-sections for: (a)mean of target solution vs. mean of estimated solution, (b)variance
of target solution vs. variance of estimated solution, (c)forcing function f, (d)mean convergence in
L2 norm of estimated solution. Grid considered is 40x40, tol=10−4, ε = 1, β = 10−6, runs=50. The
target values of N=5 Ys are random.
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