
THE TRAVELING SALESMAN PROBLEM

by

Corinne Brucato

B.A., Sonoma State University, 2010

M.S., University of Pittsburgh, 2013

Submitted to the Graduate Faculty of

the Department of Mathematics in partial fulfillment

of the requirements for the degree of

Master of Sciences

University of Pittsburgh

2013

UNIVERSITY OF PITTSBURGH

MATHEMATICS DEPARTMENT

This thesis was presented

by

Corinne Brucato

It was defended on

April 16, 2013

and approved by

Dr. Jeffrey Paul Wheeler, University of Pittsburgh, Mathematics

Dr. Beverly Michael, University of Pittsburgh, Mathematics

Dr. Catalin Trenchea, University of Pittsburgh, Mathematics

Dr. Anna Vainchtein, University of Pittsburgh, Mathematics

Thesis Advisor: Dr. Jeffrey Paul Wheeler, University of Pittsburgh, Mathematics

ii

Copyright c© by Corinne Brucato

2013

iii

THE TRAVELING SALESMAN PROBLEM

Corinne Brucato, M.S.

University of Pittsburgh, 2013

Although a global solution for the Traveling Salesman Problem does not yet exist, there are algorithms for an

existing local solution. There are also necessary and sufficient conditions to determine if a possible solution

does exist when one is not given a complete graph. This paper gives an introduction to the Traveling

Salesman Problem that includes current research. Additionally, the algorithms are used to find a route

traveling through twenty US colleges. As well, we use the Geometric Algorithm to assign scouts for the

Pittsburgh Pirates.

iv

TABLE OF CONTENTS

1.0 THE PROBLEM STATED . 1

2.0 SOME BASIC GRAPH THEORY . 2

2.1 Basic Definitions . 2

2.2 Advanced Definitions . 6

3.0 THE HISTORY . 10

4.0 COMPLEXITY CLASSES . 12

5.0 SOME KNOWN ALGORITHMS . 15

5.1 Nearest-Neighbor Algorithm . 15

5.2 Closest Insertion Algorithm . 19

5.3 Geometric Algorithm . 24

6.0 EXISTENCE OF HAMILTONIAN PATHS AND CYCLES 28

6.1 Complete Graphs . 28

6.2 Not Complete Graphs . 29

7.0 APPLICATIONS . 34

7.1 Colleges . 34

7.1.1 Nearest Neighbor and Closest Insertion . 35

7.1.2 Geometric Algorithm . 37

7.2 Pittsburgh Pirates . 40

8.0 CONCLUSION . 45

BIBLIOGRAPHY . 46

INDEX . 47

v

LIST OF FIGURES

2.1 Tetrahedral Graph . 2

2.2 Cubical Graph . 2

2.3 Octahedral Graph . 3

2.4 Dodecahedral Graph . 3

2.5 Icosahedral Graph . 4

2.6 K2 . 5

2.7 K3 . 5

2.8 Bridge Graph . 7

2.9 Removed edge gf . 7

2.10 Removed edge gi . 7

2.11 Removed edge hi . 7

2.12 K5 . 8

2.13 Towns . 9

2.14 Complete Graph . 9

2.15 Highlight outer edges . 9

2.16 Convex Hull of the towns . 9

3.1 Dodecahedron Graph . 10

3.2 Sample Start . 10

4.1 Brute Force . 12

5.1 Start . 15

5.2 Stage 1 . 16

5.3 Stage 2 . 16

5.4 Stage 3 . 16

5.5 Stage 4 . 16

5.6 Stage 5 . 17

5.7 Stage 6 . 17

5.8 Final . 17

vi

5.9 Start . 18

5.10 Stage 1 . 18

5.11 Stage 2 . 18

5.12 Final . 18

5.13 Nearest-Neighbor Pseudocode . 19

5.14 Start . 19

5.15 Stage 2 . 20

5.16 Stage 3 . 20

5.17 Stage 4 . 20

5.18 Stage 5 . 21

5.19 Stage 6a . 21

5.20 Stage 7a . 21

5.21 Stage 8a . 22

5.22 Stage 6b . 22

5.23 Stage 7b . 22

5.24 Stage 8b . 23

5.25 Closest Insertion Algorithm Pseudocode . 23

5.26 Stage 1 . 24

5.27 Stage 2 . 24

5.28 Stage 3 . 24

5.29 Stage 4 . 25

5.30 Stage 5 . 25

5.31 Stage 6 . 25

5.32 Stage 7 . 26

5.33 Stage 8 . 26

5.34 Stage 9 . 26

5.35 Stage 7 . 26

5.36 Stage 8 . 26

5.37 Stage 9 . 26

5.38 Stage 10 . 26

5.39 Geometric Algorithm Pseudocode . 27

6.1 Each Degree is 2 . 30

7.1 US Colleges (c© 2013 Google, c© 2013 Tele Atlas) . 34

7.2 Driving Distances Between Each College (c© 2013 Google, c© 2013 Tele Atlas) 35

7.3 Nearest Neighbor and Closest Insertion Algorithms on Colleges 36

vii

7.4 Hamiltonian Cycle Using the Nearest Neighbor and Closest Insertion Algorithm (c© 2013

Google, c© 2013 Tele Atlas) . 37

7.5 Stage 1 . 37

7.6 Stage 2 . 37

7.7 Stage 3 . 37

7.8 Stage 4 . 38

7.9 Stage 5 . 38

7.10 Stage 6 . 38

7.11 Stage 7 . 38

7.12 Stage 8 . 38

7.13 Stage 9 . 38

7.14 Stage 10 . 38

7.15 Stage 11 . 38

7.16 Stage 12 . 38

7.17 Final . 39

7.18 Geometric Algorithm on Colleges . 39

7.19 Hamiltonian Cycle Using the Geometric Algorithm (c© 2013 Google, c© 2013 Tele Atlas) . . . 40

7.20 NAME (c© 2013 Google, c© 2013 Tele Atlas) . 41

7.21 Group 1 . 41

7.22 Group 2 . 41

7.23 Group 3 . 41

7.24 Group 4 . 42

7.25 Group 5 . 42

7.26 Group 6 . 42

7.27 Group 7 . 42

7.28 Group 8 . 42

7.29 Group 9 . 42

7.30 Group 10 . 43

7.31 Group 11 . 43

7.32 Group 12 . 43

7.33 Stage 1: (c© 2013 Google, c© 2013 Tele Atlas) . 43

7.34 Stage 2 . 43

7.35 Stage (n− 1) . 44

7.36 Stage n: (c© 2013 Google, c© 2013 Tele Atlas) . 44

viii

ACKNOWLEDGEMENTS

A great number of individuals are owed a debt of gratitude for their contribution to the academic success

that I have attained. The following are but a few of those individuals.

First and foremost, I would like to thank Dr. Jeffrey Wheeler of the University of Pittsburgh because abso-

lutely none of this would have been possible without him. Dr. Wheeler walked up to me one day and asked

about my future plans as a graduate student, and when he realized that I had no idea he said,“You are going

to write a thesis, and I am going to be your advisor.” I am so grateful for all of the time that he created out

of nowhere in order to be a great advisor. Thank you “all day e’ry day.”

Thank you Dr. Beverly Michael, Dr. Catalin Trenchea, and Dr. Anna Vainchtein for going above and

beyond the duties of serving on my committee. Thank you for all of the comments on this thesis, and for

making my days at the University of Pittsburgh a true pleasure.

I would like to thank my parents for always believing in me, no matter what my dreams are at any given

moment. You have shown me what it means to love and have faith, and for that I am grateful.

I would like to thank my many support groups around this country. Specifically in Pittsburgh, I would

like to thank Marc, Alex, Nadine, Soheil, and Stuart, all of whom have helped me in countless ways. I am

amazed that I get to have all of you in my life and I hope that I can be there for you as you have for me.

My family members around the country all are constantly supporting me. To Lisa, Lenny, Christine, all of

my nieces, nephews, and cousins: your love is a blessing. Thank you.

Thank you The Dax, Trevor, Kyle, Adam, Brad, Kerri and Fran for being amazing people in my life that I

can always count on although we are far away. I love you all.

Thank you to New Hope Church in Cotati, California. I want you to know that I count you as part of my

family. Thank you for being so warm and inviting. A special “thank you” goes out to Fran, for making these

relationships possible.

ix

1.0 THE PROBLEM STATED

A traveling salesman wishes to go to a certain number of destinations in order to sell objects. He wants to

travel to each destination exactly once and return home taking the shortest total route.

Each voyage can be represented as a graph G = (V,E) where each destination, including his home, is a

vertex, and if there is a direct route that connects two distinct destinations then there is an edge between

those two vertices. The traveling salesman problem is solved if there exists a shortest route that visits each

destination once and permits the salesman to return home. (This route is called a Hamiltonian Cycle and

will be explained in Chapter 2.)

The traveling salesman problem can be divided into two types: the problems where there is a path between

every pair of distinct vertices (no road blocks), and the ones where there are not (with road blocks). Both

of these types of TSP problems are explained in more detail in Chapter 6.

Though we are not all traveling salesman, this problem interests those who want to optimize their routes,

either by considering distance, cost, or time. If one has four people in their car to drop off at their respective

homes, then one automatically tries to think about the shortest distance possible. In this case, distance

is minimized. If one is traveling to different parts of the city using the public transportation system, then

minimizing distance might not be the goal, but rather minimizing cost.

In the first case, each vertex would be a person’s home, and each edge would be the distance between homes.

In the second case, each vertex would be a destination of the city and each edge would be the cost to get

from one part of the city to the next. Thus, the Traveling Salesman Problem optimizes routes.

1

2.0 SOME BASIC GRAPH THEORY

Before presenting algorithms and conditions for when a locally optimal solution exists, some basic graph

theory definitions are needed. For an extensive overview of Graph Theory, refer to [1] or [5].

2.1 BASIC DEFINITIONS

The platonic solids in figures 2.1 through 2.7 will be used to explain some basics of Graph Theory.

b

a

cd

Figure 2.1: Tetrahedral Graph

g

f

e

h

b

a

d

c

Figure 2.2: Cubical Graph

Definition 1. [Simple Graph]

A simple graph, G = (V,E), is a finite nonempty set V of objects called vertices (singular vertex) to-

gether with a possibly empty set E of 2-element subsets of V called edges.

All of the figures in Chapter 2 are examples of simple graphs.

2

b

a

ce

d

f

Figure 2.3: Octahedral Graph

c

b

a e

d

l

j

h f

n
k m

o

g

i

s t

p
q

r

Figure 2.4: Dodecahedral Graph

Definition 2. [Adjacent]

Two vertices are adjacent if they are connected by an edge.

Definition 3. [Incident]

Vertex u and the edge uv are said to be incident with each other. Similarly, v and uv are incident.

Vertices b and c in Figure 2.3 are adjacent, while vertices a and f in the same figure are not. In Figure

2.4, vertex p and edge pq are incident, but vertex p and edge ae are not.

Definition 4. [Degree of a Vertex]

The degree of a vertex v (denoted: deg(v)) is the number of vertices in G that are adjacent to v.

For example, the vertex a in Figure 2.1 has degree three, while the vertex k in Figure 2.5 has degree 5. In

a simple graph the maximum degree that any vertex can have is one less than the total number of vertices.

3

Definition 5. [Minimum and Maximum Degree of a Graph]

The maximum degree of a graph, G, is the greatest degree over all of the vertices in G. The minimum

degree of a graph is the least degree over all of the vertices in G. The maximum degree is denoted ∆(G),

while the minimum degree is denoted δ(G).

For example, let H1 = Figure 2.5 and H2 = Figure 2.3. Then, ∆(H1) = 5, and δ(H1) = 4, and

∆(H2) = δ(H2) = 4.

Definition 6. [Order and Size of a Graph]

The number of vertices in a given graph G, denoted |V(G)|, is called the order of G and is denoted Ord(G),

or |G|. The number of edges in G, denoted |E(G)|, is called the size of G.

Figures 2.1 through 2.5 have order, 4, 8, 6, 20, and 12, and size 6, 12, 12, 30, and 30, respectively.

b

a c

h

i

d

e

f

g l

k

j

Figure 2.5: Icosahedral Graph

Definition 7. [Complete Graph]

A graph in which every pair of distinct vertices is adjacent is called a complete graph. A complete graph

of order n is denoted Kn.

4

Up to isomorphism, there is a unique complete graph of order n for each n. Figure 2.6 and Figure 2.7 are

the complete graphs of order 2 and 3, respectively. The complete graph of order 4 is represented in Figure

2.1, and the complete graph of order 5 is represented in Figure 2.12.

Definition 8. [Walk]

For two, not necessarily distinct, vertices u and v in a graph G, a {u→ v} walk W in G is a sequence of

vertices in G, beginning with u and ending at v such that consecutive vertices in W are adjacent in G.

In Figure 2.1 an example of a walk from a to d is {a → b → c → d}, and a walk from d to c could be

{d→ b→ a→ b→ a→ d→ a→ b→ c}. Note that a walk can pass through the same vertex or the same

edge more than once.

Definition 9. [Closed Walk]

A walk whose initial and terminal vertices are the same is a closed walk.

For example, Figure 2.2 we have the following closed walks: {a→ b→ c→ d→ e→ d→ a},

{g → h→ e→ f → g}.

ba

Figure 2.6: K2

d

c

e

Figure 2.7: K3

Definition 10. [Path]

A walk in a graph G in which no vertex is repeated is called a path.

In Figure 2.3, {a→ b→ c→ f} and {c→ f → e→ a→ b} are paths, but {a→ b→ e→ b→ c} is not

because vertex b is visited more than once. Note that in paths, since no vertex is repeated, it necessarily

follows that no edge is repeated.

5

Definition 11. [Cycle]

A walk whose initial and terminal vertices are the same and every other vertex is distinct is called a cycle.

A cycle can also be thought of as a closed path. For example, in Figure 2.4 we have {a→ b→ c→ d→

e→ a} and {p→ q → r → s→ t→ m→ n→ o→ p}.

2.2 ADVANCED DEFINITIONS

Definition 12. [Hamiltonian Path]

A path in a given graph G that contains every vertex of G is called a Hamiltonian Path of G.

The following definition will be of special importance to us.

Definition 13. [Hamiltonian Cycle]

A cycle in a given graph G that contains every vertex of G is called a Hamiltonian Cycle of G.

In Figure 2.2 {e → f → g → h → c → d → a → b} is an example of a Hamiltonian Path. In Figure 2.5

an example of a Hamiltonian Cycle is {a → b → c → e → d → k → f → l → j → i → h → g → a}. Note

that in Figure 1.8 {a→ b→ c→ a} and {b→ c→ a→ b} are the same Hamiltonian Cycle.

Definition 14. [Connected and Disconnected Graphs]

A graph G is connected if G contains a {u → v} walk for every two vertices u and v of G, otherwise G

is disconnected.

Figures 2.1 through 2.8 are all connected graphs, but if we consider Figures 2.6 and 2.7 as one graph,

G1, then G1 would be a disconnected graph since there does not exist a path from vertex a to vertex d.

6

Definition 15. [Component]

The maximally connected subgraphs of a graph G are called components of G. i.e. H is a component

of G if H is not a proper subgraph of any connected subgraph of G.

Definition 16. [Bridge]

An edge e = uv in a connected graph G whose removal results in a disconnected graph is called a bridge.

a b

c e

f

g
h

i
j

k

l

m
n

o
p

q

Figure 2.8: Bridge Graph

Figure 2.8 above is a connected graph with three bridges: edges gf , gi, and hi. Figures 2.9 through 2.11

are the disconnected graphs with edges gf , gi, and gh are removed, respectively. Notice, in each case, that

once the edge is removed there are two components. For example, in Figure 2.9 one component contains the

vertices {a, b, c, d, e}, and the other contains {f, g, h, i, j, k, l,m, n, o, p, q}.

a b

c e

f

g
h

i
j

k

l

m
n

o
p

q

Figure 2.9: Removed edge gf

a b

c e

f

g
h

i
j

k

l

m
n

o
p

q

Figure 2.10: Removed edge gi

a b

c e

f

g
h

i
j

k

l

m
n

o
p

q

Figure 2.11: Removed edge hi

7

Definition 17. [Planar]

A graph is called planar, provided that it can be represented by a drawing in the plane in such a way

that two edges intersect only at vertices. In other words, none of the edges in a planar graph cross over each

other.

Notice that the complete graph of order 5 (Figure 2.12) does not have a planar representation. Figure

2.1 through Figure 2.7 are all planar graphs.

c
b

a
e

d

Figure 2.12: K5

Definition 18. [Weighted Graph]

If each edge in a given graph G is assigned a real number (called the weight of the edge), then G is a

weighted graph.

Definition 19. [The Join of a Graph]

The join G = G1 ∧ G2 of G1 and G2 has vertex set V (G) = V (G1) ∪ V (G2) and edge set

E(G) = E(G1) ∪ E(G2) ∪ {uv : u ∈ V (G1), v ∈ V (G2)}

Definition 20. [Convex Set]

An object is convex if for every pair of points within the object, every point on the line segment that

joins them is also within the object.

8

Definition 21. [Convex Hull]

The intersection of all convex sets containing a set of points, or vertices, is called the convex hull.

Figure 2.13 through 2.16 demonstrate how to create the convex hull given a set of vertices.

Create the complete graph of order n in a graph G, where n is the number of towns in question. Keep all of

the outside edges of this graph and destroy all of the other edges.

Figure 2.13: Towns Figure 2.14: Complete Graph

Note that all of the other edges between vertices of the graph are contained inside the convex hull. Another

way to imagine the convex hull is if one wraps a rubber band around all of the towns, then pulls the rubber

band as tight as possible. This is the convex hull of the set of towns.

Figure 2.15: Highlight outer edges Figure 2.16: Convex Hull of the towns

9

3.0 THE HISTORY

Although the exact origins of the Traveling Salesman Problem are unclear, the first example of such a prob-

lem appeared in the German handbook Der Handlungsreisende - Von einem alten Commis - Voyageur for

salesman traveling through Germany and Switzerland in 1832 as explained in [3]. This handbook was merely

a guide, since it did not contain any mathematical language. People started to realize that the time one

could save from creating optimal paths is not to be overlooked, and thus there is an advantage to figuring

out how to create such optimal paths.

This idea was turned into a puzzle sometime during the 1800’s by W. R. Hamilton and Thomas Kirkman.

Hamilton’s Icosian Game was a recreational puzzle based on finding a Hamiltonian cycle in the Dodecahe-

dron graph as seen below.

Figure 3.1: Dodecahedron Graph

1

2
3

4 5

Figure 3.2: Sample Start

One person would put the numbered pegs, 1 through 5, in adjacent vertices on the dodecahedron graph. A

second person would use the rest of the numbers, 6 through 20, in adjacent vertices after the vertex with

the 5 in order to create a Hamiltonian Cycle that would end at the first peg labeled “1”. It is the case that

every starting position has a solution. The game was not a big success, for children complained that the

10

game was too easy. For more information about this and other similar grames, refer to [3].

The Traveling Salesman Problem, as we know and love it, was first studied in the 1930’s in Vienna and

Harvard as explained in [3]. Richard M. Karp showed in 1972 that the Hamiltonian cycle problem was NP-

complete, which implies the NP-hardness of TSP (see the next section regarding complexity). This supplied

a mathematical explanation for the apparent computational difficulty of finding optimal tours.

The current record for the largest Traveling Salesman Problem including 85,900 cities, was solved in 2006 as

explained in [3]. The computers used versions of the branch-and-bound method as well as the cutting planes

method (two seemingly elementary integer linear programming methods). The code used in these solutions

is called Concorde and is available to view for free over the internet.

If one considers every single city in the world, and solve for the shortest Hamiltonian Cycle (hopefully using

a computer), then one can win fame, fortune, and a cash prize.

11

4.0 COMPLEXITY CLASSES

One would like to believe that the The Traveling Salesman Problem can always be solved by a computer.

The maximum number of Hamiltonian Cycles in a given graph with three or more vertices is (n−1)!
2 . Hence,

in theory a computer could consider each of these possible tours. The problem here is that as n gets large,

(n−1)!
2 gets extremely large, as we can see in the table in Figure 4.1.

n (n-1)!/2

3 1

4 3

5 12

6 60

7 360

8 2,520

9 20,160

10 181,440

20 6.08226E+16

30 4.42088E+30

40 1.01989E+46

Figure 4.1: Brute Force

As these numbers grow larger, it becomes clear that a computer will not be able to solve such problems in a

reasonable amount of time. Solving the Traveling Salesman Problem means searching for an algorithm that

will make the number of computations acceptable.

The Traveling Salesman Problem can be split into different, perhaps easier to solve, problems. In this chap-

ter, we will explain these different problems, their complexity classes, and their relation to the full Traveling

Salesman Problem.

A complexity class is a set of problems of related complexity. The more simple complexity class are defined

by the type of computational problem, the model of computation and the resource (or resources) that are

12

being bounded.

The Turing Machine was an idea considered before the invention of computers. The machine would be

shaped like a box with an infinitely long piece of paper running through it. In each iteration, the Turing

Machine reads the entry on the paper, follows a previously determined action (either changing an entry or

keeping it the same), and then moves the paper either to the left or the right a certain number of times

(could not move at all). These three steps continue until the previously determined algorithm is completed.

There are two different machines to consider, a deterministic Turing machine, much like the computers

that we use every day, and a non-deterministic Turing machine. A deterministic turing machine behaves

like a function in the sense that every time the Turing Machine gets to a particular step there is one and

only one way to proceed. A non-deterministic Turing Machine may choose different paths when presented

with the same set-up. When an algorithm can be split into two parts the non-deterministic computer can

continue on both paths at the same time.

A problem that be solved by a deterministic Turing machine in polynomial time, which means that the

number of steps to solve the problem can be represented as a polynomial function, is in the complexity class

P.

For example, if you are given a set of n numbers, {3, 7, 5, 1}, to put in numerical order, the number of

steps that it will take is represented as a polynomial of degree at most 2. For more information about this

specific problem, as well as others, refer to [6]. The following is a demonstration of how such a problem

would reorder the set {3, 7, 5, 1} using the algorithm commonly referred to as bubble sort.

This algorithm looks at two numbers at a time and deciphers if they need to be switched or if they can stay

in the same order. In the first case, take 3 and 7. 3 is indeed smaller than 7, so these two numbers do not

need to switch places. Next, take 7 and 5. 7 is larger than 5, thus these two must be switched and the result

is {3, 5, 7, 1}. Once the program has reached the end of the row, it will go through again and again until

the set of numbers are in increasing order. This specific problem continues as depicted below, with the pair

of numbers in question in bold.

{3, 7, 5, 1} → {3, 7, 5, 1}

{3, 7, 5, 1} → {3, 5, 7, 1}

{3, 5, 7, 1} → {3, 5, 1, 7}

{3, 5, 1, 7} → {3, 5, 1, 7}

{3, 5, 1, 7} → {3, 1, 5, 7}

13

{3, 1, 5, 7} → {3, 1, 5, 7}

{3, 1, 5, 7} → {1, 3, 5, 7}

A decision problem is a problem whose answer is either “yes” or “no.” The set of decision problems that

be solved by a non-deterministic Turing machine in polynomial time that can be verified by a deterministic

Turing machine is in the complexity class NP. A version of the Traveling Salesman Problem, referred to as

the decision version, asks if given a list of cities and the distances between each city, does there exist a route

whose distance is less than k, for some given total distance k? This is a ”yes” or ”no” question, and thus is

in the NP complexity class.

Let Q and R be two decision problems. If an algorithm can reduce a solution for Q to a solution for R in poly-

nomial time, it is said that R is poly-time reducible (or just reducible) to Q. A problem is NP-complete if it

can be proven that it is in the complexity class NP, and shown that it is reducible to a problem in polynomial

time that it is already known to be NP-complete. A simplified version of the Traveling Salesman Problem,

classified as NP-Complete, asks if there exists a Hamiltonian Cycle or a Hamiltonian Path in a given graph G.

A problem is NP-hard if and only if it is at least as hard as an NP-complete problem. The full Traveling

Salesman Problem is at least as hard as the simplified version listed above, since it asks to find all possible

Hamiltonian cycles and then find the shortest one. Therefore, the Traveling Salesman Problem is classified

as NP-Hard.

14

5.0 SOME KNOWN ALGORITHMS

Since a globally optimal solution has not been found, there are many algorithms that give locally optimal

solutions. In this chapter, we will introduce three. For a more extensive overview of the algorithms refer to

[1], [4], and [5].

5.1 NEAREST-NEIGHBOR ALGORITHM

The Nearest-Neighbor Algorithm is a type of greedy algorithm which means that at every stage of the al-

gorithm we pick the best possible edge to use. In other words, we make a locally optimal decision in every

step of the algorithm. Another thing to note about this algorithm is that we need to pick a starting vertex

and if we choose different vertices we might get different Hamiltonian Cycles, as illustrated in the following

examples. We will think of this starting vertex as the Traveling Salesman’s Home.

A

B

C

D

E

5

12

8

15

7

9

8

10

6

11

Figure 5.1: Start

We start with a weighted complete graph of order 5 as our example. First, we see what the Nearest-Neighbor

15

Algorithm gives us if we start with vertex A. In Stage 1 we can see that we have four edges to choose from.

A

B

C

D

E

5

12

8

15

7

9

8

10

6

11

Figure 5.2: Stage 1

A

B

C

D

E

5

12

8

15

7

9

8

10

6

11

Figure 5.3: Stage 2

Edge AD has the least weight, 6, so we will use that edge, and ignore the others for now. Then, as we can

see in Stage 3, we will look at all of the vertices incident with D and again pick the edge with the least

weight. In this case, we have edge DC with a weight of 5.

A

B

C

D

E

5

12

8

15

7

9

8

10

6

11

Figure 5.4: Stage 3

A

B

C

D

E

5

12

8

15

7

9

8

10

6

11

Figure 5.5: Stage 4

In stage 4 we consider the edges incident with vertex C. Note that the edge with the least weight, eight, is

edge CA. However, recall that our salesman needs a Hamiltonian Cycle, which means he does not want to

travel to any vertex more than once. We ignore edges to vertices that have already been travelled to, until

16

our salesman can travel home, and choose the edge with the least weight of 9, edge CE.

A

B

C

D

E

5

12

8

15

7

9

8

10

6

11

Figure 5.6: Stage 5

A

B

C

D

E

5

12

8

15

7

9

8

10

6

11

Figure 5.7: Stage 6

At this point we technically have three edges to choose from: ED, EA, and EB. Again, we do not want to

travel to vertices that we have already traveled to, unless we are at the end of our Hamiltonian Cycle, and

thus we must choose edge EB, with a weight of 11. Our last step will be to choose the last edge BA that

brings our traveling salesman back home. The total trip, when starting at vertex A, has a weight of 39.

A

B

C

D

E

5

12

8

15

7

9

8

10

6

11

Figure 5.8: Final

17

We mentioned before that if we start at a different vertex we might get different weights for the same graph.

Instead of starting at vertex A, let the traveling salesman start at vertex E.

A

B

C

D

E

5

12

8

15

7

9

8

10

6

11

Figure 5.9: Start

A

B

C

D

E

5

12

8

15

7

9

8

10

6

11

Figure 5.10: Stage 1

First, we choose edge EA with a weight of 7. Then we look at the vertices from vertex A: AB, AC, and AD

and choose edge AD with a weight of 6. We continue in the same way that we did before and obtain the

graph in figure 5.12 with a total weight or 35, which is a smaller weight than when we started with vertex

A.

A

B

C

D

E

5

12

8

15

7

9

8

10

6

11

Figure 5.11: Stage 2

A

B

C

D

E

5

12

8

15

7

9

8

10

6

11

Figure 5.12: Final

18

Pseudocode

Initialize: Pick a vertex ui ∈ V (G)

Form a path P = {ui} and put T = V (P).

Put r = 1 and vr = ui

Iteration:

1. Choose uj ∈ V (G) \ T such that it is the minimum distance from vr.

(Ties may be broken arbitrarily.)

2. Put vr+1 = uj and let P = {ui → uj}

3. Put r = r + 1 and repeat until T = V (G)

Output: A Hamiltonian Cycle is the path with the last vertex of P made adjacent to the first.

Figure 5.13: Nearest-Neighbor Pseudocode

5.2 CLOSEST INSERTION ALGORITHM

The Closest Insertion algorithm is similar to the Nearest Neighbor Algorithm in the sense that they are

both greedy algorithms. We illustrate the Closest Insertion Algorithm with the weighted octahedral graph

G below.

C

B

A

D

E

F

8

5 6

6
4

7

4

8

6

7

6

7

Figure 5.14: Start

19

We will pick vertex A to be our traveling salesman’s home and look at all of the edges incident with vertex

A. We collect these edges in a set T(G), such that at stage 1, T (G) = {AB,AE,AD,AC}. We choose to add

edge AE with a weight of 4, since it has the least weight of all of the edges in T (G), and move onto stage 2.

In the nearest neighbor algorithm, at this point we would only look at the edges incident with vertex E, but

in the Closest Insertion algorithm we will look at the edges that are incident with vertices A and E. Thus,

T (G) = {AB,AD,AC,EB,EF,ED}.

C

B

A

D

E

F

8

5 6

6
4

7

4

8

6

7

6

7

Figure 5.15: Stage 2

C

B

A

D

E

F

8

5 6

6
4

7

4

8

6

7

6

7

Figure 5.16: Stage 3

We well take the edge with the least weight, which is edge AC. Now we have two edges in our tour as seen

in Figure 5.16, and we expand the list of edges again. Note that once a vertex is incident with two edges,

we will no longer consider any other edges incident with that vertex, since we do not want to travel to one

vertex more than once. If we have two edges incident with each vertex, then we can think of our salesman

traveling to that vertex and then away from that vertex.

20

C

B

A

D

E

F

8

5 6

6
4

7

4

8

6

7

6

7

Figure 5.17: Stage 4

Thus, we will remove edges AB, and AD from our vertex set T(G). At the same time we will add the edges

incident with our new vertex C. By stage 4, we have that T (G) = {EB,EF,ED,CD,CF,CB}.

C

B

A

D

E

F

8

5 6

6
4

7

4

8

6

7

6

7

Figure 5.18: Stage 5

Now there is another situation. There are two edges (EB and EF) that have the same weight. In this case,

we arbitrarily pick an edge and move on. We shall see what happens in each case. First, we pick edge EB,

and at stage 6 we have that T (G) = {CD,CF,CB,BF}.

If we continue with this algorithm, we next select edge BF, then edge FD, and finally edge CD.

21

C

B

A

D

E

F

8

5 6

6
4

7

4

8

6

7

6

7

Figure 5.19: Stage 6a

C

B

A

D

E

F

8

5 6

6
4

7

4

8

6

7

6

7

Figure 5.20: Stage 7a

C

B

A

D

E

F

8

5 6

6
4

7

4

8

6

7

6

7

Figure 5.21: Stage 8a

The final cost for this tour is 33. Note that this is not necessarily the shortest tour, but rather an example

of a possible tour. Remember that in stage 5 we made a choice between edges EB and EF.

Next we will see what happens if we had chosen edge EF instead of EB. The algorithm proceeds as follows.

22

C

B

A

D

E

F

8

5 6

6
4

7

4

8

6

7

6

7

Figure 5.22: Stage 6b

C

B

A

D

E

F

8

5 6

6
4

7

4

8

6

7

6

7

Figure 5.23: Stage 7b

Now we see that choosing edge EF instead of edge EB has created a problem. Our traveling salesman’s tour

does not allow him to visit vertex D at all as depicted in Figure 5.23. This brings up another point that

we have to consider. The octahedral graph is not a complete graph, and therefore we cannot always find a

Hamiltonian Cycle.

In cases such as this, if we had not already found a Hamiltonian Cycle, we would look through the points in

the algorithm for which we made a decision between edges and try a different edge. It is important to note

that finding a Hamiltonian Cycle is not always possible. We address this issue in Chapter 6 and give some

necessary and sufficient conditions for which a Hamiltonian Cycle exists.

C

B

A

D

E

F

8

5 6

6
4

7

4

8

6

7

6

7

Figure 5.24: Stage 8b

23

Pseudocode

Initialize: Pick a vertex ui ∈ V (G)

Form a path P = {ui} and put T = V (P).

Iteration:

1. Choose uj ∈ V (G) \ T such that it is the minimum distance from either the start of P or

the end of P . (Ties may be broken arbitrarily.)

2. Put the edge with minimum distance incident with uj in P

3. Repeat until T = V (G)

Output: A Hamiltonian Cycle is the path with the last vertex of P made adjacent to the first.

Figure 5.25: Closest Insertion Algorithm Pseudocode

5.3 GEOMETRIC ALGORITHM

For this example we will start with 12 destinations for our traveling salesman. In the Geometric algorithm it

is assumed that we have a complete graph. Recall that a complete graph means that each vertex is adjacent

to every other vertex, but note that we will not draw each edge in the figures in order to make the algorithm

more clear.

The first step is to create the convex hull around all of the destinations, then draw the edges that connect

these surrounding vertices as seen in Stage 2.

We call the vertices that are not on the border of the convex hull towns. In Figure 5.25 above, we can see

that the towns are {F, I, J, K, L}. We take the first town, vertex I, and draw the edges from that vertex to

every other vertex in the convex hull, as seen in Stage 3.

24

A

B C

D

E
F

G

H

I

J K

L

Figure 5.26: Stage 1

A

B C

D

E
F

G

H

I

J K

L

Figure 5.27: Stage 2

A

B C

D

E
F

G

H

I

J
K

L

Figure 5.28: Stage 3

Next, we examine all of the angles centered at vertex I. We find the largest of these angles, highlight the

edges that create that angle, then destroy the edge from the convex hull that is no longer needed as seen in

Figure 5.28.

As we destroy the edge that was on the convex hull we also destroy the temporary edges from vertex I to

the other vertices as depicted in Stage 6.

25

A

B C

D

E
F

G

H

I

J
K

L

Figure 5.29: Stage 4

A

B C

D

E
F

G

H

I

J
K

L

Figure 5.30: Stage 5

A

B C

D

E
F

G

H

I

J
K

L

Figure 5.31: Stage 6

Now the border contains the vertices {A, B, C, D, E, G, H, I} and the set of towns is {F, J, K, L}. In the

next step we draw all of the edges from town J to the vertices on the border including vertex I. As before,

look at the angles created this way, choose largest one, delete the edge on the border, then delete all of the

temporary edges incident to J.

26

A

B C

D

E
F

G

H

I

J
K

L

Figure 5.32: Stage 7

A

B C

D

E
F

G

H

I

J
K

L

Figure 5.33: Stage 8

A

B C

D

E
F

G

H

I

J
K

L

Figure 5.34: Stage 9

We are now left with the graph in Figure 5.32. The algorithm continues in this way until there are no more

towns left to put in the tour for our traveling salesman. In our example, we choose to look at vertices K,

F, and L, in that order. In the event of a tie between two angles, the programmer is allowed to arbitrarily

choose an angle and continue.

A

B C

D

E
F

G

H

I

J
K

L

Figure 5.35: Stage 7

A

B C

D

E
F

G

H

I

J K

L

Figure 5.36: Stage 8

A

B C

D

E
F

G

H

I

J K

L

Figure 5.37: Stage 9

A

B C

D

E
F

G

H

I

J K

L

Figure 5.38: Stage 10

27

Pseudocode

Initialize: Create the convex hull around all of the vertices.

Let A be the set of all vertices that lie on the convex hull.

Let C be the set of edges in the convex hull.

Let T be the set of all vertices that do not lie on the convex hull.

1. Pick the vertex, vi ∈ T closest to the convex hull and create all of the edges incident with vi

and the vertices in A.

2. Measure all of the angles created this way. Let viuj and viuj+1 be the edges that form the

largest angle centered at vi. Keep these edges, and destroy the rest of the edges that are not

in C along with the edge ujuj+1.

3. Now vi ∈ A.

4. Continue until T = ∅.

Output: A Hamiltonian Cycle with edges in C.

Figure 5.39: Geometric Algorithm Pseudocode

28

6.0 EXISTENCE OF HAMILTONIAN PATHS AND CYCLES

Suppose a traveler wants to fly on a Southwest Airlines flight from Pittsburgh, PA to Manchester, NH. The

traveler will be disappointed to know that there is not a direct flight. Instead, one must first fly to Baltimore,

Maryland in order to eventually reach their destination. We must consider this possibility when searching

for routes for the traveling salesman. If such conditions arise, one is no longer guaranteed a Hamiltonian

Path nor a Hamiltonian Cycle.

6.1 COMPLETE GRAPHS

If for every pair of towns, there exists a direct road between them, then the voyage can be represented as a

complete graph.

Since every destination is connected to every other destination we can always find a Hamiltonian Path, and

furthermore, we can determine just how many Hamiltonian Paths there are. There are n choices for the

salesman’s home, and since there is a route connecting that vertex to every other vertex in the graph there

are (n− 1) choices for the next destination. Then (n− 2) and so on. Thus in a labeled complete graph there

are n! Hamiltonian Paths in any voyage without road blocks.

Hamiltonian Cycles can be thought of as complete circular permutations. We no longer worry about choosing

a home for your traveling salesman, for each vertex in the Hamiltonian Cycle will have degree 2. One edge

incident with each vertex represents arriving at this destination, while the other edge represents leaving that

destination, thus each vertex could be thought of as the salesman’s home. Once we are at a specific vertex

we have (n−1) choices for the next vertex, then (n−2), and so on which will give a total of (n−1)! voyages.

However, if there exists a cycle {a→ b→ ... y → z → a}, it will be the same as the cycle {a→ z → y → ...

b → a}. Thus, it would have been counted twice. Since this will happen with every cycle in the complete

graph, there are (n−1)!
2 Hamiltonian Cycles in any voyage that can be represented as a complete graph.

29

6.2 NOT COMPLETE GRAPHS

If the voyage cannot be represented as a complete graph, then there is no longer a guarantee that a Hamil-

tonian Cycle is possible.

We now discuss known conditions associated with the existence of Hamiltonian Cycles.

Theorem 1. Bridge Theorem

If a graph G contains a bridge, then G does not contain a Hamiltonian Cycle.

Proof. Let uv be a bridge in a graph G and call the components of G−uv A and B. Suppose, on the contrary,

that G contains a Hamiltonian Cycle, H(G). Then H(G) must contain the edge uv, since it is the only edge

that links components A and B. Without loss of generality, if the Hamiltonian Cycle starts on some vertex

in component A, then H(G) includes some path through A and the edge uv then into component B. Since

edge uv has already been traversed it is impossible to leave component B and return to A.

Note: If a graph G contains a bridge, then though G has no Hamiltonian cycle, it still may have a Hamiltonian

Path.

Property 1. Ore’s Property

Let G be a graph of order n ≥ 3. If

deg u + deg v ≥ n

for each pair u, v of nonadjacent vertices of G, then G satisfies the Ore Property.

Theorem 2. Ore’s Theorem

If a graph G satisfies the Ore Property, then G contains a Hamiltonian Cycle.

Proof. Assume, on the contrary, that for some integer n ≥ 3, there exists a graph H of order n such that for

each pair of nonadjacent vertices u and v, deg u + deg v ≥ n and yet H is not Hamiltonian.

Add as many edges to the graph of H as possible between pair of nonadjacent vertices so that the resulting

graph G is still not Hamiltonian. (If we add any other edge, G will be Hamiltonian. In other words, G is a

maximal non-Hamiltonian graph.) By the assumption that we made about H, we know that for every pair

of nonadjacent vertices u and v in G, degGu+ degGv ≥ n. Also note that G is not a complete graph.

30

Pick nonadjacent vertices x, y and add edge xy to the graph G. Then G + xy is necessarily Hamiltonian.

Thus, there exists a Hamiltonian Cycle C, and C necessarily contains the edge xy, thus G must contain a

Hamiltonian path from x to y, say (x = v1, v2, ..., vn = y).

If xvi ∈ E(G), where 2 ≤ i ≤ (n− 1), then yvv−1 6∈ E(G); for otherwise,

C ′ = (x = v1, v2, ..., vi−1, y = vn, vn−1, vn−2, ..., vi, x)

is a Hamiltonian cycle of G, which is impossible. Hence, for each vertex of G adjacent to x, there is a vertex

of V (G) \ {y} not adjacent to to y. However then,

degGy ≤ (n− 1)− degGx

degGx+ degGy ≤ (n− 1)

which is a contradiction.

Note that Ore’s Theorem is not a necessary condition for a Hamiltonian Cycle, but a sufficient condition.

Figure 6.1 below does not satisfy Ore’s Property since the sum of the degrees of every pair of nonadjacent

vertices is 4, which is less than 6. However, the graph still contains a Hamiltonian Cycle, namely {A→ C →

F → E → B → D → A}.

CB

A

F E

D

Figure 6.1: Each Degree is 2

A consequence of Ore’s Theorem is Dirac’s Theorem.

Theorem 3. Dirac’s Theorem

If G is a graph of order n ≥ 3 such that

deg v ≥ n
2

for each vertex v of G, then G is Hamiltonian.

31

Proof.

By our assumption, we have that for every vertex v

deg v ≥ n

2

deg v + deg v ≥ n

2
+
n

2

2 (deg v) ≥ n

deg v ≥ n

2

Since v is not adjacent to itself, by Ore’s Theorem, G contains a Hamiltonian Cycle.

Lemma 1.

If n-1 ≥ 2k, then

2k (k - n + 1) + (n2 − n+ 1) ≥ n2+1
2

Proof.

4k(k − n+ 1) + (n− 1)2 = 4k2 − 4k(n− 1) + (n− 1)(n− 1)

= 4k2 + (n− 1)[(n− 1)− 4k]

≥ 4k2 + 2k[2k − 4k]

= 4k2 + 2k[−2k]

= 0

4k(k − n+ 1) + (n− 1)2 ≥ 0

4k(k − n+ 1) + (n− 1)2 + n2 + 1 ≥ n2 + 1

4k(k − n+ 1) + n2 − 2n+ 1 + n2 + 1 ≥ n2 + 1

4k(k − n+ 1) + 2(n2 − n+ 1) ≥ n2 + 1

2k(k − n+ 1) + (n2 − n+ 1) ≥ n2 + 1

2

Theorem 4.

Let G be a graph of order n ≥ 3 and size m. If

deg u + deg v ≥ n

for each pair u, v of nonadjacent vertices of G, then m ≥ n2

4 .

32

Proof. From Dirac’s Theorem above, we can assume that the minimum degree of G is k where k > n
2 . Thus,

we have that k < (n−1)
2 and (n− 1) ≥ 2k.

Let S be the set of vertices in G with degree k. Since the sum of the degrees of every pair of nonadjacent

vertices in at least n, it follows that G[S] is a complete subgraph of G.

G is Hamiltonian, by Ore’s Theorem, and thus is connected. Thus, some vertex in S is adjacent to a vertex

not in S. Hence, |S| ≥ k. Let u ∈ S. Thus, degGu = k. Therefore, u is adjacent to k − 1 vertices having

degree k or more and adjacent to a vertex of degree k + 1 or more. Let w be a vertex distinct from u that

is not adjacent to u. Then

deg u + deg w ≥ n

deg w ≥ n− k

Therefore,

2m =
∑

v∈V (G)

degv = degu+
∑

v∈N(u)

degv +
∑

w 6∈N [u]

degw

≥ k + [(k − 1)k + (k + 1)] + (n− k − 1)(n− k)

= 2k(k − n+ 1) + (n2 − n+ 1)

≥ n2 + 1

2
(6.1)

2m ≥ n2 + 1

2

m ≥ n2 + 1

4

≥ n2

4

Equation (6.1) is satisfied by Lemma 1 above.

Corollary 1.

Let G be a graph of order n ≥ 2. If

deg u + deg v ≥ (n− 1)

for each pair u, v of nonadjacent vertices of G, then G contains a Hamiltonian path.

Proof. (Found in [1]) Let H = G ∧ K1 be the join of G and K1, where w is the vertex of H that does not

belong to G. Then

deg u + deg v ≥ (n+ 1)

33

for each pair u, v of nonadjacent vertices of H. Since the order of H is (n+ 1), it follows by Ore’s Theorem

that H is Hamiltonian. Let C be a Hamiltonian cycle of H. Deleting w from C produces a Hamiltonian

path in G.

34

7.0 APPLICATIONS

7.1 COLLEGES

Although one may not be a traveling salesman, there are other ways that one can use this information. For

example, a student wants to drive to twenty colleges around the United States in the shortest way possible.

Since the student is driving, he or she wants to minimize the distances between each of the schools. Figure

7.1 shows the twenty schools that the student wants to visit, and Figure 7.2 shows the distance between each

of the colleges in alphabetical order.

Figure 7.1: US Colleges (c© 2013 Google, c© 2013 Tele Atlas)

In this chapter we will use the three algorithms described in Chapter 5 to obtain the Hamiltonian Cycle

for the student. The student in this situation could start anywhere, so let’s look at Figure 7.2 and find the

shortest distance between two colleges and pick one of those to start the journey. The distance between

Yale University and Brown University is 103 miles by car, thus we will start at Brown University and head

towards Yale University.

35

Colleges

A
ri
zo

n
a

S
ta

te

B
ri
g
h
am

 Y
o
u
n
g

B
ro

w
n

C
o
lo

ra
d
o

D
u
ke

Fl
o
ri
d
a

S
ta

te

Lo
u
is

ia
n
a

Lo
u
is

vi
lle

M
ic

h
ig

an

N
ew

 M
ex

ic
o

N
o
rt

h
 D

ak
o
ta

N
o
tr

e
D

am
e

O
h
io

O
kl

ah
o
m

a

O
re

g
o
n

Pi
tt

S
ta

n
fo

rd

Te
xa

s
A
&

M

W
is

co
n
si

n

Ya
le

Arizona State 0 648 2625 549 2185 1898 1458 1752 1963 427 1743 1817 1899 1060 1148 2084 732 1095 1725 2524

Brigham Young 648 0 2363 481 2129 2030 1641 1594 1638 557 1214 1492 1710 1126 825 1861 811 1195 1375 2262

Brown 2625 2362 0 1965 669 1274 1541 920 744 2172 1623 875 720 1595 3085 543 3113 1734 1111 103

Colorado 549 481 1965 0 1667 1605 1194 1132 1242 431 963 1096 1280 664 1249 1464 1276 799 979 1866

Duke 2185 2129 669 1667 0 621 906 541 643 1733 1504 733 459 1187 2880 479 2791 1169 932 566

Florida State 1898 2030 1274 1605 621 0 443 662 978 1482 1669 925 839 1007 2855 929 2541 843 1107 1172

Louisiana 1458 1641 1541 1194 906 443 0 754 1106 1074 1447 976 968 638 2477 1148 2132 435 1027 1442

Louisville 1752 1594 920 1132 541 662 754 0 347 1293 1015 261 209 724 2319 389 2346 841 443 818

Michigan 1963 1638 744 1242 643 978 1106 347 0 1511 961 170 183 970 2361 287 2389 1124 388 688

New Mexico 427 557 2172 431 1733 1482 1074 1293 1511 0 1318 1363 1447 585 1378 1631 1063 641 1275 2071

North Dakota 1743 1214 1623 963 1504 1669 1447 1015 961 1318 0 813 1078 918 1571 1182 1882 1147 582 1583

Notre Dame 1817 1492 875 1096 733 925 976 261 170 1363 813 0 271 826 2215 373 2242 979 241 774

Ohio 1899 1710 720 1280 459 839 968 209 183 1447 1078 271 0 882 2453 192 2408 1049 504 621

Oklahoma 1060 1126 1595 664 1187 1007 638 724 970 585 918 826 882 0 1891 1066 1667 251 798 1495

Oregon 1148 825 3085 1249 2880 2855 2477 2319 2361 1378 1571 2215 2453 1891 0 2583 559 2042 2108 2984

Pitt 2084 1861 543 1464 479 929 1148 389 287 1631 1182 373 192 1066 2583 0 2612 1220 611 442

Stanford 732 811 3113 1276 2791 2541 2132 2346 2389 1063 1882 2242 2408 1667 559 2612 0 1701 2125 3012

Texas A&M 1095 1195 1734 799 1169 843 435 841 1124 641 1147 979 1049 251 2042 1220 1701 0 977 1634

Wisconsin 1725 1375 1111 979 932 1107 1027 443 388 1275 582 241 504 798 2108 611 2125 977 0 1011

Yale 2524 2262 103 1866 566 1172 1442 818 688 2071 1583 774 621 1495 2984 442 3012 1634 1011 0

Figure 7.2: Driving Distances Between Each College (c© 2013 Google, c© 2013 Tele Atlas)

7.1.1 Nearest Neighbor and Closest Insertion

We follow the Nearest-Neighbor algorithm in the first case. After traveling from Brown University to Yale

University, looking at the column under Yale University in Figure 7.2 above, the next smallest distance is to

the University of Pittsburgh with a total driving distance of 442 miles. We add this destination to the route

then look at the next closest college on our list remembering not to travel to a college that we have already

visited.

With the Closest Insertion Algorithm, one does not just look at the distance from that college, but also the

distances at the beginning of the route. At the point where Brown University and Yale University are in the

route, we look at both of these columns in the table above. The minimum distance from Yale to another

college, the University of Pittsburgh, is 442 miles as we mentioned before which is shorter than the distance

between Brown University and the University of Pittsburgh. The next smallest distance between Brown

University and another college on the list is 720 miles to Ohio State University.

The Closest Insertion Algorithm will continue with the same route as the Nearest Neighbor Algorithm until

the distance between the last college put into the route and the next college is greater than 720 miles, or

36

until Ohio State University is added to the route in another way. If and when Ohio State is added to the

route, we look at the next smallest distance between Brown University and any other college on the list.

Figure 7.3 expresses the route that the student would travel to each of the twenty colleges using both the

Nearest Neighbor Algorithm and the Closest Insertion Algorithm. Both of the algorithms seem to start off

well, in the sense that every distance is below 1000 miles, so the student does not have to travel for too long

before they get to the next destination. However, once the student arrives in Oregon, the situation changes.

The next destination is 1571 miles away to the University of North Dakota. Then, the trip back to Brown

University is 1623 miles which no amount of Taylor Swift CDs will make the 25 hour trip go any faster.

Order College Distance
1 Brown University -
2 Yale University 103
3 University of Pittsburgh 442
4 Ohio State University 192
5 University of Michigan 183
6 University of Notre Dame 170
7 University of Wisconsin 241
8 University of Louisville 443
9 Duke University 541

10 Florida State University 621
11 Louisiana State University 443
12 Texas A&M University 435
13 University of Oklahoma 251
14 University of New Mexico 585
15 Arizona State University 427
16 University of Colorado 549
17 Brigham Young University 481
18 Stanford University 811
19 University of Oregon 559
20 University of North Dakota 1571

Brown University 1623
10671TOTAL DISTANCE

Figure 7.3: Nearest Neighbor and Closest Insertion Algorithms on Colleges

Figure 7.4 shows the route that the student would take on the map (if the roads were a straight line, of

course). If the student wants to map their route using graph theory in order to show his or her parents, he

or she might draw this map.

37

Figure 7.4: Hamiltonian Cycle Using the Nearest Neighbor and Closest Insertion Algorithm (c© 2013 Google, c© 2013 Tele
Atlas)

7.1.2 Geometric Algorithm

We have just seen that if the student chooses to use the Nearest Neighbor algorithm or the Closest Insertion

algorithm, they will get the same route. If the student uses the Geometric algorithm, however, the journey

is different and actually shorter.

Recall that the geometric algorithm starts with the convex hull of all of the points as seen in Figure 8.6 below.

Figure 7.5: Stage 1 Figure 7.6: Stage 2 Figure 7.7: Stage 3

We can see the progression of the algorithm in the proceeding figures below. In each step, the college closest

to the edge set at the beginning of each step is the town that is selected next in the algorithm.

38

Figure 7.8: Stage 4 Figure 7.9: Stage 5 Figure 7.10: Stage 6

At the start of the algorithm it seems as if the total distance will be greater than the distance traveled using

the Nearest Neighbor algorithm or the Closest Insertion algorithm. However, look at the list of the distances

as a whole. While the Nearest Neighbor and Closest Insertion algorithms seem to have taken the student

across the United States in an effective manner , the journey back home was quite awful. The Geometric

Algorithm takes the journey, as a whole, into consideration. This is further justified as we look at the chart

of distances for the algorithm. Notice that not one of the distances exceeds 1000 miles. This will make both

the student and his or her parents very happy.

Figure 7.11: Stage 7 Figure 7.12: Stage 8 Figure 7.13: Stage 9

Figure 7.14: Stage 10 Figure 7.15: Stage 11 Figure 7.16: Stage 12

39

Figure 7.17: Final

Order College Distance
1 Brown University -
2 Yale University 103
3 Duke University 566
4 University of Louisville 541
5 Florida State University 662
6 Louisiana State University 443
7 Texas A&M University 435
8 University of Oklahoma 251
9 University of New Mexico 585

10 Arizona State University 427
11 Stanford University 732
12 University of Oregon 559
13 Brigham Young University 825
14 University of Colorado 481
15 University of North Dakota 963
16 University of Wisconsin 582
17 University of Notre Dame 241
18 University of Michigan 170
19 Ohio State University 183
20 University of Pittsburgh 192

Brown University 543
9484TOTAL DISTANCE

Figure 7.18: Geometric Algorithm on Colleges

40

Figure 7.19: Hamiltonian Cycle Using the Geometric Algorithm (c© 2013 Google, c© 2013 Tele Atlas)

The Nearest-Neighbor and the Closest Insertion Algorithms are both examples of greedy algorithms as

previously stated. In that sense, they are blind to the fact that the student in this scenario is looking for the

minimum distance through all of these colleges, including the trip home. The Geometric Algorithm takes

the entire journey into consideration at the same time. Traveling across the United States went well for

both algorithms, however it was the trip home that was unbearable. When traveling across the country, one

should have more than one stop. The Geometric Algorithm, on the other hand, takes the convex hull of

the destinations and shrinks it until all of the destinations have been added to the journey. The algorithm

takes the whole trip into consideration. For this reason, we have found that the Geometric Algorithm gives

a shorter journey for the student. Therefore, we will only use the Geometric Algorithm for the following

problem.

7.2 PITTSBURGH PIRATES

The following data was provided by the Pittsburgh Pirates of major league baseball.

Every year the Pittsburgh Pirates organization sends scouts all over the United States. Last year twelve

groups of scouts traveled to 325 cities. Figure 7.20 is a map of all of the cities in question. (The full list

of cities appear in Figures 7.21 through 7.32.) We will use the Geometric Algorithm to find a Hamiltonian

41

Cycle for the first of the twelve groups of scouts. This will provide a journey through each destination that

will minimize their traveling distance. Since there are 12 groups of scouts, we will say that the average

number of cities that each group will travel to will be 27.

Figure 7.20: NAME (c© 2013 Google, c© 2013 Tele Atlas)

The first task is to group these 325 cities into 12 groups for each of the scouts as seen in the following figures.

Chapel Hill, NC NC
Cullowhee, NC NC
Davidson, NC NC
Elizabethtown, NC NC
Elon, NC NC
Greenville, NC NC
Holly Ridge, NC NC
Holly Springs, NC NC
Lexington, NC NC
Raleigh, NC NC
Southern Pines, NC NC
Blythewood, SC SC
Columbia, SC SC
Columbia, SC SC
Conway, SC SC
Due West, SC SC
Duncan, SC SC
Gaffney, SC SC
Lake City, SC SC
Murrells Inlet, SC SC
Rock Hill, SC SC
Roebuck, SC SC
Spartanburg, SC SC
Alexandria, VA VA
Hampton, VA VA
Newport News, VA VA
Norfolk, VA VA
Virginia Beach, VA VA

Figure 7.21: Group 1

Alhambra, CA
Arroyo Grande, CA
Bakersfield, CA
Bellflower, CA
Canoga Park, CA
Charleston, CA
Compton, CA
Costa Mesa, CA
Cypress, CA
Fullerton, CA
Huntington Beach, CA
La Mirada, CA
Long Beach, CA
Los Angeles, CA
Malibu, CA
Newbury Park, CA
Newhall, CA
North Hollywood, CA
Northridge, CA
Oxnard, CA
Salinas, CA
San Luis Obispo, CA
Santa Barbara, CA
Santa Clarita, CA
Stevenson Ranch, CA
Stockton, CA
Valencia, CA

Figure 7.22: Group 2

Ladner, BC
Berkeley, CA
Chico, CA
Clovis, CA
Davis, CA
Elk Grove, CA
Fresno, CA
Merced, CA
Mountain View, CA
Oakland, CA
Rocklin, CA
San Jose, CA
Santa Clara, CA
Stanford, CA
Visalia, CA
Honolulu, HI
Beaverton, OR
Corvallis, OR
Eugene, OR
Bellevue, WA
Longview, WA
Lynnwood, WA
Mill Creek, WA
Pullman, WA
Redmond, WA
Shoreline, WA
Spokane, WA

Figure 7.23: Group 3

42

Boca Raton, FL
Boynton Beach, FL
Bradenton, FL
Buford, FL
Coral Gables, FL
Deltona, FL
Doral, FL
Ft Myers, FL
Ft Pierce, FL
Gainesville, FL
Jacksonville, FL
Lantana, FL
Maitland, FL
Marianna, FL
Miami Shores, FL
Miami, FL
Montverde, FL
Niceville, FL
Orlando, FL
Oveido, FL
Palmetto, FL
Panama City, FL
Plantation, FL
Port St Joe, FL
Sanford, FL
St Augustine, FL
St Petersburg, FL
Tallahassee, FL
Tampa, FL

Figure 7.24: Group 4

Arlington, TX
Austin, TX
Big Spring, TX
Canton, TX
Dallas, TX
Denison, TX
Dripping Springs, TX
Ft Worth, TX
Grand Prairie, TX
Hurst, TX
Irving, TX
Klein, TX
Leander, TX
Lubbock, TX
Odessa, TX
San Antonio TX
San Antonio, TX
San Marcos, TX
Sherman, TX
Southlake, TX
Temple, TX
The Colony, TX
Waco, TX
Weatherford, TX
West, TX

Figure 7.25: Group 5

New Haven, CT
Southington, CT
Storrs, CT
Washington, DC
Groton, MA
Lowell, MA
Worchester, MA
Orono, ME
Hanover, NH
Rindge, NH
Tilton, NH
East Brunswick, NJ
Tabernacle, NJ
Brooklyn, NY
Jamaica, NY
Poughkeepsie, NY
Lancaster, PA
McMurray, PA
Philadelphia, PA
Pittsburgh, PA
Villanova, PA
Blacksburg, VA
Charlottesville, VA
Harrisonburg, VA
Lexington, VA
Lynchburg, VA
Richmond, VA
Huntington, WV

Figure 7.26: Group 6

Fayetteville, AR
Jessieville, AR
Little Rock, AR
Searcy, AR
State University, AR
Texarkana, AR
Emporia, KS
Gardner, KS
Lawrence, KS
Manhattan, KS
Overland Park, KS
Wichita, KS
Cape Girardeau, MO
Columbia, MO
Florissant, MO
Hillsboro, MO
Kansas City, MO
Riverside, MO
Springfield, MO
Warrensburg, MO
Warsaw, MO
Altus, OK
Broken Arrow, OK
Edmond, OK
Norman, OK
Oklahoma City, OK
Owasso, OK
Stillwater, OK

Figure 7.27: Group 7

Boone, IA
Mason City, IA
Champaign, IL
Evanston, IL
Lake Villa, IL
Normal, IL
Olney, IL
Robinson, IL
Rock Falls, IL
Waterloo, IL
Winnetka, IL
Bloomington, IN
Indianapolis, IN
Valparaiso, IN
Zionsville, IN
Allendale, MI
Ann Arbor, MI
East Lansing, MI
Kalamazoo, MI
Mt Pleasant, MI
Circle Pines, MN
Minneapolis, MN
Northfield, MN
Lincoln, NE
Omaha, NE
Bowling Green, OH
Kent, OH
Brookings, SD
Madison, SD
Stevens Point, WI

Figure 7.28: Group 8

Coolidge, AZ
Pheonix, AZ
Prescott, AZ
Scottsdale, AZ
Tempe, AZ
Thatcher, AZ
Tucson, AZ
Corona, CA
El Cajon, CA
Irvine, CA
Laguna Beach, CA
Rancho Cucamonga, CA
Riverside, CA
San Bernadino, CA
San Diego, CA
San Juan Capistrano, CA
San Marcos, CA
Tustin, CA
Aurora, CO
Lamar, CO
Hobbs, NM
Rio Rancho, NM
Henderson, NV
Las Vegas, NV
Provo, UT
Salt Lake City, UT
Cheyenne, WY

Figure 7.29: Group 9

43

Auburn, AL
Birmingham, AL
Dothan, AL
Hoover, AL
Slocomb, AL
Troy, AL
Tuscaloosa, AL
Wetumpka, AL
Athens, GA
Atlanta, GA
Brunswick, GA
Cochran, GA
Columbus, GA
Cuthbert, GA
Decatur, GA
Locust Grove, GA
Macon, GA
Moultrie, GA
Nashville, GA
Peachtree City, GA
Richmond Hill, GA
Statesboro, GA
Winder, GA
Athens, TN
Cleveland, TN
Johnson City, TN
Kingsport, TN
Knoxville, TN

Figure 7.30: Group 10

Bowling Green, KY
Lexington, KY
Louisville, KY
Biloxi, MS
Clarksdale, MS
Hattiesburg, MS
Jackson, MS
Lucedale, MS
Mississippi State, MS
Pascagoula, MS
Sumrall, MS
University, MS
Wheeler, MS
Winona, MS
Anderson, SC
Clemson, SC
Easley, SC
Columbia, TN
Cookeville, TN
Nashville, TN

Figure 7.31: Group 11

Baton Rouge, LA
Belle Chasse, LA
Bossier City, LA
Corsicana, LA
Eunice, LA
Franklinton, LA
Grambling, LA
Hammond, LA
Lafayette, LA
Lake Charles, LA
Marrero, LA
Monroe, LA
Natchitoches, LA
New Orleans, LA
Ruston, LA
Slidell, LA
Zachary, LA
Alvin, TX
Brenham, TX
College Station, TX
Crosby, TX
Galveston, TX
Houston, TX
Huntsville, TX
League City, TX
Lufkin, TX
Nacogdoches, TX
The Woodlands, TX

Figure 7.32: Group 12

Next, for each group we plot each of the destinations on the same graph and follow through with the Ge-

ometric Algorithm as we have done previously. The algorithm for Group 1 expressed in Figure 7.21 is as

follows.

Figure 7.33: Stage 1: (c© 2013 Google, c© 2013
Tele Atlas) Figure 7.34: Stage 2

44

Figure 7.35: Stage (n− 1)
Figure 7.36: Stage n: (c© 2013 Google, c©
2013 Tele Atlas)

This process is easily repeated for each of the other groups of cities, but is not included in this work.

45

8.0 CONCLUSION

We have seen for our college visit example that the Geometric Algorithm for the Traveling Salesman Problem

produced better results than the Nearest-Neighbor and Closest Insertion Algorithms. This may be true in

general, but more research is necessary.

There are many other algorithms for the Traveling Salesman Problem, including the computer program the

Concorde as explained in Chapter 3. Researchers are constantly trying to improve the results that have been

around for years. In 1976, Nicos Christofides [2] created an algorithm that gives a local solution which is

at most 1.5 times the optimal global solution. This record was recently surpassed in September of 2012 by

András Sebő and Jens Vygen [8] who created an algorithm that gives a local solution which is at most 1.4

times the optimal global solution. Furthermore, it is conjectured that one can find an algorithm that will

give a local solution which is at most 4
3 times the optimal global solution [8].

Whether we travel by a stage coach or a space ship, the Traveling Salesman Problem is relevant today and

will continue to be relevant tomorrow.

46

BIBLIOGRAPHY

[1] Chartrand, Gary and Lesniak, Linda and Zhang, Ping. Graphs & Digraphs. Fifth ed. Boca Raton: CRC,
2011. Print.

[2] Christofides, Nicos Worst-case Analysis of a New Heuristic for the Traveling Salesman Problem. Tech-
nical Report 388, Graduate School of Industrial Administration, Carnegie Melon University 1976. Print.

[3] Cook, William J. In Pursuit of the Traveling Salesman: Mathematics at the Limit of Computation.
Princeton, NJ: Princeton UP, 2012. Print.

[4] Foulds, L. R. Combinatorial Optimization for Undergraduates. New York: Springer-Verlag, 1984. Print.

[5] Gross, Jonathan L., and Yellen, Jay. Graph Theory and Its Applications. Second ed. Boca Raton, FL:
CRC, 1999. Print.

[6] Knuth, Donald Ervin. ”Sorting by Exchanging” The Art of Computer Programming. Reading, Mass.
[u.a.: Addison-Wesley, 1998. N. pag. Print.

[7] Papadimitriou, Christos H., and Steiglitz, Kenneth. Combinatorial Optimization: Algorithms and Com-
plexity. Englewood Cliffs, NJ: Prentice Hall, 1982. Print.

[8] Sebő, András and Vygen, Jens. Shorter Tours by Nicer Ears. arXiv:1201.1870v3 2012. Electronic.

47

INDEX

Adjacent, 3
Algorithm

Closest Insertion, 19, 35, 40
Geometric, 24, 37, 40
Nearest-Neighbor, 15, 35, 40

Bridge, 7

Complete Graph, 4
Component, 7
Connected Graphs, 6
Convex Hull, 9
Convex Set, 8
Cycle, 5

Degree of a Graph
Maximal, 4
Minimum, 4

Degree of a Vertex, 3
Disconnected Graphs, 6

Hamiltonian Cycle, 6
Hamiltonian Path, 6

Incident, 3

Join, 8

Order of a Graph, 4

Path, 5
Planar, 8

Simple Graph, 2
Size of a Graph, 4

Walk, 5
Closed Walk, 5

Weighted Graph, 8

48

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF FIGURES
	2.1. Tetrahedral Graph
	2.2. Cubical Graph
	2.3. Octahedral Graph
	2.4. Dodecahedral Graph
	2.5. Icosahedral Graph
	2.6. K2
	2.7. K3
	2.8. Bridge Graph
	2.9. Removed edge g f
	2.10. Removed edge g i
	2.11. Removed edge h i
	2.12. K5
	2.13. Towns
	2.14. Complete Graph
	2.15. Highlight outer edges
	2.16. Convex Hull of the towns
	3.1. Dodecahedron Graph
	3.2. Sample Start
	4.1. Brute Force
	5.1. Start
	5.2. Stage 1
	5.3. Stage 2
	5.4. Stage 3
	5.5. Stage 4
	5.6. Stage 5
	5.7. Stage 6
	5.8. Final
	5.9. Start
	5.10. Stage 1
	5.11. Stage 2
	5.12. Final
	5.13. Nearest-Neighbor Pseudocode
	5.14. Start
	5.15. Stage 2
	5.16. Stage 3
	5.17. Stage 4
	5.18. Stage 5
	5.19. Stage 6a
	5.20. Stage 7a
	5.21. Stage 8a
	5.22. Stage 6b
	5.23. Stage 7b
	5.24. Stage 8b
	5.25. Closest Insertion Algorithm Pseudocode
	5.26. Stage 1
	5.27. Stage 2
	5.28. Stage 3
	5.29. Stage 4
	5.30. Stage 5
	5.31. Stage 6
	5.32. Stage 7
	5.33. Stage 8
	5.34. Stage 9
	5.35. Stage 7
	5.36. Stage 8
	5.37. Stage 9
	5.38. Stage 10
	5.39. Geometric Algorithm Pseudocode
	6.1. Each Degree is 2
	7.1. US Colleges (© 2013 Google, © 2013 Tele Atlas)
	7.2. Driving Distances Between Each College (© 2013 Google, © 2013 Tele Atlas)
	7.3. Nearest Neighbor and Closest Insertion Algorithms on Colleges
	7.4. Hamiltonian Cycle Using the Nearest Neighbor and Closest Insertion Algorithm (© 2013 Google, © 2013 Tele Atlas)
	7.5. Stage 1
	7.6. Stage 2
	7.7. Stage 3
	7.8. Stage 4
	7.9. Stage 5
	7.10. Stage 6
	7.11. Stage 7
	7.12. Stage 8
	7.13. Stage 9
	7.14. Stage 10
	7.15. Stage 11
	7.16. Stage 12
	7.17. Final
	7.18. Geometric Algorithm on Colleges
	7.19. Hamiltonian Cycle Using the Geometric Algorithm (© 2013 Google, © 2013 Tele Atlas)
	7.20. NAME (© 2013 Google, © 2013 Tele Atlas)
	7.21. Group 1
	7.22. Group 2
	7.23. Group 3
	7.24. Group 4
	7.25. Group 5
	7.26. Group 6
	7.27. Group 7
	7.28. Group 8
	7.29. Group 9
	7.30. Group 10
	7.31. Group 11
	7.32. Group 12
	7.33. Stage 1: (© 2013 Google, © 2013 Tele Atlas)
	7.34. Stage 2
	7.35. Stage (n-1)
	7.36. Stage n: (© 2013 Google, © 2013 Tele Atlas)

	1.0 THE PROBLEM STATED
	2.0 SOME BASIC GRAPH THEORY
	2.1 Basic Definitions
	2.2 Advanced Definitions

	3.0 THE HISTORY
	4.0 COMPLEXITY CLASSES
	5.0 SOME KNOWN ALGORITHMS
	5.1 Nearest-Neighbor Algorithm
	5.2 Closest Insertion Algorithm
	5.3 Geometric Algorithm

	6.0 EXISTENCE OF HAMILTONIAN PATHS AND CYCLES
	6.1 Complete Graphs
	6.2 Not Complete Graphs

	7.0 APPLICATIONS
	7.1 Colleges
	7.1.1 Nearest Neighbor and Closest Insertion
	7.1.2 Geometric Algorithm

	7.2 Pittsburgh Pirates

	8.0 CONCLUSION
	BIBLIOGRAPHY
	INDEX

