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Abstract

We present the linear analysis of recent time filters used in numer-
ical weather prediction. We focus on the accuracy and the stability
of the leapfrog scheme combined with the Robert–Asselin–Williams
filter, the higher-order Robert–Asselin type time filter, the composite-
tendency Robert–Asselin–Williams filter and a more discriminating
filter.
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1 Introduction

The leapfrog (LF) time-stepping scheme emerged, from the early years of nu-
merical weather prediction, as the method of choice and is still popular for
a number of reasons. Perhaps the most important attribute of the leapfrog
scheme is that it preserves exactly the amplitude of a pure oscillation. The
dissipative characteristics of other time integration schemes are generally too
strong, while the absence of computational damping of leapfrog scheme is es-
pecially desirable for long-time integrations. Another feature of the leapfrog
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method is efficiency, namely, it evaluates the right-hand side of the meteo-
rological tendency equations only once per time step, in contrast with most
other schemes. The leapfrog scheme applied to a generic differential equation

du

dt
= F (u)

is given by

un+1 = un−1 + 2∆tF (un),

where ∆t is the time step and un is the approximated solution at time tn =
n∆t.

The leapfrog method is a three-time-level scheme, and when applied to a
simple set of linear differential equations, it generates two modes of motion.
One is the physical mode, which contributes to the true solution, while the
other one is the computational mode, which is merely artificial and has no
relation to the differential equations that are being integrated. The computa-
tional mode of the leapfrog scheme is undamped in linear problems, meaning
that it preserves the amplitude in each time step. In nonlinear problems,
however, the nonlinear terms introduce couplings between the physical and
computational modes which may amplify the computational mode. In short-
time simulations of weather and climate, the growth of the computational
mode is generally hard to detect, but when long-time integrations are con-
sidered, the computational mode dominates the solution.

One possible approach to control the leapfrog scheme’s computational
mode is to periodically use a two-time-level scheme, e.g., a Matsuno step
after every 11 leapfrog steps [21]. The idea is to reset the amplitude to
zero periodically, so it never becomes large enough/problematic. Another
technique is to use different explicit time-stepping schemes, e.g., the second-
order Adams-Bashforth method [18], the third-order Adam-Bashforth [8],
the leapfrog-trapezoidal method [14, 33] or the Magazenkov method [19].

The ubiquitous strategy in atmospheric models, for controlling the leapfrog
scheme’s computational mode, is the non-intrusive implementation of a time
filter after each leapfrog time step. Robert [25] designed such a filter, which
Asselin [3] analyzed and proved to effectively damp the computational mode
of the leapfrog scheme. This time filter is referred to as the Robert–Asselin
(RA) filter. The RA-filtered leapfrog scheme is defined by

vn+1 = un−1 + 2∆tF (vn),
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un = vn +
ν

2

(
vn+1 − 2vn + un−1

)
,

where v and u denote the unfiltered (provisional) and filtered (definitive)
variables, respectively. The dimensionless parameter ν ∈ [0, 1] determines
the strength of the filter.

The accuracy and stability properties of the RA filter were investigated in
[4, 12, 6, 10, 26, 7, 24, 5, 28, 13]. Currently, the RA filter is used in operational
numerical weather prediction models, atmospheric general circulation models
for climate simulation, ocean general circulation models, and models of fluids
in rotating annulus laboratory experiments, etc. A comprehensive list of
atmospheric models with RA filter can be found in [28]. Unfortunately, the
RA filter also damps the physical mode. As a result, the formal second-order
accuracy of the leapfrog scheme is reduced to first order, and can degrade the
accuracy of model simulations. Therefore, physical quantities (e.g., energy)
conserved by the time-continuous equations are not necessarily conserved by
time-discretized equations when the filter is used.

Because the RA-filtered leapfrog scheme is widely used in legacy codes for
atmospheric models, non-intrusive and simple-to-implement improvements
of RA appear attractive, in order to avoid the significant programming un-
dertaking. Williams [28] proposed a modification of the RA filter, which
combined with the leapfrog scheme is

wn+1 =un−1 + 2∆tF (vn),

un = vn +
να

2
(wn+1 − 2vn + un−1),

vn+1 =wn+1 − ν(1− α)

2
(wn+1 − 2vn + un−1),

where w, v, and u denote the unfiltered, once filtered, and twice filtered
variables, respectively. The parameter ν is as in the RA filter, and the new
dimensionless parameter α ∈ [0.5, 1]. Linear analysis shows that ν plays a
role in controlling the computational mode of the leapfrog scheme, while α is
the remedy in restoring accuracy. The filter is now referred to as the Robert–
Asselin–Williams (RAW) filter. It reduces the negative impact of the RA
filter on the physical mode and increases the numerical accuracy to second
order, at the price of a slight instability. The filter has been implemented
and studied in [27, 1, 23, 32, 20, 31, 13], and its behavior in implicit-explicit
(IMEX) integrations was analyzed in [29].
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Later, Williams [30] proposed two methods for further improving the
RAW-filtered leapfrog scheme. The first algorithm is a combination of the
RAW filter with a composite-tendency leapfrog (CTLF) scheme:

wn+1 =un−1 + 2∆t[γF (vn) + (1− γ)F (wn)],

un = vn +
να

2
(wn+1 − 2vn + un−1),

vn+1 =wn+1 − ν(1− α)

2
(wn+1 − 2vn + un−1),

where γ is a real number. A more discriminating filter takes the form
(1,−4, 6,−4, 1) instead of (1,−2, 1), and the scheme is

wn+1 =un−1 + 2∆t[γF (vn) + (1− γ)F (wn)],

un = vn + να(wn+1 − 4vn + 6un−1 − 4un−2 + un−3),

vn+1 =wn+1 − ν(1− α)(wn+1 − 4vn + 6un−1 − 4un−2 + un−3).

Both methods are computationally more demanding since they require two
tendency calculations per time step, which is the most expensive component
of contemporary atmosphere and ocean models. Nevertheless, the improve-
ments to the amplitude accuracy are considerable, especially, the latter. The
increased accuracy may allow a longer time step for the same error tolerance,
tending to offset the increased expense. The RAW-filtered leapfrog scheme
is analyzed in [17], and its behavior in IMEX integrations is studied in [2].

Recently, Li and Trenchea [15] proposed a higher-order Robert–Asselin
(hoRA) type time filter.

vn+1 = un−1 + 2∆tF (vn),

un = vn +
β

2

(
vn+1 − 2vn + un−1

)
− β

2

(
vn − 2un−1 + un−2

)
,

where the dimensionless parameter β ∈ [0, 0.4]. Under the same computa-
tional cost as RAW, the hoRA-filtered leapfrog scheme exhibits third-order
accuracy. Compared with the third-order Adams-Bashforth method, the
hoRA-filtered leapfrog scheme is almost as accurate, stable and efficient, yet
easily implementable in legacy codes. A study of the filter in IMEX integra-
tions was conducted in [16].

In the sequel we present the linear analysis for the leapfrog scheme com-
bined with the aforementioned time filters, focusing on the accuracy and
stability.
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2 Linear analysis of the leapfrog scheme com-

bined with time filters

We now derive the stability condition, amplitude, phase-speed, and the con-
sistency errors. These properties are illustrated by analyzing solutions to the
pure oscillation equation (see e.g., [8, 9])

du

dt
= iω u, (2.1)

where i is the imaginary unit, and ω a real constant. Define the ampli-
fication factor A as the ratio of the approximate solution at two adjacent
time steps, A = un+1/un. The amplification factor yields information on two
quantities of interest: the amplitude and the relative phase change per time
step. Specifically, A can be expressed in modulus-argument form A = |A|eiθ,
where

|A| =
√
Re(A)2 + Im(A)2, θ = tan−1(Im(A)/Re(A)).

For the true solution to the oscillation equation (2.1), the exact amplification
factor Ae = eiω∆t has unity magnitude and phase change ω∆t over a time
interval ∆t. The amplitude errors are defined as the difference between the
magnitude of the approximate amplification factor |A| and the correct value
of unity. When |A| = 1, the scheme is neutral, if |A| < 1, the scheme is
damping (indicating stability), and if |A| > 1, it is amplifying (instability).
The relative phase change or the phase speed, on the other hand, is measured
by the ratio of the phase change of the numerical scheme per time step divided
by the phase change of the true solution over the same time interval, and is
denoted by R = θ/ω∆t. The phase-speed errors are defined as the difference
between the phase speed R and the unity over a time interval ∆t. When
R > 1, the method is accelerating, and if R < 1, it is decelerating. Unlike the
amplitude, the phase change does not influence the stability of the numerical
solution. Instead, the phase errors accumulate and can become large over a
long time period of integration.

2.1 The hoRA-filtered leapfrog scheme

The hoRA-filtered leapfrog (LF-hoRA) scheme [15] applied to (2.1) is

vn+1 = un−1 + 2iω∆tvn, (2.2)
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un = vn +
β

2

(
vn+1 − 2vn + un−1

)
− β

2

(
vn − 2un−1 + un−2

)
. (2.3)

The system of equations (2.2)-(2.3) is equivalent to the following linear mul-
tistep method:

un+1 − 2βun − (1− 2β)un−1 = iω∆t(2un − 3βun−1 + βun−2). (2.4)

2.1.1 Consistency errors, amplitude errors and phase-speed errors

Using Taylor expansion, the local truncation error of (2.4) is shown to be

τn(∆t) =
2− 5β

6
(iω∆t)2u′(tn) +

11β

12
(iω∆t)3u′(tn) +O[(iω∆t)4].

Thus, the LF-hoRA scheme is second order in general, and third order when
β = 0.4.

Formula (2.4) yields the following equation for the amplification factor:

A3 − 2(β + iω∆t)A2 + (3βiω∆t− 1 + 2β)A− βiω∆t = 0. (2.5)

Equation (2.5) has three roots, one is the physical mode denoted Ap, and the
other two are computational modes. Since computational modes are well-
controlled by the filter, we focus on the amplitude and phase-speed errors for
the physical mode. A series expansion for |Ap| in powers of ω∆t yields the
amplitude error as follows:

|Ap| − |Ae| = |Ap| − 1 =
β(2β − 3)

8(1− β)2
(ω∆t)4 +O[(ω∆t)6].

The amplitude error after taking a single time step scales as (∆t)4, hence it
is of order (∆t)3 over T/∆t time steps. The phase-speed error is

Rp − 1 =
arg(Ap)

ω∆t
− 1 =

2− 5β

12(1− β)
(ω∆t)2 +O[(ω∆t)4].

The phase speed of the physical mode is fourth-order accurate when β = 0.4
and second order otherwise.
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2.1.2 Stability analysis

To determine the maximum ω∆t for which all numerical amplification factors
of the LF-hoRA scheme are non-amplified, we use the root locus curve method
(see e.g., [11]). The characteristic equation of (2.4) is

ζ3 − 2βζ2 − (1− 2β)ζ − z(2ζ2 − 3βζ + β) = 0,

where ζ denotes the points on the unit circle, i.e., ζ = eiθ for θ ∈ [0, 2π], and
z ∈ C. The curve z is called the root locus curve. In our case z = iω∆t lies
on the imaginary axis, and consequently θ satisfies

cos θ = 1 or cos θ = β − 1

2
, and hence z = 0 or z = ±i

√
3
4

+ β − β2

1 + 3
2
β − β2

,

which indicates the intersections of the root locus curve with the imaginary
axis in the complex plane. Thus, the stability of the LF-hoRA scheme is
provided by

ω∆t ≤

√
3
4

+ β − β2

1 + 3
2
β − β2

, 0 < β ≤ 0.4.

2.2 The RAW-filtered composite-tendency leapfrog scheme

Notice that the RA-filtered leapfrog (LF-RA) scheme is recovered when α =
1 in the RAW-filtered composite-tendency leapfrog (CTLF-RAW) scheme,
while LF-RAW scheme is a special case of CTLF-RAW when γ = 1. For
this reason, it suffices to analyze CTLF-RAW (refer to [30] for more details).
The scheme applied to (2.1) is

wn+1 =un−1 + 2iω∆t(γvn + (1− γ)wn), (2.6)

un = vn +
να

2
(wn+1 − 2vn + un−1), (2.7)

vn+1 =wn+1 − ν(1− α)

2
(wn+1 − 2vn + un−1). (2.8)

The three dimensionless parameters in the scheme are ν, α, and γ, where ν
corresponds to the classical Robert–Asselin filter parameter, α partitions the
RAW filter displacements between the n’th and (n + 1)’th time levels, and
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γ specifies the weighting coefficients for the composite tendency. Although
previous work [30] assumed 0 ≤ γ ≤ 1, here we allow γ to vary outside this
range.

The system of equations (2.6)-(2.8) is equivalent to the following linear
multistep method:

un+1 − νun − (1− ν)un−1

= iω∆t
(

(2− νγ(1− α))un + ν(2γ + α− 2− 2αγ)un−1 + ν(1− α)(1− γ)un−2
)
.

(2.9)

2.2.1 Consistency errors, amplitude errors and phase-speed errors

The local truncation error of (2.9) is

τn(∆t) =

(
1

2
− α

)
ν(iω∆t)u′(tn) +

1

6
(2− ν(7− 9α) + 6νγ(1− α)) (iω∆t)2u′(tn)

+
ν

24
(25− 28α− 24γ + 24αγ)(iω∆t)3u′(tn) +O(∆t4).

The scheme is generally first-order accurate1 if ν 6= 0, and second order if
α = 0.5, as noted by Williams [30]. Further, the method becomes third order
if α = 0.5 and γ = (5ν − 4)/(6ν). This third-order scheme would require
γ < 0 if ν < 4/5. Finally, the scheme exhibits fourth-order accuracy if
α = 0.5, ν = −8, and γ = 11/12. This case is of no practical interest because
the negative value of ν forces the computational mode to be amplified.

Remark 2.1 The LF-RA scheme is first-order accurate. The LF-RAW is
firsr order in general, and second order when α = 0.5.

The amplitude error of CTLF-RAW is given by

|Ap| − 1 =
ν(1− 2α)

2(2− ν)
(ω∆t)2 +O

[
(ω∆t)4

]
,

yielding first-order amplitude accuracy, independent of γ. Since LF-RA re-
covers when α = 1, its amplitude is therefore first order. When α = 1/2, the

1If ν = 0, the scheme is generally second order, but then the filter is inactive and the
computational mode is uncontrolled. For this reason, ν 6= 0 is not considered throughout
the article.
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quadratic term vanishes and the amplitude error becomes

|Ap| − 1 =
ν(4γ − 3 + ν − νγ)

4(2− ν)2
(ω∆t)4 +O

[
(ω∆t)6

]
,

which implies the third-order amplitude accuracy. The fourth-order term now
depends on γ. Specifically, CTLF-RAW is amplifying when γ > (3−ν)/(4−
ν), and is damping if γ < (3− ν)/(4− ν). Recall that LF-RAW is recovered
when γ = 1, hence it is unstable when α = 1/2. When γ = (3− ν)/(4− ν),
the amplitude error is fifth-order accurate:

|Ap| − 1 =
ν

4(4− ν)(2− ν)2
(ω∆t)6 +O

[
(ω∆t)8

]
.

However, the coefficient of the sixth-order term is always positive, implying
a slight instability of the scheme. The phase-speed error, when α = 1/2, is

Rp − 1 =
6νγ + 4− 5ν

12(2− ν)
(ω∆t)2 +O[(ω∆t)4].

The phase speed is fourth-order accurate if further γ = (5ν − 4)/(6ν).

2.2.2 Stability analysis

Using the similar technique as in Section 2.1.2, we derive the stability condi-
tion for the CTLF-RAW scheme. First, the time step condition for LF-RA
is

ω∆t ≤
√

2− ν
2 + ν

.

The LF-RAW is stable under the following condition:

ω∆t ≤ 1

α

√
(2− ν)(2α− 1)

2− ν + 2αν
, α ∈ [1/2, 1].

For the CTLF-RAW method, it is of more interest when α = 1/2 since the
scheme is at least second-order accurate. The stability condition in this case
is given by

ω∆t ≤ 2

(1− γ)(4− ν)

√
(3− ν)− (4− ν)γ

1 + ν(1− γ)
, γ ≤ (3− ν)/(4− ν).
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2.3 The composite-tendency leapfrog scheme with more
discriminating filter

Applied to equation (2.1), the scheme [30] is

wn+1 =un−1 + 2iω∆t(γvn + (1− γ)wn), (2.10)

un = vn + να(wn+1 − 4vn + 6un−1 − 4un−2 + un−3), (2.11)

vn+1 =wn+1 − ν(1− α)(wn+1 − 4vn + 6un−1 − 4un−2 + un−3), (2.12)

which is equivalent to the following linear multistep method:

un+1 − ν(4 + 3α)un − (1− 7ν − να)un−1 − ν(4− 3α)un−2 + ν(1− α)un−3

(2.13)

= 2 (1− ν(1− α)γ)un − ν (8(1− α)(1− γ) + 12α)un−1

+ ν (12(1− α)(1− γ) + 8α)un−2 − ν (8(1− α)(1− γ) + 2α)un−3 + 2ν(1− α)(1− γ)un−4.

2.3.1 Consistency errors, amplitude errors and phase-speed errors

The local truncation error of (2.13) is

τn(∆t) =
1− ν(1 + 2α)

3
(iω∆t)2u′(tn) +

ν(3− 5α)

3
(iω∆t)3u′(tn)

+
181ν − 308αν − 120νγ + 120ανγ − 1

60
(iω∆t)4u′(tn) +O[(iω∆t)5].

Theoretically, the scheme could be third-order accurate if α = (1− ν)/(2ν),
and even higher-order accurate for appropriate values of the parameters
which set zero the coefficients of the higher-order terms. However, the root
condition is not satisfied in this case. To see this, set ω = 0 and write (2.13)
in terms of the amplification factor A:

A4 − ν(4 + 3α)A3 − (1− 7ν − να)A2 − ν(4− 3α)A+ ν(1− α) = 0. (2.14)

It turns out that when α = (1− ν)/(2ν), equation (2.14) has the root A = 1
with multiplicity two, violating the root condition (see e.g., [22]). Indeed, the
numerical solution grows linearly in time, while is supposed to be constant.
Thus, the scheme is second-order accurate.

The amplitude error is

|Ap| − 1 = − ν(1− 2α)

2(1− ν − 2αν)
(ω∆t)4 +O[(ω∆t)6],
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which, by setting α = 1/2, becomes

|Ap| − 1 =
ν(5− 8γ − 9ν + 14νγ)

8(1− 2ν)2
(ω∆t)6 +O[(ω∆t)8].

Further, the sixth-order term vanishes when γ = (5 − 9ν)/(2(4 − 7ν)) and
gives the seventh-order amplitude error:

|Ap| − 1 = − 5ν(4− 13ν + 11ν2)

32(1− 2ν)2(4− 7ν)
(ω∆t)8 +O[(ω∆t)10].

The phase-speed error, in this case, is second order:

Rp − 1 =
1

6
(ω∆t)2 +O[(ω∆t)4].

2.3.2 Stability

As shown in the consistency error analysis, the composite-tendency leapfrog
scheme with the more discriminating filter is second-order accurate regardless
of the parameters. Nevertheless, the amplitude exhibits the highest-order of
accuracy when α = 1/2 and γ = (5 − 9ν)/(2(4 − 7ν)). For this reason, we
only consider the stability for the chosen values of the parameters. Applying
the root locus curve technique, the time step condition for this scheme is

ω∆t ≤

√
1−

(
8− 45ν + 55ν2

12− 20ν

)2
8(4− 7ν)(2− 5ν + 5ν2)

(4 + 25ν − 55ν2)(16− 68ν + 105ν2 − 55ν3)
.

(2.15)

3 Conclusions

The development of accurate and efficient time-stepping schemes is an im-
portant key in improving the fidelity of the numerical simulations for weather
and climate, and is still an active area of research.

We surveyed the recent progress on time filters, a post-processing non-
intrusive technique which improves accuracy and stability, and uses legacy
codes in a black-box manner. We focus on time filters used in conjunc-
tion with the leapfrog scheme, the most commonly employed time-stepping
scheme in the weather and climate community. Specifically, we present the
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Method Order Amplitude Phase speed Maximum ω∆t

LF-RA 1 1− ν
2(2−ν)

p2 1 + 1+ν
3(2−ν)

p2
√

2−ν
2+ν

LF-RAW 1 or 2 1− ν(2α−1)
2(2−ν)

p2 +O(p4) 1 +
(

(1−ν(1−α))(2−αν)
(2−ν)2

− 1
3

)
p2 1

α

√
(2−ν)(2α−1)

2−ν+2αν

LF-hoRA 2 or 3 1− β(3−2β)
8(1−β)2

p4 1 + 2−5β
12(1−β)

p2 +O(p4)

√
3
4

+β−β2

1+ 3
2
β−β2

CTLF-RAW 2 or 3 1 + ν(4γ−3+ν−νγ)
4(2−ν)2

p4 +O(p6) 1 + 6νγ+4−5ν
12(2−ν)

p2 +O(p4)
√

4((3−ν)−(4−ν)γ)
(1+ν(1−γ))[(1−γ)(4−ν)]2

CTLF-D 2 1− 5ν(4−13ν+11ν2)
32(1−2ν)2(4−7ν)

p8 1 + 1
6
p2 Formula (2.15)

Table 1: Comparison between the leapfrog scheme combined with time filters.
The amplitude, phase speed, and time step limitations are those associated
with the application of each scheme to the oscillation equation (2.1). For
brevity, the more discriminating filtered composite-tendency leapfrog scheme
is abbreviated by CTLF-D. We denote p = ω∆t, and amplitude or phase
speed that is with O(pk) indicates that it is able to be of order up to pk.

accuracy and stability analysis of RA, RAW, hoRA, and the more discrim-
inating filtered leapfrog/composite-tendency leapfrog schemes. The prop-
erties of these methods are summarized in Table 1, an addendum to the
comparison Table 2.2 in [9].
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[7] Michel Déqué and Daniel Cariolle. Some destabilizing properties of the
Asselin time filter. Mon. Wea. Rev., 114(5):880–884, 2012/11/15 1986.

[8] Dale R. Durran. The third-order Adams-Bashforth method: An at-
tractive alternative to leapfrog time differencing. Mon. Wea. Rev.,
119(3):702–720, 2012/11/16 1991.

[9] Dale R. Durran. Numerical methods for fluid dynamics, volume 32 of
Texts in Applied Mathematics. Springer, New York, second edition, 2010.
With applications to geophysics.

[10] Charles T. Gordon and William F. Stern. A description of the GFDL
global spectral model. Mon. Wea. Rev., 110(7):625–644, 1982.

[11] E. Hairer and G. Wanner. Solving ordinary differential equations. II,
volume 14 of Springer Series in Computational Mathematics. Springer-
Verlag, Berlin, 2010. Stiff and differential-algebraic problems, Second
revised edition.

[12] G. J. Haltiner and J. M. McCollough. Experiments in the initialization
of a global primitive equation model. J. Appl. Meteor., 14(3):281–288,
1975.

[13] Nicholas Hurl, William Layton, Yong Li, and Catalin Trenchea. Stabil-
ity analysis of the Crank–Nicolson-Leapfrog method with the Robert–
Asselin–Williams time filter. BIT, 54(4):1009–1021, 2014.

13



[14] Y. Kurihara. On the use of implicit and iterative methods for the time
integration of the wave equation. Mon. Wea. Rev., 93(1):33–46, 1965.

[15] Yong Li and Catalin Trenchea. A higher-order Robert–Asselin type time
filter. J. Comput. Phys., 259:23–32, 2014.

[16] Yong Li and Catalin Trenchea. A higher order Robert-Asselin type time
filter in the semi-explicit integrations. Technical report, University of
Pittsburgh, 2015.

[17] Yong Li and Paul D. Williams. Analysis of the RAW filter in composite-
tendency leapfrog integrations. Technical report, University of Pitts-
burgh, 2014.

[18] D.K. Lilly. On the computational stability of numerical solutions of
time-dependent non-linear geophysical fluid dynamics problems. Mon.
Wea. Rev., 93(1):11–25, 1965.

[19] L.N. Magazenkov. Trudy Glavnoi Geofizicheskoi Observatorii. (Trans-
actions of the Main Geophysical Observatory), 410:120–129, 1980.

[20] N. Oger, O. Pannekoucke, A. Doerenbecher, and P. Arbogast. Assessing
the influence of the model trajectory in the adaptive observation Kalman
filter sensitivity method. Q. J. R. Meteorol. Soc, 138(664):813–825,
2012.

[21] Richard L. Pfeffer, I. M. Navon, and Xiaolei Zou. A comparison of the
impact of two time-differencing schemes on the NASA-GLAS climate
model. Mon. Wea. Rev., 120(7):1381–1393, 1992.

[22] Alfio Quarteroni, Riccardo Sacco, and Fausto Saleri. Numerical math-
ematics, volume 37 of Texts in Applied Mathematics. Springer-Verlag,
Berlin, second edition, 2007.

[23] Diandong Ren and Lance M. Leslie. Three positive feedback mechanisms
for ice-sheet melting in a warming climate. J. Glaciol., 57(206):1057–
1066, 2011.
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