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ABSTRACT. This supplementary material complements the report with similar
title.

1. INTRODUCTION

The problem of computing ensembles, u;,p;, of solutions of the Navier-Stokes
equations (NSE):
(1.1) uj¢ +u; - Vuy; —vAu; +Vp; = fi(z,t),in Q, j=1,...,J
V-u; =0, and u;(z,0) = u?(x), in Q and u; = 0, on 0.
was studied in a paper with similar title. This supplement presents further tests.
The method uses two new ensemble eddy viscosity (EEV) type turbulence models
with turbulent viscosity parametrizations
EEV1: vy = Azxld/|, and
EEV2: v = polu/|PAt.
These are based on direct parameterization of the energy in the turbulent fluctu-

ations, 1|u/|> and a redefinition of the LES lengthscale from (the usual) | = Az
to

| = distance a fluctuating eddy travels in one time step = |u'|At.

1.1. Methods. The euclidean length of a vector and Frobenius norm of an array
is | - |. The symmetric part of the velocity gradient tensor is denoted V*. The
ensemble mean < u >, fluctuation u}, its magnitude |u'| and the induced kinetic
energy density k' are

J

1 ¢ .
mean: < u >:= 7 Zuj7 fluctuation: u; =uyj— <u >,
j=1
4 1
[u/|? = Z |u5|* and energy density: k' = 3 |u/|?(x,t).
j=1
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Suppress the secondary spacial discretization and let superscripts denote the timestep
number. Thus, for example, < u >", u;” denote respectively approximations to

1

<l

J
Zuj(-,tn) and u; (-, t,)— < u >",t, :=nAt.
j=1

We have the method: for j=1,....J, V- u}“‘l =0, and

u Tt —

J J n+1 n n
(1.2) Ay T <u > VUi 4 (uf = <u>") - Vuf

+VpIt — AT =V - (v (17 K VT =

The ensemble eddy viscosity parameterization is the coefficient vy (-). Briefly, the
Kolmogorov-Prandtl relation gives

vp(-)=Const.IVk'
! = mixing length of fluctuations,

k' = kinetic energy in fluctuations.

Often extensive (and optimistic) modelling steps are needed to generate repre-
sentations of these two quantities, e.g., [34], [29]. Algorithm (1.2) allows direct
calculation of both:

1 either Ax
/ T2 ’
k—2|u| andl—{ or [u/| At

This gives

EEV1: vy =y Azld/|, and
EEV2: v = po|u/|PAt.

2. SUPPLEMENTARY MATERIAL: FURTHER NUMERICAL TESTS OF ENSEMBLE
EppYy ViscosiTy METHODS

In our report, the following tests are presented.

Test 1 was for flow between offset cylinders driven by a rotating body force
(Re = 800).

Test 2 compared EEV1 and EEV?2 for the same geometry at Re = 800, 1200, 2400
and constant timestep At = 0.025.

Test 3 (results given in the supplementary materials) repeated these two tests
but reinitialized the perturbations at t = 1,2,3,--- . The conclusions regarding
stability were not altered by reinitialization.

Test 4 was an accuracy test with a smooth, known exact solution. In Test 4
both EEV1 and EEV?2 produced 2 significant digits of accuracy with Az = 0.1, an
acceptable result.

Test 5 is a flow in a channel with 2 outlets and a constriction from [4, 18, 23].
Both EEV1 and EEV2 gave the correct general outlines of the flow (compared to
others published results) and differences in the smaller details of the flow.
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We performed further tests of EEV1 and EEV2 and variants that, while inter-
esting, confirmed or were consistent with the preliminary results presented in our
report. We present some of these explorations in this supplementary section.

Test 1: Stability of no EEV vs. EEV2 for flow between offset circles.

Recall that the domain is

Q= {(z.9) 12+ <rf and (x — 1)’ + (v~ e2)* 213}

a disk with a smaller, off-center obstacle inside with no-slip boundary conditions
on both circles. Let 71 =1, 79 = 0.1, ¢ = (¢1,¢2) = (%, 0). The flow is driven by:

fla,y,t) = (—dy* (1— 2% — ), 4w« (1 —2° — y?))".

The mesh has n = 40 mesh points around the outer circle and m = 10 mesh points
around the immersed circle, and extended to €2 as a Delaunay mesh. We begin with
Re = 800 and then increase Re.

Generation of the initial conditions. Perturbations of u?,j = 1,2, and uf
(with e = 0, ‘no perturbation’), are generated by solving the steady Stokes problem
on the same geometry with ¢ = 1072 and

fi(z,y,t) = f(z,y,t) + € x (sin(3nz)sin(3ny), cos(3mx)cos(3my)) T,
fa(z,y,t) = f(2,y,t) — € % (sin(3mx)sin(3ny), cos(3mx)cos(3ny))*,

The Navier-Stokes equations are then solved with these initial conditions, giving
U1, Uz, Ugpe = (U1 + u2)/2 and ug (initial condition uf -‘no perturbation’).

Quantities plotted. The report gave plots of volume averaged statistics. Here
we supplement these with streamlines and contour plots of vorticity over 0 < ¢ < 10
. The timestep is adapted as in the report. First we plot total energy dissipation
rates of EEV2 and noEV and power input rates of both.

Next plotted is EEV2 and noEV velocity vectors at v = 1/800. Note that at this
Reynolds number the flow already begins to have interesting features and that the
noEV velocities begin to exhibit radial oscillations.

This pattern is confirmed by the contour plots of vorticity. The noEV vorticity
contours reveal small scale oscillations clearly.

Next the Reynolds number was increased to Re = 1200 and 2400. We observed
that EEV2 remained stable with At = 0.05 at both Re = 1200 and 2400. With
NoEV, adapting the timestep ensured stability but forced a very small timestep
and execution time so long that the method failed to reach the final time. The
EEV2 solutions are given below.

Test 2: Stability of EEV1 vs. EEV2. Test 1 was repeated comparing
EEV1 and EEV2 for Re = 800 and constant timestep. We take At = 0.025, Re =
800, uo = 1,1 Az = 0.2. The streamlines very clearly show that by ¢ = 10.0,
the EEV1 approximation returns to the Stokes flow initial condition while EEV2
continues its evolution.

The over diffusion in EEV1 vs. EEV2 is also clear from the kinetic energy plot.

Test #3: Re-initialization: We repeat Test 2 but reinitialize the perturbation
att=1,2,3, -, restarting with initial data being the average produced up to that
point and the same perturbations as at ¢ = 0, as in Test #1. We use the same
constant timestep At = 0.025, Re = 800, uo = 1, u1 Az = 0.2 . The plots show that
EEV1 results improved somewhat but still EEV1 over-diffuses while EEV2 does
not.
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FIGURE 1. EV2 vs. NoEV: Dissipation & Power Input, v = 1/800

REFERENCES

O. AXELSSON, A survey of preconditioned iterative methods for linear systems of algebraic
equations, BIT, 25 (1985), 166-187.

L.C. BERSELLI, On the large eddy simulation of the Taylor-Green vortex, J. Math. Fluid
Mech., 7 (2005), S164-S191.

L.C. BERrSELLI, T. ILIESCU AND W. LAYTON, Mathematics of Large Eddy Simulation of
Turbulent Flows, Springer, Berlin, 2006.

A.L. BowERs AND L.G. REBHOLZ, Numerical study of a regularization model for incom-
pressible flow with deconvolution-based adaptive nonlinear filtering, CMAME, 258 (2013),
1-12.

S. BRENNER AND R. ScorT, The Mathematical Theory of Finite Element Methods, Springer,
3rd edition, 2008.

M. CARNEY, P. CUNNINGHAM, J. DOWLING AND C. LEE, Predicting Probability Distributions
for Surf Height Using an Ensemble of Mixture Density Networks, International Conference
on Machine Learning, (2005).

M. Casg, V. ERvIN, A. LINKE AND L. REBHOLZ, A connection between Scott-Vogelius ele-
ments and grad-div stabilization, SINUM 49(2011), 1461-1481.

Y.T. FEnG, D.R.J. OWEN AND D. PERIC, A block conjugate gradient method applied to linear
systems with multiple right hand sides, CMAME 127 (1995), 203-215.



(9]
(10]
(11]

(12]

(13]
(14]
(15]
(16]
[17]
(18]
(19]

20]

FURTHER NUMERICAL TESTS OF ENSEMBLE EDDY VISCOSITY METHODS 5

FIGURE 2. EV2: Velocity, v = 1/800
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FIGURE 3. NoEV: Velocity, v = 1/800
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FIGURE 6. EEV2: Velocity, v = 1/1200
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FIGURE 8. EEV2: Velocity, v = 1/2400
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FIGURE 11. EV2: Velocity, v = 1/800

t=0 t=0.5

t=10.0

FIGURE 12. EV1 gives Stokes flow: Contours of Vorticity, » = 1/800
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t=5.0

FIGURE 13. EV2: Contours of Vorticity, v = 1/800

FIGURE 14. Energy: EV1 Vs EV2, At = 0.025, v = 1/800
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FIGURE 15. Reinitialize:

Angular Momentum, v = 1/800

13



14

Energy

Energy

NAN JIANG AND WILLIAM LAYTON

EV1

epsiont- 0.001, epsilon2- ~0.001, di- 0.025, Re- 800

o

2
—— Average
no perturbation

5
time.

EV2

epsiont.= 0,001, epsilon2= ~0.001, di= 0,025, Re= 800
T

o

w2
—— Average
no perturbation

FIGURE 16. Reinitialize: Energy, v = 1/800
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FIGURE 17. Reinitialize: Enstrophy, v = 1/800
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FIGURE 18. Reinitialize EV1: Stokes flow velocity, v = 1/800

t=0

FIGURE 19. Reinitialize: EV2: Velocity, v = 1/800
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t=5.0 t=10.0

FIGURE 20. Reinitialize: EV1: Contours of Vorticity, v = 1/800

t=0 t=1

t=5.0 t=10.0

FIGURE 21. Reinitialize: EV2: Contours of Vorticity, v = 1/800
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FIGURE 22. Reinitialize: Energy: EV1 Vs EV2, At = 0.025, v = 1/800



