
FURTHER NUMERICAL TESTS OF ENSEMBLE EDDY

VISCOSITY METHODS

NAN JIANG AND WILLIAM LAYTON

Abstract. This supplementary material complements the report with similar

title.

1. Introduction

The problem of computing ensembles, uj , pj , of solutions of the Navier-Stokes
equations (NSE):

uj,t + uj · ∇uj − ν4uj +∇pj = fj(x, t), in Ω, j = 1, ..., J(1.1)

∇ · uj = 0, and uj(x, 0) = u0j (x), in Ω and uj = 0, on ∂Ω.

was studied in a paper with similar title. This supplement presents further tests.
The method uses two new ensemble eddy viscosity (EEV) type turbulence models
with turbulent viscosity parametrizations

EEV1: νT = µ14x|u′|, and

EEV2: νT = µ2|u′|24t.

These are based on direct parameterization of the energy in the turbulent fluctu-
ations, 1

2 |u
′|2 and a redefinition of the LES lengthscale from (the usual) l = 4x

to

l = distance a fluctuating eddy travels in one time step = |u ′|4t .

1.1. Methods. The euclidean length of a vector and Frobenius norm of an array
is | · |. The symmetric part of the velocity gradient tensor is denoted ∇s. The
ensemble mean < u >, fluctuation u′j , its magnitude |u′| and the induced kinetic
energy density k′ are

mean: < u >:=
1

J

J∑
j=1

uj , fluctuation: u′j := uj− < u > ,

|u′|2 :=

J∑
j=1

|u′j |2 and energy density: k′ =
1

2
|u′|2(x, t).
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Suppress the secondary spacial discretization and let superscripts denote the timestep
number. Thus, for example, < u >n, u′nj denote respectively approximations to

1

J

J∑
j=1

uj(·, tn) and uj(·, tn)− < u >n, tn := n4t.

We have the method: for j = 1, ..., J, ∇ · un+1
j = 0, and

un+1
j − unj

∆t
+ < u >n ·∇un+1

j + (unj− < u >n) · ∇unj(1.2)

+∇pn+1
j − ν∆un+1

j −∇ · (νT (ln, k′n)∇sun+1
j ) = fn+1

j .

The ensemble eddy viscosity parameterization is the coefficient νT (·). Briefly, the
Kolmogorov-Prandtl relation gives

νT (·)=Const.l
√
k′

l = mixing length of fluctuations,

k′ = kinetic energy in fluctuations.

Often extensive (and optimistic) modelling steps are needed to generate repre-
sentations of these two quantities, e.g., [34], [29]. Algorithm (1.2) allows direct
calculation of both:

k′ =
1

2
|u′|2 and l =

{
either 4x,
or |u′|4t .

This gives

EEV1: νT = µ14x|u′|, and

EEV2: νT = µ2|u′|24t.

2. Supplementary Material: Further Numerical Tests of Ensemble
Eddy Viscosity Methods

In our report, the following tests are presented.
Test 1 was for flow between offset cylinders driven by a rotating body force

(Re = 800).
Test 2 compared EEV1 and EEV2 for the same geometry atRe = 800, 1200, 2400

and constant timestep 4t = 0.025.
Test 3 (results given in the supplementary materials) repeated these two tests

but reinitialized the perturbations at t = 1, 2, 3, · · · . The conclusions regarding
stability were not altered by reinitialization.

Test 4 was an accuracy test with a smooth, known exact solution. In Test 4
both EEV1 and EEV2 produced 2 significant digits of accuracy with 4x = 0.1, an
acceptable result.

Test 5 is a flow in a channel with 2 outlets and a constriction from [4, 18, 23].
Both EEV1 and EEV2 gave the correct general outlines of the flow (compared to
others published results) and differences in the smaller details of the flow.
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We performed further tests of EEV1 and EEV2 and variants that, while inter-
esting, confirmed or were consistent with the preliminary results presented in our
report. We present some of these explorations in this supplementary section.

Test 1: Stability of no EEV vs. EEV2 for flow between offset circles.
Recall that the domain is

Ω = {(x, y) : x2 + y2 ≤ r21 and (x− c1)2 + (y − c2)2 ≥ r22}

a disk with a smaller, off-center obstacle inside with no-slip boundary conditions
on both circles. Let r1 = 1, r2 = 0.1, c = (c1, c2) = (1

2 , 0). The flow is driven by:

f(x, y, t) = (−4y ∗ (1− x2 − y2), 4x ∗ (1− x2 − y2))T .

The mesh has n = 40 mesh points around the outer circle and m = 10 mesh points
around the immersed circle, and extended to Ω as a Delaunay mesh. We begin with
Re = 800 and then increase Re.

Generation of the initial conditions. Perturbations of u0j , j = 1, 2, and u00
(with ε ≡ 0, ‘no perturbation’), are generated by solving the steady Stokes problem
on the same geometry with ε = 10−3 and

f1(x, y, t) = f(x, y, t) + ε ∗ (sin(3πx)sin(3πy), cos(3πx)cos(3πy))T ,

f2(x, y, t) = f(x, y, t)− ε ∗ (sin(3πx)sin(3πy), cos(3πx)cos(3πy))T ,

The Navier-Stokes equations are then solved with these initial conditions, giving
u1, u2, uave = (u1 + u2)/2 and u0 (initial condition u00 -‘no perturbation’).

Quantities plotted. The report gave plots of volume averaged statistics. Here
we supplement these with streamlines and contour plots of vorticity over 0 ≤ t ≤ 10
. The timestep is adapted as in the report. First we plot total energy dissipation
rates of EEV2 and noEV and power input rates of both.

Next plotted is EEV2 and noEV velocity vectors at ν = 1/800. Note that at this
Reynolds number the flow already begins to have interesting features and that the
noEV velocities begin to exhibit radial oscillations.

This pattern is confirmed by the contour plots of vorticity. The noEV vorticity
contours reveal small scale oscillations clearly.

Next the Reynolds number was increased to Re = 1200 and 2400. We observed
that EEV2 remained stable with 4t = 0.05 at both Re = 1200 and 2400. With
NoEV, adapting the timestep ensured stability but forced a very small timestep
and execution time so long that the method failed to reach the final time. The
EEV2 solutions are given below.

Test 2: Stability of EEV1 vs. EEV2. Test 1 was repeated comparing
EEV1 and EEV2 for Re = 800 and constant timestep. We take ∆t = 0.025, Re =
800, µ2 = 1, µ1∆x = 0.2. The streamlines very clearly show that by t = 10.0,
the EEV1 approximation returns to the Stokes flow initial condition while EEV2
continues its evolution.

The over diffusion in EEV1 vs. EEV2 is also clear from the kinetic energy plot.
Test #3: Re-initialization: We repeat Test 2 but reinitialize the perturbation

at t = 1, 2, 3, · · ·, restarting with initial data being the average produced up to that
point and the same perturbations as at t = 0, as in Test #1. We use the same
constant timestep ∆t = 0.025, Re = 800, µ2 = 1, µ1∆x = 0.2 . The plots show that
EEV1 results improved somewhat but still EEV1 over-diffuses while EEV2 does
not.
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Figure 1. EV2 vs. NoEV: Dissipation & Power Input, ν = 1/800
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Figure 2. EV2: Velocity, ν = 1/800
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134.269
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244.125

IsoValue
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149.784
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Figure 4. EV2: Contours of Vorticity, ν = 1/800
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t=0 t=0.540771
IsoValue
-1226.56
-1103.9
-981.248
-858.592
-735.936
-613.28
-490.624
-367.968
-245.312
-245.312
-122.656
0
122.656
245.312
367.968
490.624
613.28
735.936
858.592
981.248

IsoValue
-189.511
-170.56
-151.609
-132.658
-113.707
-94.7556
-75.8045
-56.8534
-37.9022
-37.9022
-18.9511
0
18.9511
37.9022
56.8534
75.8045
94.7556
113.707
132.658
151.609

t=5.09414 t=10.0
IsoValue
-218.375
-196.537
-174.7
-152.862
-131.025
-109.187
-87.3498
-65.5124
-43.6749
-43.6749
-21.8375
0
21.8375
43.6749
65.5124
87.3498
109.187
131.025
152.862
174.7

IsoValue
-144.006
-129.605
-115.204
-100.804
-86.4034
-72.0028
-57.6022
-43.2017
-28.8011
-28.8011
-14.4006
0
14.4006
28.8011
43.2017
57.6022
72.0028
86.4034
100.804
115.204

Figure 5. NoEV: Contours of Vorticity, ν = 1/800

t=0 t=0.45

t=5.2 t=10.0

Figure 6. EEV2: Velocity, ν = 1/1200
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t=0 t=0.45
IsoValue
183.984
349.57
515.155
680.741
846.326
1011.91
1177.5
1343.08
1508.67
1674.25
1839.84

IsoValue
10.8861
20.6836
30.4811
40.2786
50.0761
59.8736
69.6711
79.4686
89.2661
99.0636
108.861

t=5.2 t=10.0
IsoValue
20.4541
38.8629
57.2716
75.6803
94.0891
112.498
130.907
149.315
167.724
186.133
204.541

IsoValue
22.4489
42.653
62.857
83.0611
103.265
123.469
143.673
163.877
184.081
204.285
224.489

Figure 7. EEV2: Contours of Vorticity, ν = 1/1200

t=0 t=0.523633

t=5.01582 t=10.0

Figure 8. EEV2: Velocity, ν = 1/2400
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t=0 t=0.523633
IsoValue
367.968
699.139
1030.31
1361.48
1692.65
2023.82
2354.99
2686.17
3017.34
3348.51
3679.68

IsoValue
13.9693
26.5417
39.1141
51.6864
64.2588
76.8312
89.4036
101.976
114.548
127.121
139.693

t=5.01582 t=10.0
IsoValue
11.2586
21.3914
31.5241
41.6568
51.7896
61.9223
72.0551
82.1878
92.3206
102.453
112.586

IsoValue
17.0671
32.4276
47.788
63.1484
78.5088
93.8692
109.23
124.59
139.95
155.311
170.671

Figure 9. EEV2: Contours of Vorticity, ν = 1/2400

t=0 t=0.5

t=5.0 t=10.0

Figure 10. EV1 gives Stokes flow: Velocity, ν = 1/800
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t=0 t=0.5

t=5.0 t=10.0

Figure 11. EV2: Velocity, ν = 1/800

t=0 t=0.5
IsoValue
122.656
233.046
343.437
453.827
564.217
674.608
784.998
895.389
1005.78
1116.17
1226.56

IsoValue
8.72859
16.5843
24.44
32.2958
40.1515
48.0072
55.863
63.7187
71.5744
79.4302
87.2859

t=5.0 t=10.0
IsoValue
0.764343
1.45225
2.14016
2.82807
3.51598
4.20389
4.89179
5.5797
6.26761
6.95552
7.64343

IsoValue
0.764343
1.45225
2.14016
2.82807
3.51598
4.20389
4.89179
5.5797
6.26761
6.95552
7.64343

Figure 12. EV1 gives Stokes flow: Contours of Vorticity, ν = 1/800
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t=0 t=0.5
IsoValue
122.656
233.046
343.437
453.827
564.217
674.608
784.998
895.389
1005.78
1116.17
1226.56

IsoValue
15.495
29.4405
43.386
57.3316
71.2771
85.2226
99.1681
113.114
127.059
141.005
154.95

t=5.0 t=10.0
IsoValue
25.5407
48.5273
71.5139
94.5005
117.487
140.474
163.46
186.447
209.434
232.42
255.407

IsoValue
24.1593
45.9026
67.646
89.3893
111.133
132.876
154.619
176.363
198.106
219.849
241.593

Figure 13. EV2: Contours of Vorticity, ν = 1/800
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Figure 14. Energy: EV1 Vs EV2, ∆t = 0.025, ν = 1/800



FURTHER NUMERICAL TESTS OF ENSEMBLE EDDY VISCOSITY METHODS 13

EV1

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4
epsilon1= 0.001, epsilon2= −0.001, dt= 0.025, Re= 800

time

A
n

g
u
la

r 
M

o
m

e
n
tu

m

 

 

u1

u2

Average

no perturbation

EV2

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7
epsilon1= 0.001, epsilon2= −0.001, dt= 0.025, Re= 800

time

A
n
g
u
la

r 
M

o
m

e
n
tu

m

 

 

u1

u2

Average

no perturbation

Figure 15. Reinitialize: Angular Momentum, ν = 1/800
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Figure 16. Reinitialize: Energy, ν = 1/800



FURTHER NUMERICAL TESTS OF ENSEMBLE EDDY VISCOSITY METHODS 15

EV1

0 1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

1000

1200

1400

1600

1800
epsilon1= 0.001, epsilon2= −0.001, dt= 0.025, Re= 800

time

E
n

s
tr

o
p

h
y

 

 

u1

u2

Average

no perturbation

EV2

0 1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

1000

1200

1400

1600

1800

2000
epsilon1= 0.001, epsilon2= −0.001, dt= 0.025, Re= 800

time

E
n

s
tr

o
p

h
y

 

 

u1

u2

Average

no perturbation

Figure 17. Reinitialize: Enstrophy, ν = 1/800
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t=0 t=1

t=5.0 t=10.0

Figure 18. Reinitialize EV1: Stokes flow velocity, ν = 1/800

t=0 t=1

t=5.0 t=10.0

Figure 19. Reinitialize: EV2: Velocity, ν = 1/800
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t=0 t=1
IsoValue
122.656
233.046
343.437
453.827
564.217
674.608
784.998
895.389
1005.78
1116.17
1226.56

IsoValue
1.54139
2.92864
4.3159
5.70315
7.0904
8.47765
9.86491
11.2522
12.6394
14.0267
15.4139

t=5.0 t=10.0
IsoValue
0.764343
1.45225
2.14016
2.82807
3.51598
4.20389
4.89179
5.5797
6.26761
6.95552
7.64343

IsoValue
0.764343
1.45225
2.14016
2.82807
3.51598
4.20389
4.89179
5.5797
6.26761
6.95552
7.64343

Figure 20. Reinitialize: EV1: Contours of Vorticity, ν = 1/800
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IsoValue
122.656
233.046
343.437
453.827
564.217
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784.998
895.389
1005.78
1116.17
1226.56

IsoValue
15.9316
30.27
44.6084
58.9469
73.2853
87.6237
101.962
116.301
130.639
144.977
159.316

t=5.0 t=10.0
IsoValue
19.5932
37.227
54.8609
72.4947
90.1286
107.762
125.396
143.03
160.664
178.298
195.932

IsoValue
26.3229
50.0134
73.704
97.3946
121.085
144.776
168.466
192.157
215.847
239.538
263.229

Figure 21. Reinitialize: EV2: Contours of Vorticity, ν = 1/800



18 NAN JIANG AND WILLIAM LAYTON

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8
epsilon1= 0.001, epsilon2= −0.001, dt=0.025, Re=800

time

E
n
e
rg

y

 

 

EV1

EV2

Figure 22. Reinitialize: Energy: EV1 Vs EV2, ∆t = 0.025, ν = 1/800


