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Abstract. This work developes an approach for numerical simulation of fluid flow through a do-
main with a complex geometry. We consider a finite element discretization of Stokes-Brinkman equation
for modelling the incompressible viscous flow inside a fluid-solid systems combined with Lagrange multi-
plier/fictitious domain and special spherical bubble functions. Well-posedness of the new method, á priori
estimates, and convergence results are established. Results of numerical experiments are presented and
compared to the other methods.
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1. Introduction. This paper presents a method for the simulation of viscous incom-
pressible flow through pebble bed geometries. These type of flows are intermediate between
free flows and porous media flows, and they occur in many important applications. While
our long term goal is to simulate turbulent flows in such domains, we begin by consider-
ing the Stokes flow with few a spherical inclusions, since the geometric complexity already
occurs there.

Generally slow, viscous flow inside fluid-solid system would be described by Stokes
equations in the pores with no-slip boundary conditions at solid interfaces. The finite
element methods based on these equations use body-fitted meshes. When the number of
solid bodies is large, meshing such region becomes impractical (e.g. pebble-bed reactors
contain nearly 400,000 graphite covered uranium spheres [16]).

One alternative approach is Darcy based models. But they are inadequate since
a) the Darcy models are appropriate for the flow with [2], [17] Reporous := qd

ν ≤ 1 ,
where d is the diameter of pore, ν is the kinematic viscosity and q is the specific
discharge. Since the diameters of the pores are too big and velocity can be too
large, the Darcy model can be inaccurate model.

b) Darcy models fail to predict recirculation regions (where the heat concentrates).
Since u = −K∇p, ∇× u = 0.

Another approach with some promise is the Brinkman model [1], [13], [5] used as vol-
ume penalization of the flow in the solid bodies. In this method the original domain is
embedded inside a geometrically simple fictitious auxiliary domain, in which flow obeys
the Stokes-Brinkman equations. The particular medium is then taken into account by its
characteristic permeability and viscosity, i.e. infinite permeability in the fluid region, nearly
zero permeability in the solid region and very large viscosity in the solid region. That is,
for a fixed small penalty parameter ε > 0, the Brinkman parameters are

ν̃ =

{
ν if x in Fluid region,
1
ε + ν if x in Solid region

and

K = ε if x in Solid region.

The Stokes-Brinkman equations are given by the following system

−∇ · (ν̃∇u) +
1

K
u +∇p = f in Solid ∪ Fluid region (1.1)

∇ · u = 0 in Solid ∪ Fluid region (1.2)
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where f is the body force, K is the permeability of the medium and ν̃ is the Brinkman
viscosity.

Finite element methods for the flow in the pebble beds based on the Brinkman model
were investigated in [12] concluding that, if the finite element mesh does not resolve fluid
solid interface, Brinkman simulations can fail to predict reliably flow start up, heat transfer
and recirculation regions.

We show herein that for the Stokes-Brinkman problem by imposing the no-flow condition
in the solid bodies weakly through Lagrange multipliers and enhancing the velocity space by
spherical bubble functions more accurate numerical results can be obtained. Moreover, when
our proposed algorithm is used, i) the method is more accurate compared to the Stokes-
Brinkman Volume Penalization, ii) the convergence rate of the velocity is decoupled from
the Lagrange mupltiplier and iii) less fluid flows through the solid region, a critical test
of model fidelity. Thus, we are able to obtain accurate solutions on a simple mesh with a
mathematically sound model.

The outline of this paper is as follows: the remainder of this section discusses the
motivating examples for the model and introduces the notation used throughout the pa-
per. Section 2 contains preliminaries, introduces the discrete spaces, presents the numerical
method. Section 3 discusses well-posedness, stability and convergence of the method. In
the last section, we present the results of the numerical experiments.

1.1. Motivating applications. Flows in pebble bed geometries occur (with many
additional complexities not considered herein) e.g., in pebble bed reactors [15], [16], in opti-
mization of close turbine placement in wind farms [18], [6] and other industrial processes. For
these applications, the essential flow features such as flow start up, heat transfer and recircu-
lation regions (in which heat concentrates) must be accurately predicted by any reasonable
numerical model. Additionally, any such method must be computationally affordable, a
challenge since typical flows are too fast for homogenized models and resolving the pores
with mesh is impractical. Currently, the flow in such regions is not well understood yet (e.g.
the temperature inside the pebble bed reactors are often off the predicted values by 200 ◦C
[14]).

Fig. 1.1: Pebble Bed Reactor and Wind Farm

1.2. Nomenclature. We denote by Ω an open, simply connected, bounded domain
in Rd, d = 2, 3, with Lipschitz continuous boundary. We decompose Ω into a purely fluid
domain Ωf and purely solid domain Ωs, which is made up of disjoint union of S balls
Bi = {x ∈ Rd : |x − xi| < r} centered at xi and with the same radius r. Throughout the
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paper we will assume that ∂Bi ∩ ∂Ω = ∅, i = 1, S. The characteristic function of the set
ω will be denoted by χω and ei will denote the standard i-th basis vector of Rd. We use
the notation Hk(Ω∗), ‖ · ‖k,∗, (·, ·)k,∗, k ≥ 0, for the Sobolev spaces of all functions having
square integrable weak derivatives up to order k on Ω∗, and the standard Sobolev norm
and inner product, respectively. When ∗ is omitted, notation refers to the integral over
entire Ω. When k = 0 we just write L2(Ω∗), ‖ · ‖∗, (·, ·)∗ instead of H0(Ω∗), ‖ · ‖0,∗, and
(·, ·)0,∗, respectively. Further, L2

0(Ω∗) will refer to the space {q ∈ L2(Ω∗) :
∫

Ω∗

q = 0}. For

the seminorm in Hk(Ω∗) we use | · |k,∗. ‖ · ‖−1,∗, ‖ · ‖1/2,∗ and ‖ · ‖−1/2,∗ will be used for

the norms in the standard spaces H−1(Ω∗), H
1/2(∂Ω∗) and H−1/2(∂Ω∗). Dual space of the

space Y will be denoted by Y ′. Finally, 〈·, ·〉Y ′×Y will denote the duality pairing between
Y ′ and Y .

2. Stokes-Brinkman Lagrange Multiplier/Fictitious Domain method.

2.1. Preliminaries. We assume that f ∈ H−1(Ωf ), g ∈ H1/2(∂Ω) and g satisfies the
compatibility conditon ∫

∂Ω

g · n = 0.

We set f = 0 in Ωs. Next, we denote the extension of the boundary data g by Eg ∈
H1(Ω), which is assumed to satisfy Eg = 0 in Ωs,∇ · Eg = 0 and ‖Eg‖1 ≤ C‖g‖1/2.
Such extension can be obtained by using smooth cut-off functions and the property of the
divergence operator, as shown below.

Lemma 2.1. [8, p. 288] Let ω be a bounded domain of Rd, d ≤ 4 with a Lipschitz-
continuous boundary Γ. For ∀ε > 0, there exists a function θε ∈ C2(ω) such that


θε = 1, in a neighborhood of Γ,

θε = 0, if d(x; Γ) ≥ 2 exp(− 1
ε ),

|∇θε| ≤ C ε
d(x;Γ) , if d(x; Γ) ≤ 2 exp(− 1

ε ),

where d(x; Γ) = inf
y∈Γ
|x− y| is the distance function.

Lemma 2.2. There exists an extension Ẽg ∈ H1(Ω) of the boundary data g ∈ H1/2(∂Ω)
such that Ẽg = 0 in Ωs and ‖Ẽg‖1 ≤ C‖g‖1/2.

Proof. Let E′ be the right inverse of the standard trace operator γ : H1(Ω)→ H1/2(∂Ω),
for which ∃C > 0 such that ‖E′g‖1 ≤ C‖g‖1/2. Set d = min{d(∂Ωs; ∂Ω), 1}. Let ε > 0 be

such that d = 2 ∗ exp(− 1
ε ). By Lemma 2.1, there exists θε ∈ C2(Ω), with θε = 0 in Ωs,

θε|∂Ω = 1. Set Ẽg = θεE
′g. It easy to see that Ẽg has the desired properties.

Lemma 2.3. [8, p. 24] Suppose d ≤ 3 and ω ⊂ Rd is open and connected. Then, the
divergence operator is an isomorphism between V ⊥(ω), where V (ω) = {v ∈ H1

0 (ω) : ∇ ·v =
0}, and L2

0(ω). Further, ∃β > 0 such that

∀ q ∈ L2
0(ω) ∃!v ∈ V ⊥(ω), |v|1,ω ≤

1

β
‖q‖ω. (2.1)

Definition 2.4. Let gh be an interpolant of g and

X∗ := H1
0 (Ω∗), Q∗ := L2

0(Ω∗), L := L2(Ωs).

Lemma 2.5. There exists an extension Eg ∈ H1(Ω) of the boundary data g ∈ H1/2(∂Ω)
such that Eg = 0 in Ωs, ∇ · Eg = 0 and ‖Eg‖1 ≤ C‖g‖1/2.
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Proof. Note that for Ẽg obtained in Lemma 2.2, we have ∇ · Ẽg ∈ Qf , because∫
Ωf

∇ · Ẽg =

∫
Ω

∇ · Ẽg =

∫
∂Ω

g · n = 0. (2.2)

By Lemma 2.3, ∃! vg ∈ Xf such that ∇ · vg = ∇ · Ẽg and |vg|1,f ≤ 1
β ‖∇ · Ẽg‖f ≤

√
d
β |Ẽg|1,f . Extend vg by zero to Ωs. Then vg belongs to X. Let Eg = Ẽg − vg. Then

Eg = g on ∂Ω, Eg = 0 in Ωs, ∇ · Eg = 0 and ‖Eg‖1 ≤ C‖g‖1/2.

2.2. Weak formulations. Definition 2.6. Let

a(·, ·) : X ×X → R, a(u,v) : = (ν̃∇u,∇v) + (K−1u,v)s,

b(·, ·) : Q×X → R, b(q,v) : = −(q,∇ · v),

c(·, ·) : L×X → R, c(µ,v) : = (µ,v)s,

l(·) : X → R, l(v) : =< f,v >H−1(Ω)×H1(Ω) −ν(∇Eg,∇v)f ,

lh(·) : X → R, lh(v) : =< f,v >H−1(Ω)×H1(Ω) −ν(∇Egh,∇v)f .

We denote by (u, p) the solution of the Stokes problem in Ωf :

−ν∆u +∇p = f in Ωf ,
∇ · u = 0 in Ωf ,

u = g on ∂Ω,
u = 0 on ∂Ωs,

(2.3)

prolongated by (u, p) = (0, 0) inside Ωs.
Now we define the weak formulation of Stokes equation. Since the discrete model is

going to be defined on the entire Ω, we use the test functions (v, q) ∈ (X,Q) in all of the
weak formulations.

Problem 2.7. Find (ũ, p) ∈ (Xf , Qf ) such that ũ = u− Eg, (ũ, p)Ωs = (0, 0) and

ν(∇ũ,∇v)f − (p,∇ · v)f + 〈τ(ũ, p) · n,v〉
=< f,v >H−1(Ω)×H1(Ω) −ν(∇Eg,∇v)f + 〈ν∇Eg · n,v〉 ∀v ∈ X, (2.4)

(q,∇ · ũ)f = 0 ∀q ∈ Q. (2.5)

where τ(ũ, p) · n := pn − ν∇ũ · n is a pseudo-traction on ∂Ωs and 〈·, ·〉 is duality pairing
between H−1/2(∂Ωs)×H1/2(∂Ωs). In this study we assume that τ(ũ, p) ·n ∈ H−1/2(∂Ωs).

Note that, since ũ ∈ Xf and ũ = 0 in Ωs, we have that ũ ∈ X. Further, as p|Ωs
= 0,

we also have p ∈ Q. These observations allow us to rewrite (2.4)-(2.5) in terms of linear
operators and bilinear forms defined in Definition 2.6.

Problem 2.8. Find (ũ, p) ∈ (X,Q) such that ũ = u− Eg, (ũ, p)Ωs = (0, 0) and

a(ũ,v) + b(p,v) + 〈τ(ũ, p) · n,v〉 = l(v) + 〈ν∇Eg · n,v〉 ∀v ∈ X, (2.6)

b(q, ũ) = 0 ∀q ∈ Q. (2.7)

The discrete model. We enhance the Stokes-Brinkman Volume Penalization model
(1.1)-(1.2) with two new ingredients:

1. For a fixed, parameter 0 < ε << 1, we impose u ' 0 in the each ball weakly

through a Lagrange Multiplier λ ∈ Lh := span
{
eiχBj

: for i = 1, d, j = 1, S
}

:∫
Bi

uµ = ε

∫
Bi

λµ ∀µ ∈ Lh.

4



2. In order to capture the geometry of the solid region, we augment the discrete velocity
space with bubble functions described in the next subsection.

Note that, the standard fictitious domain method would require L ⊂ H1(Ωs) [9]. Our
choice of L can be considered as non-conforming, which can be used to simplify the calcu-
lations.

Problem 2.9. Find (ũh, ph,λh) ∈ (Xh, Qh, Lh) ⊂ (X,Q,L) such that uh = ũh + Egh
and

a(ũh,vh) + b(ph,vh) + c(λh,vh) = lh(vh) ∀vh ∈ Xh, (2.8)

b(qh, ũh) = 0 ∀qh ∈ Qh, (2.9)

c(µh, ũh) = ε(λh,µh)s ∀µh ∈ Lh. (2.10)

2.3. Discrete subspaces. We denote conforming velocity, pressure finite element
polynomial spaces based on an edge to edge triangulations of Ω (with maximum element
diameter h) by

Yh ⊂ X,Qh ⊂ Q.

We assume that Yh, Qh satisfy the usual inf-sup stability condition [8], [4]. This means
the velocity-pressure spaces Yh, Qh, before augmentation by spherical bubbles, would be
div-stable for Stokes flow in Ω. In order to capture the geometry of the solid region, we
additionally augment the velocity space with the spherical bubbles described below.

When choosing the spherical bubbles two things must be taken into account. First, each
such basis function must be in X. Next, it should be able to capture the geometry the of
balls. So ideally each such basis function ξi must vanish outside Bi.

For a ball Bi, define

φi := max

{
1− |x− xi|2

r2
, 0

}
.

Now, for each ball Bi of radius r, centered at xi, we let ξji = φiej , j = 1, d, i = 1, S.

Let

Zh = span{ξ1
1, ξ

1
2, ..., ξ

1
S , ..., ξ

d
1, ξ

d
2, ..., ξ

d
S}

and Xh := Yh ⊕ Zh. Note that with this choice of bubbles, the d ∗ S × d ∗ S block in the
stiffness matrix corresponding to Zh will be of the form c1I, where I is the identity matrix
and c1 is a constant that can be pre-computed.

3. Well-posedness, stability and convergence. In this section, we prove well-
posedness of the system (2.8)-(2.10), along with stability and convergence results.

Definition 3.1. Let ‖ · ‖2ε := ν| · |21 + 1
ε‖ · ‖

2
1,s.

Lemma 3.2. The linear functionals l(·), lh(·) are continuous. In particular, for any
v ∈ X, q ∈ Q

l(v) ≤ C(‖f‖−1 + ν‖g‖1/2)|v|1,
lh(v) ≤ C(‖f‖−1 + ν‖gh‖1/2)|v|1.

Proof. The results follow directly by applying Cauchy-Schwarz and Poincaré inequali-
ties.
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Lemma 3.3. The bilinear functionals a(·, ·), b(·, ·) and c(·, ·) are continuous. Further,
a(·, ·) is coercive. In particular, for any u,v ∈ X, q ∈ Q and µ ∈ L,

a(v,v) = ‖v‖2ε,
a(u,v) ≤ ‖u‖ε‖v‖ε,

b(q,v) ≤
√
d‖q‖|v|1,

c(µ,v) ≤ C(Ω)‖µ‖s|v|1.

Proof. As in the last lemma, all the inequalities are directly obtained by applying
Cauchy-Schwarz and Poincaré inequalities.

Theorem 3.1. There exists a unique (ũh, ph,λh) ∈ (Xh, Qh, Lh) satisfying Stokes-
Brinkman-FD/LM, Problem 2.9. Moreover, (ũh, ph,λh) satisfy

|ũh|1 ≤ C
(

1

ν
‖f‖−1 + ‖gh‖1/2

)
, (3.1)

‖ũh‖ε ≤ C
(

1√
ν
‖f‖−1 +

√
ν‖gh‖1/2

)
, (3.2)

‖ũh‖1,s ≤ C
(√

ε

ν
‖f‖−1 +

√
εν‖gh‖1/2

)
, (3.3)

‖λh‖s ≤ C

(√
1

εν
‖f‖−1 +

1√
ε
‖gh‖1/2

)
, (3.4)

‖ph‖ ≤ C

(√
ν +

1

ε
|ũh|1 + ν‖gh‖1/2 + ‖f‖−1 + ‖λh‖s

)
. (3.5)

Proof. We first obtain the bounds (3.1)-(3.5). Restricting the test functions to Vh =
{vh ∈ Xh : b(qh,vh) = 0 ∀qh ∈ Qh}, reduces the Problem 2.9 to finding (ũh,λh) ∈ (Xh, Lh)
such that

a(ũh,vh) + c(λh,vh) = lh(vh) ∀vh ∈ Vh, (3.6)

c(µh, ũh) = ε(λh,µh) ∀µh ∈ Lh. (3.7)

Setting vh = ũh,µh = λh yields

‖ũh‖2ε + ε‖λh‖2s = lh(ũh). (3.8)

Applying the results of Lemmas 3.2, 3.3 and the definiton of ‖·‖ε, we obtain (3.1)-(3.4).
By assumption on (Yh, Qh) space, ∃βh > 0 and ∃vh ∈ Xh such that

‖ph‖ ≤
C

β
sup

vh∈Xh

|a(ũh,vh)|+ |c(λh,vh) + |lh(vh)|
|vh|

(3.9)

≤ C

(√
ν +

1

ε
|ũh|1 + ν‖gh‖1/2 + ‖f‖−1 + ‖λh‖s

)
. (3.10)
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In order to show existence and uniqueness of the solution, we set f = gh = 0. Then
(3.1)-(3.5) imply that (ũh, ph,λh) = (0, 0,0).

Theorem 3.2. Let (u, p) be the solution of Stokes Problem 2.8. Then we have

√
ε‖λh‖s + ‖ũ− ũh‖ε ≤ inf

(wh,qh)∈(Vh,Qh)
C

(
‖ũ−wh‖ε +

1√
ν
‖p− qh‖

)
+C
√
ε
(
‖τ · n‖−1/2,s + ν‖∇Eg · n‖−1/2,s

)
+

C√
ν
‖g − gh‖1/2. (3.11)

inf
wh∈Vh

|ũ−wh|1 ≤ C
(

1 +
1

βh

)
inf

vh∈Xh

|ũ− vh|1. (3.12)

Proof. Fix 0 < ε << 1. Consider vh,wh ∈ Vh, qh ∈ Qh. By subtracting (2.8) from
(2.6), then adding and subtracting a(wh,vh) and using the fact that c(λh, ũ) = 0, we find

a(ũh −wh,vh) + c(λh, ũ + vh) = a(ũ−wh,vh) + b(p− qh,vh) + 〈τ · n,vh〉
− ν〈∇Eg · n,vh〉+ (∇E(g − gh),∇vh)f . (3.13)

Let us now choose vh = ũh −wh ∈ Vh. Note that

c(λh, ũ + ũh −wh) = ε‖λh‖2s + c(λh, ũ−wh).

Last identity together with the regularity assumption on pseudo-traction τ(ũ, p), Lemma
3.3, (2.10) and standard inequalities imply

√
ε‖λh‖s + ‖ũh −wh‖ε ≤ C

(
‖ũ−wh‖ε +

1√
ν
‖p− qh‖

)
+ C
√
ε
(
‖τ · n‖−1/2,s + ν‖∇Eg · n‖−1/2,s

)
+

C√
ν
‖g − gh‖1/2.

(3.14)

from which we have (3.11) by applying the triangle inequality.
Let us prove now the estimate (3.12). To this end choose ∀vh ∈ Xh and ∀wh ∈ Vh. By

equation (1.12) [7, p. 60]

|vh −wh|1 ≤ C sup
qh∈Qh

b(qh,vh −wh)

‖qh‖
≤ C sup

qh∈Qh

b(qh, ũ− vh)

‖qh‖
≤ C|ũ− vh|1. (3.15)

Hence,

|ũ−wh|1 ≤ C
(

1 +
1

βh

)
|ũ− vh|1.

whence the estimate (3.12) follows.

4. Numerical experiments. For our computations, we used Xh = Yh ⊕ Zh, Qh and

Lh := span

{(
χBi

0

)
,

(
0
χBj

)}
, where (Yh, Qh) are P3-P2 Taylor-Hood elements which are

known to satisfy the inf-sup condition [3, 4]. We used FreeFEM++ [10] in our computations.
Our tests here are preliminary proof of concept, tested in 2d with spheres simple enough to
allow a mesh-conforming ”true” solution to be obtained.
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Two key comparisons of Brinkman (M1) vs. our model (M2) are the 1) amount of fluid
flowing through the spheres and 2) the size of the dead zones behind the spheres caused by
the spheres acting like a solid obstacles.

Flow through a thin channel. Our experiment is for two-dimensional flow around
seven balls placed in the channel, with small distance apart from each other. The domain is
([0, 1]× [0.39, 0.61])−Ωs, where Ωs is the union of seven balls with radii 0.03 and centered at
(0.16, 0.49), (0.23, 0.52), (0.28, 0.43), (0.1, 0.44), (0.13, 0.56), (0.35, 0.48) and (0.39, 0.54). We
assume no-slip boundary conditions on the top and bottom boundaries, a parabolic inflow
given by ((y − 0.39)(0.61 − y)/25, 0)T and do-nothing outflow. We take ν = 100, f =
(y, 0)Tχf .

Fig. 4.1: The body-fitted, resolved Stokes speed contours

In Figure 4.1 we present the speed contour of the true solution. We ran tests on few
mesh refinements (Fig. 4.2) for two different values of the penalty parameter ε.

The speed contours of our approximiations are presented in Figures 4.3-4.6, 4.8, 4.10.
We also include the plots for M1 in Figures 4.7,4.9 and 4.11.

Next, we list tables of errors in Tables 4.1, 4.2.

ε = 1e− 15 ε = h2

M1 rate M2 rate M1 rate M2 rate
h

0.11 3.79e-2 4.0316 2.43e-3 -0.1226 1.59e-3 0.0288 9.33e-4 0.3656
0.055 2.32e-3 0.7407 2.65e-3 0.9002 1.55e-3 0.0258 7.24e-4 0.1983
0.027 1.39e-3 0.4225 1.42e-3 0.4496 1.52e-3 0.0131 6.31e-4 1.2753
0.014 1.04e-3 - 1.04e-3 - 1.51e-3 0.001 2.6e-4 0.5746
0.007 Out of memory 1.5e-3 - 1.75e-4 -

Table 4.1: L2 errors and rates

From the numerical experiments, we can observe the following:
• On the coarsest mesh, for both values of ε the proposed method gives much better

results than M1. In the case of ε = h2, M2 gives reasonable speed contours (Fig
4.3), while M1 yields very poor approximation even on the finest mesh (Fig. 4.7).
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Fig. 4.2: Three coarsest meshes and Ωs

ε = 1e− 15 ε = h2

M1 rate M2 rate M1 rate M2 rate
h

0.11 2.03e-3 3.99 9.145e-6 -0.782 6.9710e-4 0.022 4.548e-4 0.322
0.055 3.7607e-5 1.465 1.572e-5 2.205 6.8202e-4 0.021 3.6373e-4 0.586
0.027 8.6936e-6 2.187 2.769e-6 2.897 6.6806e-4 0.011 2.4238e-4 1.371
0.014 9.7618e-7 - 3.718e-7 - 6.6079e-4 - 9.37e-5 1.815
0.007 Out of memory 1.5e-3 - 2.6632e-5 -

Table 4.2: L2(Ωs) errors and rates

Further, M1 also produces more accurate approximation (Tables 4.1-4.2). This is
due to the new ingredients added to Stokes-Brinkman model.

• For very small value of the penalty parameter ε, both methods give very similar,
poor results. In particular note the polygonal no-flow regions in Figures 4.8 - 4.11.
Further, the flow has been chocked off in some of the pores. One advantage of the
method herein is that less flow goes through the solid domain. This improvement

is due to the addition of the bubbles because, by Hólder’s inequality
∫
B

u ≤
∣∣∣∣∫
B

u

∣∣∣∣ ≤
C‖u‖s ≤ C

√
ε by (3.3), so that weak no-flow is almost satisfied for both methods.

• For larger value of ε, M2 gives very good approximiations, while M1 gives very
underresolved solution even on the finest mesh.

5. Conclusions. We proposed a modification of Brinkman model for fluid flow. It
avoids using computationally expensive body-fitted meshes and approximates the flow much
more accurately than the original model. The analysis is valid for both 2d and 3d flows.

In this article, we have shown that the model is well-posed on any shape regular mesh.
It converges at a rate O(

√
ε) in H1(Ωs). Also, we proved a convergence result, where the

convergence of the velocity is decoupled from that of the Lagrange multiplier.
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Fig. 4.3: M2, h = 0.11, ε = h2
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Fig. 4.4: M2, h = 0.055, ε = h2

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Fig. 4.5: M2, h = 0.027, ε = h2
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Fig. 4.6: M2, h = 0.014, ε = h2
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Fig. 4.7: M1, h = 0.007, ε = h2
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Fig. 4.8: M2, h = 0.027, ε = 1e− 15
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Fig. 4.9: M1, h = 0.027, ε = 1e− 15
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The next step is the analysis and testing in the nonlinear case, followed by the coupling
with heat transfer equations for high Re number flows.
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