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Abstract. This report develops a class of exact solutions based on Green-Taylor’s vortex [5], [6] to
stochastic Navier-Stokes equations to test the accuracy of the various models and methods.
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1. Introduction. In Computational Fluid Dynamics (CFD), all the approaches to
Uncertainty Quantification (UQ) seek to quantify the uncertainty in approximations to the
expectation, moments and other statistical quantities of interest in a flow. Validation of
various approaches (e.g., polynomial chaos [7], stochastic collocation [8]) to UQ in CFD re-
quires as a first step exact solutions of the stochastic NSE with with stochasticity introduced
in various places. In this report, we present exact solutions of the stochastic Navier-Stokes
equations extending the Green-Taylor vortex solutions [1] to include stochastic forcing, ini-
tial conditions and viscosity. Green-Taylor vortex solutions have been extensively used in
CFD, see e.g. [4], [3].

For a random variable ξ, we therefore consider the stochastic Navier-Stokes equations
with stochasticity introduced in

(i) the body force by a Brownian motion f = σẆ (t) with σ = const, or
(ii) the initial condition u(x, 0; ξ) = a(x)g(ξ), or
(iii) the viscosity ν(ξ).

Let a(x) be a Stokes eigenfunction

4a = λa, ∇ · a = 0 in Ω and a(x) = 0 on ∂Ω. (1.1)

Let u(x, t; ξ), x ∈ Ω ⊂ R2 satisfy
ut + u · ∇u− ν4u +∇p = f ,

∇ · u = 0,
u = 0 on ∂Ω,

u(x, 0; ξ) = a(x)g(ξ).

(1.2)

We prove the following:
Theorem 1.1.
(i) If f = σẆ (t) with σ = const, ν = const and g ≡ 1, then the exact solution of (1.2)

is

u(x, t) = a

x− t∫
0

σW (s)ds

 eλνt + σW (t), (1.3)

∇p(x, t) = − (u− σW (t)) · ∇u. (1.4)

(ii) If f = 0, ν = const and g = g(ξ), then the exact solution of (1.2) is

u(x, t; ξ) = eλνta(x)g(ξ), (1.5)

∇p(x, t; ξ) = −u(x, t; ξ) · ∇u(x, t; ξ). (1.6)

(iii) If f = 0, ν = ν(ξ) and g ≡ 1, then the exact solution of (1.2) is

u(x, t; ξ) = eλν(ξ)ta(x), (1.7)

∇p(x, t; ξ) = −u(x, t; ξ) · ∇u(x, t; ξ). (1.8)

These are the stochastic extensions of the famous Green-Taylor vortices.
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2. The proof. First, we will briefly recall the construction of the Green-Taylor solution
to deterministic Navier-Stokes equations

vt + v · ∇v = ν4v −∇q, ∇ · v = 0 and v(x, 0) = a(x). (2.1)

Lemma 2.1. (from [1]). Suppose a(x) satisfies (1.1). Then v = eνλta satisfies ∇× (v ·
∇v) = 0 and (2.1) with pressure q such that ∇q = −v · ∇v.

Proof. Since ∇ · a = 0, then ∇ · u = 0. Futher, ut = νλu = ν4u and hence it only
remains to prove that nonlinear term is a gradient. This is equivalent to showing

∂

∂y

(
u1
∂u1
∂x

+ u2
∂u1
∂y

)
=

∂

∂x

(
u1
∂u2
∂x

+ u2
∂u2
∂y

)
, (2.2)

which directly follows from (1.1).

u1(x, t) = − cos(nπx) sin(nπy)e−2π2n2νt,

u2(x, t) = sin(nπx) cos(nπy)e−2π2n2νt,

p(x, t) = −1

4
(cos(2nπx) + cos(2nπy)) e−4π2n2νt,

which corresponds to λ = −2π2n2, where n is any positive integer. Different linear combi-
nations of eigenfunctions corresponding to λ gives rise to complex flow patterns [1].

Proof of the Theorem 1.1. From [1], it follows that if a(x) is a Stokes eigenfunction
and since, for the last two cases in Theorem 1.1, u(x, t; ξ) takes the form u = a(x)G(t, ξ),
we have that ∇ × (u · ∇u) ≡ 0. Then, as in [1], nonlinearity is balanced by the pressure
∇p = −u · ∇u.

(i) Note that by using Ito’s formula [2], the solution of (2.1), (v, q) is related to that
of (1.2) by 

u(x, t) = v

(
x−

t∫
0

σW (s)ds, t

)
+ σW (t),

p(x, t) = q

(
x−

t∫
0

σW (s)ds, t

)
.

(2.3)

Thus, by Lemma 2.1 we have that

u(x, t) = a

x− t∫
0

σW (s)ds

 eλνt + σW (t), (2.4)

along with u(x, 0) = a(x). Since ∇q = −v ·∇v = (σW (t)− u) ·∇u, we obtain that

∇× (σW (t)− u) · ∇u = 0.

Therefore,

∇p(x, t) = (σW (t)− u) · ∇u. (2.5)

.
(ii) Obviously, u = eλνtg(ξ)a(x) satisfies the initial and boundary conditions. The rest

of the proof follows from Lemma 2.1.
(iii) By Lemma 2.1, u(x, t; ξ) = eλν(ξ)ta(x) satisfies

ut(x, t; ξ) = λν(ξ)u(x, t; ξ) = ν(ξ)∆u(x, t; ξ).

Further, as mentioned in the beginning of the proof, u(x, t; ξ)·∇u(x, t; ξ) is gradient.
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