EXACT SOLUTIONS OF THE STOCHASTIC NAVIER-STOKES
EQUATIONS

AZ1Z TAKHIROV *

Abstract. This report develops a class of exact solutions based on Green-Taylor’s vortex [5], [6] to
stochastic Navier-Stokes equations to test the accuracy of the various models and methods.
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1. Introduction. In Computational Fluid Dynamics (CFD), all the approaches to
Uncertainty Quantification (UQ) seek to quantify the uncertainty in approximations to the
expectation, moments and other statistical quantities of interest in a flow. Validation of
various approaches (e.g., polynomial chaos [7], stochastic collocation [8]) to UQ in CFD re-
quires as a first step exact solutions of the stochastic NSE with with stochasticity introduced
in various places. In this report, we present exact solutions of the stochastic Navier-Stokes
equations extending the Green-Taylor vortex solutions [1] to include stochastic forcing, ini-
tial conditions and viscosity. Green-Taylor vortex solutions have been extensively used in
CFD, see e.g. [4], [3].

For a random variable £, we therefore consider the stochastic Navier-Stokes equations
with stochasticity introduced in

(i) the body force by a Brownian motion f = oW (t) with o = const, or

(ii) the initial condition u(z,0;&) = a(z)g(&), or

(iii) the viscosity v(&).

Let a(z) be a Stokes eigenfunction

Na=M\a, V-a=0in and a(z) = 0 on 0. (1.1)
Let u(x,t;¢), € Q C R? satisfy

u+u-Vu—vAu+Vp=f{,
V-u=0,
u = 0 on 01,
u(z, 0:€) = a(@)g(€).
We prove the following:
THEOREM 1.1.

(i) If f = oW (t) with ¢ = const,v = const and g = 1, then the exact solution of (1.2)
18

t

u(z,t)=a|z— /UW(s)ds Mt g W (t), (1.3)
0

Vp(z,t) = —(u—ocW(t)) - Vu. (1.4)

(i) If f = 0,v = const and g = g(£), then the exact solution of (1.2) is
u(z, ;) = e*"a(z)g(§), (1.5)
Vp(z,t;§) = —u(z,t;§) - Vu(z, £;§). (1.6)

(iii) If £ = 0,v =v(&) and g = 1, then the exact solution of (1.2) is

u(z, t:€) = M a(e), (1.7)
Vp(z,t;§) = —u(z,t;£) - Vu(z, t;§). (1.8)

These are the stochastic extensions of the famous Green-Taylor vortices.
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2. The proof. First, we will briefly recall the construction of the Green-Taylor solution
to deterministic Navier-Stokes equations

vi+v-Vv=vAv—-Vq, V-v=0and v(z,0) = a(x). (2.1)

LEMMA 2.1. (from [1]). Suppose a(x) satisfies (1.1). Then v = e**a satisfies V x (v
Vv) =0 and (2.1) with pressure q such that Vg = —v - Vv.

Proof. Since V -a = 0, then V - u = 0. Futher, u; = vAu = vAu and hence it only
remains to prove that nonlinear term is a gradient. This is equivalent to showing

0 8u1 8u1 0 8“2 8“2
I (8 4, 20 = & (22 1, 22 2.2
By <ulax +“2ay) oz (ulax +“2ay>’ (22)

which directly follows from (1.1). O

uy(w,t) = — cos(nmx) sin(nﬂ-y)e—QW%%t7
ug(x,t) = sin(nmz) cos(mry)e—zﬁ%zyt7
1
plx,t) = -1 (cos(2nmz) 4 cos(2nmy)) 6—47r2nzut7
which corresponds to A = —27%n?, where n is any positive integer. Different linear combi-

nations of eigenfunctions corresponding to A gives rise to complex flow patterns [1].

Proof of the Theorem 1.1. From [1], it follows that if a(z) is a Stokes eigenfunction
and since, for the last two cases in Theorem 1.1, u(z, t; ) takes the form u = a(x)G(t, ),
we have that V x (u-Vu) = 0. Then, as in [1], nonlinearity is balanced by the pressure
Vp=—u-Vu

(i) Note that by using Ito’s formula [2], the solution of (2.1), (v,q) is related to that

of (1.2) by

u(z,t) = v (a: - jaW(s)ds,t) oW (t),

. (2.3)
p(x,t) =q (a: — fO'W(S)dSﬂf) .
0
Thus, by Lemma 2.1 we have that
t
u(z,t)=a|x— /UW(S)dS ML W (t), (2.4)

0
along with u(z, 0) = a(z). Since Vg = —v-Vv = (6W (t) — u) - Vu, we obtain that
V x (eW(t) —u) - Vu=0.
Therefore,
Vp(z,t) = (cW(t) —u) - Vu. (2.5)
(ii) Obviously, u = e*!g(¢)a(z) satisfies the initial and boundary conditions. The rest

of the proof follows from Lemma 2.1.
(iii) By Lemma 2.1, u(z,t; &) = eM(©ta(z) satisfies

u(z,t:€) = Aw(§u(z, ;) = v(§)Au(z, ; §).

Further, as mentioned in the beginning of the proof, u(z, t; £)-Vu(x, t; £) is gradient.
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