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Abstract. Stochastic collocation method has proved to be an efficient method and been widely
applied to solve various partial differential equations with random input data, including Navier-
Stokes equations. However, up to now, rigorous convergence analyses are limited to linear elliptic
and parabolic equations; its performance for Navier-Stokes equations was demonstrated mostly by
numerical experiments. In this paper, we provide an error analysis of stochastic collocation method
for a semi-implicit Backward Euler discretization for NSE and prove the exponential decay of the in-
terpolation error in the probability space. Our analysis indicates that due to the nonlinearity, as final
time T increases and NSE solvers pile up, the accuracy may be reduced significantly. Subsequently,
the theoretical results are illustrated by the numerical test of time dependent fluid flow around a
bluff body.

1. Introduction. Flow of liquids and gases is ubiquitous in nature and obtaining
an accurate prediction of these flows is a central difficulty in diverse problems such
as global change estimation, improving the energy effciency of engines, controlling
dispersal of contaminants, designing biomedical devices and many other venues. Most
applications of fluid flows in engineering and science are affected by uncertainty in
the input data and mathematical models, e.g., forcing terms, wall roughness, material
properties, source and interaction terms, geometry, model coefficients, etc. In this
case, it is necessary to introduce uncertainty in mathematical models to assess the
reliability of predictions based on numerical simulations.

The literature on numerical methods for stochastic differential equations has
grown extensively in the last decade. The Monte Carlo sampling method is the
classical and most popular approach for approximating expected values and other
statistical moments of quantities of interest (QoI) based on the solution of PDEs
with random inputs. While being very flexible and easy to implement, Monte Carlo
method requires a very large number of samples to achieve small errors. Recently,
other approaches have been proposed that often feature fast convergence. These in-
clude stochastic Galerkin methods, stochastic collocation methods, and perturbation,
Neumann and Taylor expansion methods.

Stochastic collocation methods (SCM) have emerged to be a modern, efficient
technique for quantifying uncertainty in physical applications [MHZ05, NT09, XH05].
One advantage of SCMs concerns the much faster convergence rates, which can yield
accurate predictions of the uncertainty at a small fraction of the cost of a Monte-
Carlo simulation, while maintaining an ensemble-based, non-intrusive approach. The
better convergence behavior of SCMs, however, requires analyticity of the solutions
with respect to the random variables. In [BNT07], such property was established and
the error estimates of SCMs were given for elliptic PDEs. These results have been
extended to linear parabolic equations in [ZG12]. Often in nonlinear scientific and
engineering problems, particularly in Navier-Stokes equations, complex solutions arise
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and their dependence on the random input data varies rapidly. For these cases, the
smoothness of solutions in probability space has been less known. Consequently, the
accuracy of SCMs (and their variants) has been demonstrated mostly by numerical
experiments rather than by rigorous error analysis.

In this article, based on the procedure in [BNT07], we establish, for the first time,
some analyticity results of solutions of a fully discrete approximation for stochastic
Navier-Stokes equations. The scheme we analyze is backward Euler with constant
extrapolation (BECE), space-time error estimates of which were obtained in [TT00]:

un+1 − un

∆t
− ν∆un+1 + un · ∇un+1 +∇pn+1 = fn+1,

∇ · un+1 = 0.

(BECE)

We show that at a fixed time T , the exponential decay of interpolation errors of SCMs
does occur, just like the case of linear PDEs. However, the errors of numerical methods
for NSE frequently exhibit sharp growths in T , e.g., exponential growth in time of the
space-time error in deterministic NSE approximations [HR90, Lay08], and SCMs seem
not to be an exception. We verify herein that type of growth for the interpolation
errors of SCMs. Particularly, our analysis indicates that as T increases, the radius of
analyticity may shrink exponentially, resulting in a reduction in accuracy.

The outline of the paper is as follows. In Section 2, we introduce the mathemati-
cal problem and the notation used throughout the paper, as well as a brief description
of the stochastic collocation methods. In Section 3, we derive the analyticity of the
fully discrete solution of (BECE) and the converenge rates of SCMs for this scheme.
A computational experiment of time dependent flow around a circular cylinder illus-
trating our numerical analysis is given in Section 4. Finally, concluding remarks are
followed in Section 5.

1.1. Related works. Many variations have been introduced to improve the ef-
ficiency of stochastic numerical methods including sparse grid collocation [NTW08],
anisotropic sparse grid collocation [NTW08b], and sparse polynomial bases [TS07].
The exponential decay of interpolation errors and the deterioration of accuracy in
long time, which we analyze herein, have been indicated in the literature, e.g., [Luc04,
WK06, WLSB08]. Not surprisingly, there have been many techniques developed to
deal with stochastic nonlinear problems, whose solutions exhibit sharp variation and
even discontinuity with respect to random data. These include domain decomposi-
tion of parametric spaces (multi-element polynomial chaos [WK06b], multi-element
probabilistic collocation [FWK08]), wavelet expansions [MKNG04], [MNGK04], re-
finement strategies that focus on regions of irregular behavior (adaptively sparse-grid
SCM [GWZ13], adaptive polynomial chaos [WK05]) and parameterization strategies
for QoIs whose patterns are known [WLB07]. While these approaches clearly show
significant improvements in efficiency and accuracy in various linear and nonlinear ap-
plications, their error estimates for nonlinear problems have not been provided. The
discrete scheme (BECE) we study here is just one method in the class of multi-step
backward differentiation methods coupled with semi-implicit or explicit scheme for
the nonlinear terms, see [DFJ74, BDK82] among others. These schemes are attractive
that each time step requires only one discrete Stokes system and linear solve. In ad-
dition, in many cases, no time step restriction is needed for stability and convergence.
Space-time convergence estimates for (BECE) is derived in [TT00]. For numerical
analysis for higher order methods, we refer to [GR79, HS07, Ing13]. The application
of non-iterative extrapolating schemes in modeling engineering flows can be found
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in [SS02] (turbulent flows induced by wind turbine motion), [ACH06] (reacting flows
in complex geometries such as gas turbine combustors), [MMOU06] (turbulent flows
transporting particles).

2. Problem setting.

2.1. Stochastic incompressible Navier-Stokes equation. Let D be a con-
vex bounded polygonal domain in Rm (m = 2, 3) and let (Ω,F , P ) be a complete
probability space. Here Ω is the set of outcomes, F ⊂ 2Ω is the σ-algebra of events,
and P : F → [0, 1] is a probability measure. We define two random fields: the viscosity
field ν(x, ω) : D × Ω→ R and the forcing field f(t, x, ω) : [0, T ]×D × Ω→ Rm.

The stochastic incompressible Navier-Stokes problem can be written as follows:
find a random velocity, u : [0, T ]×D×Ω→ Rm and random pressure p : [0, T ]×D×
Ω→ R, such that P -almost surely (a.s.) the following equation holds in (0, T ]×D×Ω:

∂tu− ν∆u+ u · ∇u+∇p = f,

∇ · u = 0, (2.1)

subject to the initial condition

u(0, x, ω) = u0(x), on D × Ω,

and the boundary condition

u(t, x, ω) = 0, on (0, T ]× ∂D × Ω.

Let y = (y1, ..., yd) denote a d-dimensional random variable in (Ω,F , P ) and define
the space L2

P (Ω) comprising all random variables y satisfying

d∑
n=1

∫
Ω

|yn(ω)|2dP (ω) <∞.

Then the following Hilbert spaces can be defined

V = L2(0, T ;H1
0 (D))⊗ L2

P (Ω) with norm ‖u‖2V =

∫ T

0

∫
D

E[|∇u|2]dxdt,

W = L2(0, T ;L2
0(D))⊗ L2

P (Ω) with norm ‖p‖2W =

∫ T

0

∫
D

E[|p|2]dxdt.

In order to define the weak form of the Navier-Stokes equations we introduce two
continuous bilinear forms

a(u, v) = 2ν

m∑
i,j=1

∫
D

Dij(u)Dij(v)dx, ∀u, v ∈ H1(D),

b(v, q) = −
∫
D

q∇ · vdx, ∀q ∈ L2(D), v ∈ H1(D),

where Dij(v) = 1
2 (∂vi/∂xj + ∂vj/∂xi), and the continuous trilinear form

c(w;u, v) =
1

2

m∑
i,j=1

(∫
D

wj

(
∂ui
∂xj

)
vidx−

∫
D

wj

(
∂vi
∂xj

)
uidx

)
, ∀w, u, v ∈ H1(D)
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We now define weak solutions of the problem (2.1): a pair (u, p) ∈ V ×W is a weak
solution of (2.1) if it satisfies the initial condition u(0, x, ω) = u0(x, ω) and for T > 0

E[(∂tu, v)] + E[a(u, v)] + E[c(u;u, v)] + E[b(v, p)]

= E[(f, v)], for all v ∈ H1
0 (D)⊗ L2

P (Ω), (2.2)

E[b(u, q)] = 0, for all q ∈ L2
0(D)⊗ L2

P (Ω).

2.2. Finite dimensional noise assumption. In many problems the source
of randomness can be approximated using just a small number of uncorrelated or
independent random variables; take, for example, the case of a truncated Karhunen-
Loève expansion, [Loe87]. This motivates us to make the following assumption.

Assumption 2.1. The random input functions of the equation (2.1) have the
form

ν(x, ω) = ν(x,y(ω)), on D × Ω,

f(t, x, ω) = f(t, x,y(ω)), on [0, T ]×D × Ω,

where y(ω) = (y1(ω), ..., yd(ω)) is a vector of real-valued random variables with mean
value zero and unit variance.

We will denote with Γn ≡ yn(Ω) the image of yn, Γ =
∏d
n=1 Γn and assume

that the random variables [y1, ..., yd] have a joint probability density function ρ :
Γ→ R+, with ρ ∈ L∞(Γ). Hence the probability space (Ω,F , P ) can be replaced by
(Γ,Bd, ρdy), where Bd is the d-dimensional Borel space.

Similar to V and W , we can define Vρ and Wρ as

Vρ = L2(0, T ;H1
0 (D))⊗ L2

ρ(Γ) with norm ‖u‖2Vρ =

∫
Γ

‖u‖2L2(0,T ;H1
0 (D))ρdy,

Wρ = L2(0, T ;L2
0(D))⊗ L2

ρ(Γ) with norm ‖p‖2Wρ
=

∫
Γ

‖p‖2L2(0,T ;L2
0(D))ρdy.

After making Assumption 2.1, the solution (u, p) of the stochastic NSE (2.2) can be de-
scribed by just a finite number of random variables, i.e., u(ω, x)=u(y1(ω), ..., yd(ω), x),
p(ω, x) = p(y1(ω), ..., yd(ω), x). Thus, the goal is to approximate the function u =
u(y, x) and p = p(y, x), where y ∈ Γ and x ∈ D. Observe that the stochastic varia-
tional formulation (2.2) has a “deterministic” equivalent which is the following: find
u ∈ Vρ, p ∈Wρ satisfying the initial condition and, for T > 0∫

Γ

ρ(∂tu, v)dy +

∫
Γ

ρa(u, v)dy +

∫
Γ

ρc(u;u, v)dy +

∫
Γ

ρb(v, p)dy

=

∫
Γ

ρ(f, v)dy, for all v ∈ H1
0 (D)⊗ L2

ρ(Γ), (2.3)∫
Γ

ρb(u, q)dy = 0, for all q ∈ L2
0(D)⊗ L2

ρ(Γ).

For a fixed T , the solution has the form u(ω, x) = u(y1(ω), ..., yd(ω), x), p(ω, x) =
p(y1(ω), ..., yd(ω), x) and we use the notation u(y), p(y), ν(y), f(y), and u0(y) in
order to emphasize the dependence on the variable y. Then, the weak formulation
(2.3) for T > 0 is equivalent to

(∂tu(y), v) + a(u(y), v) + c(u(y);u(y), v) + b(v, p(y))

= (f(y), v), for all v ∈ H1
0 (D), ρ-a.e. in Γ, (2.4)

b(u(y), q) = 0, for all q ∈ L2
0(D), ρ-a.e. in Γ.
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2.3. Collocation method. Denote conforming velocity, pressure finite element
spaces based on an edge to edge triangulation of D (with maximum triangle diameter
h) by

Hh ⊂ H1
0 (D) , Lh ⊂ L2

0(D).

We assume that Hh and Lh satisfy the usual discrete inf-sup condition. Taylor-
Hood elements, discussed in [BS08], [G89], are one commonly used choice of velocity-
pressure finite element spaces. The discretely divergence free subspace of Hh is

Vh := {vh ∈ Hh : (∇ · vh, qh) = 0 , ∀qh ∈ Lh}.

The spatial discrete approximation of (2.4) can be written as: find uh ∈ L2(0, T ;Hh)⊗
L2
ρ(Γ) and ph ∈ L2(0, T ;Lh)⊗ L2

ρ(Γ) satisfying initial condition and for T > 0

(∂tuh(y), vh) + a(uh(y), vh) + c(uh(y);uh(y), vh) + b(vh, ph(y))

= (f(y), vh), for all vh ∈ Hh, ρ-a.e. in Γ, (2.5)

b(uh(y), qh) = 0, for all qh ∈ Lh, ρ-a.e. in Γ.

or more simply: find uh ∈ L2(0, T ;Vh) ⊗ L2
ρ(Γ) satisfying initial condition and for

T > 0

(∂tuh(y), vh) + a(uh(y), vh) + c(uh(y);uh(y), vh) = (f(y), vh),

for all vh ∈ Vh, ρ-a.e. in Γ,
(2.6)

We apply the stochastic collocation method to the weak form (2.5). Define
Pp(Γ) ⊂ L2

ρ(Γ) is the span of tensor product polynomials with degree at most

p = (p1, ..., pd). The dimension of Pp(Γ) is Np =
∏d
n=1(pn + 1). We seek a nu-

merical approximation to the solution of (2.5) in finite dimensional subspaces Vρ,h =
L2(0, T ;Hh)⊗ Pp(Γ) and Wρ,h = L2(0, T ;Lh)⊗ Pp(Γ).

The procedure for solving (2.5) is divided into two parts. First, for a fixed T >
0, at each collocation point (root of orthogonal polynomials) y ∈ Γ, construct an
approximation uh(T, ·,y) ∈ Hh(D) and ph(T, ·,y) ∈ Lh(D) satisfying

(∂tuh(y), vh) + a(uh(y), vh) + c(uh(y);uh(y), vh)

+ b(vh, ph(y)) = (f(y), vh), for all vh ∈ Hh(D), (2.7)

b(uh(y), qh) = 0, for all qh ∈ Lh(D).

Next, we collocate (2.7) on those points and build the discrete solutions uh,p ∈
Hh(D)⊗ Pp(Γ) and ph,p ∈ Lh(D)⊗ Pp(Γ) by interpolating in y the collocated solu-
tions, i.e.,

uh,p(T, x,y) = Ipuh(T, x,y)

=

p1+1∑
j1=1

· · ·
pd+1∑
jd=1

uh(T, x, yj1 , · · · , yjd)(lj1 ⊗ · · · ⊗ ljd),

where, for example, the functions {ljk}dk=1 can be taken as Lagrange polynomials.

Obviously, the above product requires
∏d
n=1(pn + 1) function evaluations.

Because the random input data depend on a finite number of independent random
variables and we collocate the weak formulation (2.7) at the zeros of orthogonal poly-
nomials, the solution uh,p becomes a solution of uncoupled deterministic problems as
in a Monte Carlo simulation but with much fewer collocation points.
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3. Error analysis for fully discrete schemes. In this section, we carry out
an error analysis for the time stepping scheme (BECE) for the approximation of
the stochastic Navier-Stokes equation (2.1) in 3 dimensions. The 2-dimensional case
should follow similarly. Let N ∈ N+ and consider the uniform partition of the time
interval [0, T ]

0 = t0 < t1 < · · · < tN = T

with tj = t0 + j∆t, j = 0, 1, ..., N , and the time step ∆t = T/N . For discretizing
system (2.7), we apply and study the convergence of the first order backward Euler
scheme with a semi-implicit treatment for the nonlinear term

Algorithm 3.1. Given j ∈ {0, . . . , N − 1} and ujh ∈ Hh, p
j
h ∈ Lh, find uj+1

h ∈
Hh, p

j+1
h ∈ Lh satisfying(
uj+1
h − ujh

∆t
, vh

)
+ a(uj+1

h , vh)+ c(ujh;uj+1
h , vh) + b(vh, p

j+1
h )

= (f j+1, vh), for all vh ∈ Hh,

b(uj+1
h , qh) = 0, for all qh ∈ Lh.

(BECE)

We will investigate the analyticity of the solution uh with respect to y, which is
the core to establish the interpolation error estimates. Introducing the weight function
σ(y) =

∏d
n=1 σn(yn) ≤ 1, where

σn(yn) = 1 if Γn is bounded,

σn(yn) = e−λn|yn| for some λn > 0 if Γn is unbounded,

and the function space

C0
σ(Γ;V ) ≡

{
v : Γ→ V, v continuous in y, max

y∈Γ
‖σ(y)v(y)‖V < +∞

}
,

We denote

Γ∗n =
d∏
j=1
j 6=n

Γj and σ∗n =

d∏
j=1
j 6=n

σj

with y∗n being an arbitrary element of Γ∗n. Similar to [ZG12], we make the following
assumption on ν and f .

Assumption 3.1. In what follows we assume that
• f ∈ C0

σ(Γ;L2(0, T ;L2(D))),
• ν is uniformly bounded away from zero,
• There exists γn < +∞ such that

∥∥∥∥∥∂`ynν(y)

ν(y)

∥∥∥∥∥
L∞(D)

≤ γ`n`!,

[
∆t
∑N−1
j=0 ‖∂`ynf

j+1(y)‖2
]1/2

1 + ‖f(y)‖L2(0,T ;L2(D))
≤ γ`n`!,

for every y ∈ Γ, 1 ≤ n ≤ d.
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In the next theorem, we prove that for scheme (BECE), uh is analytic in y;
however, its analytical radius may shrink exponentially with the number of time
steps.

Theorem 3.1. Under Assumption 3.1, if the solution uJh(yn,y
∗
n, x) to (BECE),

as a function of yn, satisfies uJh : Γn → C0
σ∗n

(Γ∗n;Hh(D)), then for all n, 1 ≤ n ≤ d,

there exists αn > 0 such that for every J ∈ {1, . . . , N}, uJh(yn,y
∗
n, x) admits an

analytic extension uJh(z,y∗n, x) in the region of the complex plane

Σ(Γn; τn,J) ≡ {z ∈ C | dist(z,Γn) ≤ τn,J}, (3.1)

with 0 < τn,J < 1/αJn.
Proof. At every point y ∈ Γ, the `-th derivative of uh w.r.t. yn satisfies(

1

∆t
∂`ynu

j+1
h (y)− 1

∆t
∂`ynu

j
h(y), vh

)
+ (∂`yn(ν(y)∇uj+1

h (y)),∇vh) (3.2)

+
(
∂`yn(ujh(y) · ∇uj+1

h (y)), vh

)
=
(
∂`ynf

j+1(y), vh
)
, ∀vh ∈ Vh(D),

or equivalently

1

∆t
(∂`ynu

j+1
h (y), vh)− 1

∆t
(∂`ynu

j
h(y), vh) +

∑̀
m=0

(
`
m

)(
∂mynν(y)∇∂`−myn uj+1

h (y),∇vh
)

+
∑̀
m=0

(
`
m

)(
∂mynu

j
h(y) · ∇∂`−myn uj+1

h (y), vh

)
=
(
∂`ynf

j+1(y), vh
)
.

This implies that(
ν(y)∇∂`ynu

j+1
h (y),∇vh

)
+
(
ujh(y) · ∇∂`ynu

j+1
h (y), vh

)
+

1

∆t

(
∂`ynu

j+1
h (y), vh

)
− 1

∆t

(
∂`ynu

j
h(y), vh

)
=
(
∂`ynf

j+1(y), vh
)

−
∑̀
m=1

(
`
m

)[
(∂mynν(y)∇∂`−myn uj+1

h (y),∇vh) + (∂mynu
j
h(y) · ∇∂`−myn uj+1

h (y), vh)
]

for all vh ∈ Vh(D). Choosing vh := ∂`ynu
j+1
h (y) and utilizing the divergence free

condition and the skew adjoint properties of the nonlinear term we obtain

‖
√
ν(y)∇∂`ynu

j+1
h (y)‖2 +

1

2∆t
‖∂`ynu

j+1
h (y)‖2 − 1

2∆t
‖∂`ynu

j
h(y)‖2

+
1

2∆t
‖∂`ynu

j+1
h (y)− ∂`ynu

j
h(y)‖2

=
(
∂`ynf

j+1(y), ∂`ynu
j+1
h (y)

)
−
∑̀
m=1

(
`
m

)[(
∂mynu

j
h(y) · ∇∂`−myn uj+1

h (y), ∂`ynu
j+1
h (y)

)
+

(
∂mynν(y)

ν(y)

√
ν(y)∇∂`−myn uj+1

h (y),
√
ν(y)∇∂`ynu

j+1
h (y)

)]
≤ CP√

νmin
‖∂`ynf

j+1(y)‖‖
√
ν(y)∇∂`ynu

j+1
h (y)‖

+
∑̀
m=1

(
`
m

)∥∥∥∥∂mynν(y)

ν(y)

∥∥∥∥
L∞(D)

‖
√
ν(y)∇∂`−myn uj+1

h (y)‖‖
√
ν(y)∇∂`ynu

j+1
h (y)‖
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+
16

27ν
7/8
min

∑̀
m=1

(
`
m

)∥∥∥∂mynujh(y)
∥∥∥1/4 ∥∥∥∇∂mynujh(y)

∥∥∥3/4∥∥∥√ν(y)∇∂`ynu
j+1
h (y)

∥∥∥×
×
∥∥∥∂`−myn uj+1

h (y)
∥∥∥1/4 ∥∥∥√ν(y)∇∂`−myn uj+1

h (y)
∥∥∥3/4

≤ CP√
νmin
‖∂`ynf

j+1(y)‖‖
√
ν(y)∇∂`ynu

j+1
h (y)‖

+
∑̀
m=1

(
`
m

)∥∥∥∥∂mynν(y)

ν(y)

∥∥∥∥
L∞(D)

‖
√
ν(y)∇∂`−myn uj+1

h (y)‖‖
√
ν(y)∇∂`ynu

j+1
h (y)‖

+
16

27

C
1/2
P

ν
3/2
min

∑̀
m=1

(
`
m

)∥∥∥√ν(y)∇∂mynu
j
h(y)

∥∥∥∥∥∥√ν(y)∇∂`−myn uj+1
h (y)

∥∥∥∥∥∥√ν(y)∇∂`ynu
j+1
h (y)

∥∥∥ .
Denoting

F Jm =

∆t

J−1∑
j=0

‖∂mynf
j+1(y)‖2

1/2

and RJm =

∆t

J−1∑
j=0

‖
√
ν(y)∇∂mynu

j+1
h (y)‖2

1/2

,

and summing from j = 0 to J − 1, it gives

‖∂`ynu
J
h‖2 + 2(RJ` )2 ≤ 2CP√

νmin
F J` R

J
` + 2

∑̀
m=1

(
`
m

)∥∥∥∥∂mynν(y)

ν(y)

∥∥∥∥
L∞(D)

RJ`−mR
J
`

+
32

27

C
1/2
P

∆t1/2ν
3/2
min

∑̀
m=1

(
`
m

)
RJ−1
m RJ`−mR

J
`

This leads us to

‖∂`ynu
J
h‖2

2RJ`
+RJ` ≤

CP√
νmin

F J` +
∑̀
m=1

(
`
m

)∥∥∥∥∂mynν(y)

ν(y)

∥∥∥∥
L∞(D)

RJ`−m

+
16

27

C
1/2
P

∆t1/2ν
3/2
min

∑̀
m=1

(
`
m

)
RJ−1
m RJ`−m

Dividing both sides by `! and denoting SJm =
RJm
m! gives

‖∂`ynu
J
h‖2

2RJ` `!
+ SJ` ≤

CP√
νmin

γ`n(1 + ‖f‖) +
∑̀
m=1

γmn S
J
`−m

+
16

27

C
1/2
P

∆t1/2ν
3/2
min

∑̀
m=1

SJ−1
m SJ`−m.

(3.3)

Denoting two parameters independent of J , ` and uh

A =
CP√
νmin

(1 + ‖f‖), and B =
16

27

C
1/2
P

∆t1/2ν
3/2
min

.

We will prove that there exists αn > 0 independent of J , ` and uh such that

SJ` ≤ α`Jn for all 1 ≤ ` <∞, 1 ≤ J ≤ N. (3.4)

First, we consider three specific cases:
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1. ` = 0: Take v = uj+1
h (y) in (BECE), we have

1

2∆t
‖uj+1

h (y)‖2 − 1

2∆t
‖ujh(y)‖2 + ‖

√
ν(y)∇uj+1

h (y)‖2

≤ C2
P

2νmin
‖f j+1(y)‖2 +

1

2
‖
√
ν(y)∇uj+1

h (y)‖2

Summing from j = 0 to J − 1 and multiplying by 2∆t, there follows

‖uJh(y)‖2 + ∆t

J−1∑
j=0

‖
√
ν(y)∇uj+1

h (y)‖2

≤ C2
P

νmin
∆t

J−1∑
j=0

‖f j+1(y)‖2 + ‖u0
h‖2,

(3.5)

which gives SJ0 ≤ ξ0, ∀ 1 ≤ J ≤ N , where ξ0 = CP√
νmin

(1 + ‖f‖) + ‖u0
h‖.

2. ` = 1: From (3.3), we have

SJ1 ≤ Aγn + γnS
J
0 +BSJ−1

1 SJ0 ≤ Aγn + γnξ0 +Bξ0S
J−1
1 .

There follows

SJ1 ≤ (Aγn + γnξ0)

J−1∑
j=0

(Bξ0)j ≤ αJn, ∀J ≤ N,

with αn = max
{
Bξ0,

Bξ0
Bξ0−1 (Aγn + γnξ0)

}
.

3. J = 1: From (3.3), we have

S1
` ≤ Aγ`n +

∑̀
m=1

γmn S
1
`−m = Aγ`n + ξ0γ

`
n +

`−1∑
m=1

γmn S
1
`−m.

By induction, we will prove that S1
` ≤ α`n, ∀` ≥ 1, ` < ∞. Assuming in

addition αn ≥ max{4γn, 2(A+ ξ0)γn}, it gives

S1
` ≤ min

{
A+ ξ0

2`(A+ ξ0)`
,
A+ ξ0

4`

}
α`n +

`−1∑
m=1

αmn
4m

α`−mn

≤ 1

2
α`n + α`n

`−1∑
m=1

1

4m
< α`n.

Next, suppose that (3.4) occurs for all J ≤ N with ` ≤ L− 1 and all J ≤M − 1
with ` = L (L ≥ 2, M ≥ 2), we will prove that (3.4) also occurs for J = M, ` = L.
Indeed, from (3.3),

SML ≤ AγLn +

L∑
m=1

γmn S
M
L−m +B

L∑
m=1

SM−1
m SML−m.
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By induction hypothesis, we have

SML ≤ A
αLn
4L

+ ξ0
αLn
4L

+

L−1∑
m=1

αmn
4m

αML−mM
n +Bξ0α

ML−L
n +B

L−1∑
m=1

αML−m
n

≤ (A+ ξ0 +Bξ0)αML−1
n + αML−1

n

L−1∑
m=1

1

4m
+BαML−1

n

αn
αn − 1

≤
(
A+ ξ0 +Bξ0 +

1

3
+ 2B

)
αML−1
n (assuming in addition that αn ≥ 2)

≤ αML
n (assuming in addition that αn ≥ (A+ ξ0 +Bξ0 +

1

3
+ 2B))

and (3.4) is proved completely.
Back to (3.3), it gives

‖∂`ynu
J
h‖2

2RJ` `!
+ SJ` ≤ Aγ`n +

∑̀
m=1

γmn S
J
`−m +B

∑̀
m=1

SJ−1
m SJ`−m

for all `. Employing the above estimation, we get

‖∂`ynu
J
h‖2

2RJ` `!
≤ α`Jn , ∀ 1 ≤ ` <∞, 1 ≤ J ≤ N,

and there holds

‖∂`ynu
J
h‖ ≤

√
2(`!)α`Jn .

We now define for every yn ∈ Γn the power series uJh : C→ C0(Γ∗n;Hh(D)) as

uJh(z,y∗n, x) =

∞∑
`=0

(z − yn)`

`!
∂`ynu

J
h(yn,y

∗
n, x).

Hence,

σn(yn)‖uJh(z)‖C0
σ∗n

(Γ∗n,Hh(D)) ≤
∞∑
`=0

|z − yn|`

`!
σn(yn)‖∂`ynu

J
h(yn)‖C0

σ∗n
(Γ∗n,Hh(D))

≤‖uJh‖C0
σ(Γ;Hh(D))

∞∑
`=0

(|z − yn|αJn)`,

≤

(∥∥∥∥ CP√
νmin

+ ‖u0
h‖
∥∥∥∥
C0
σ(Γ;R)

+

∥∥∥∥ CP√
νmin

f

∥∥∥∥
C0
σ(Γ;L2(0,T ;L2(D)))

) ∞∑
`=0

(|z − yn|αJn)`

(from (3.5)).

The series converges for all z ∈ C satisfying |z − yn| ≤ τn,J < 1/αJn and the
function uJh admits an analytical extension in the region Σ(Γn, τn,J).

With the analyticity result proved in Theorem 3.1, we proceed to estimate the
interpolation error ε = uh−uh,p. The proof follows the same procedure as in [BNT07],
and thus, is omitted here.

Theorem 3.2. Under the assumption of Theorem 3.1, suppose that the joint
probability density ρ satisfies

ρ(y) ≤ CMe−
∑d
n=1(δnyn)2 ∀y ∈ Γ
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for some constant CM > 0 and δn strictly positive if Γn is unbounded and zero oth-
erwise. Then, for any integer J ∈ {1, . . . , N}, there exists a positive constant C
independent of h and p such that

‖uJh − uJh,p‖L2(D)⊗L2
ρ(Γ) ≤ C

d∑
n=1

βn(pn) exp(−rn,Jpθnn ), (3.6)

where

θn = βn = 1 and rn,J = log

[
2τn,J
|Γn|

(
1 +

√
1 +
|Γn|2
4τ2
n,J

)]
if Γn is bounded

and

θn =
1

2
, βn = O(

√
pn) and rn,J = τn,Jδn if Γn is unbounded,

where τn,J is the minimum distance between Γn and the nearest singularity in the
complex plane, as defined in Theorem 3.1.

Remark 3.1. Theorem 3.2 implies that:
• At a fixed time step J , the convergence rate of SCMs for bounded random vari-

ables is O(exp(−p)) and for unbounded random variables is O(exp(−√p)).
• τn,J converges to 0 as J increases, as indicated in Theorem 3.1, and so does
rn,J . Thus, at a fixed polynomial order p, the interpolation error uJh − uJh,p
become O(1) as J →∞.

4. Numerical examples. To illustrate our numerical analysis, in this section,
we present a computational experiment of two-dimensional flow around a circular
cylinder with uncertain viscosity, based on the well-known benchmark problem from
Shäfer and Turek [ST96]. The exponential decay of interpolation errors and the
decrease of p-convergence rate in long term have already been shown for various flow
experiments. The results we give herein are agree to those in [WK06, FWK08, Loe10].
Our test is programmed using the software package FreeFem++ [Hec12].

Fig. 4.1: Domain Ω of the numerical test, from [John04].

Let Ω be the channel with the cylinder presented in Figure 4.1. We consider the
time-dependent incompressible Navier-Stokes equation (2.1) subject to the following
random viscosity

ν = ν0(1 + Y/10),

where ν0 = 0.8 × 10−3 and Y is a uniform random variable of zero mean and unit
variance. The cylinder, top and bottom of the channel are prescribed no-slip boundary
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conditions, and the inflow and outflow profiles are

u1(0, y) = u1(2.2, y) =
6

0.412
y(0.41− y),

u2(0, y) = u2(2.2, y) = 0.

Due to the randomness of the viscosity, the Reynolds number considered in this test
is random. Based on the inflow velocity and the diameter of the cylinder L = 0.1, it
satisfies 112.5 ≤ Re ≤ 137.5. For this range of Reynolds number, the flow is in the
laminar regime with a Kármán vortex street developing behind the cylinder. This
results in a periodic response of the lift and drag coefficients. In what follows, we
will investigate the mean and error evolution of these two quantities simulated by

SCM. By C
l|d
h,p, we denote the mean lift/drag coefficients corresponding to the fully

discrete solutions in physical and probability spaces. In order to estimate the error,
we compute a very high resolution approximate solution using SCM of 20th-order
and suppose it to be the true solution in probability space, the lift/drag coefficients

corresponding to which are denoted by C
l|d
h .

The experiment is carried out up to T = 50, with zero forcing term and initial
condition. The solutions are computed with Taylor-Hood elements on a triangular
mesh providing 69174 total DOFs, refined near the cylinder, and time step ∆t = 0.005.
At each collocation point of Y , we employ the Crank-Nicolson scheme to solve for the
Navier-Stokes solutions. The scheme reads:

Given j ∈ {0, . . . , N − 1} and ujh ∈ Hh, p
j
h ∈ Lh, find uj+1

h ∈ Hh, p
j+1
h ∈ Lh

satisfying(
uj+1
h − ujh

∆t
, vh

)
+

1

2
(a(uj+1

h , vh) + a(ujh, vh))+ b(vh, p
j+1
h )

+
1

2
(c(uj+1

h ;uj+1
h , vh) + c(ujh;ujh, vh)) = (f j+1/2, vh), for all vh ∈ Hh,

b(uj+1
h , qh) = 0, for all qh ∈ Lh.

Fixed point iterations are applied to solve the nonlinear system with a ‖u(i+1) −
u(i)‖H1(Ω) < 10−10 as a stopping criterion. The numerical methods and space-time
resolution we use herein were verified in deterministic problem to give a good approx-
imation of lift and drag coefficients, [John04].

Figure 4.2 show the instantaneous mean of lift and drag coefficients given by
SCM. It can be seen that both the mean Clh,p and Cdh,p oscillate periodically around
a constant value. After a short time agreeing with the reference solution, SCM starts
to break down. The higher order the method is, the later the divergence occurs.

The evolution of errors of SCM at polynomial orders p = 1, 2, 3, 4, 6 are shown
in Figure 4.3. We observe that for all p plotted, the interpolation errors become O(1)
in long term. This confirms our claim in Remark 3.1. Finally, we plot the convergence
of SCM at different time level in Figure 4.4. The method exhibits good convergence
rate in short term (t = 2). At t = 20, the error grows significantly, but still decays
in p. At t = 50, the error is almost steady: increasing the polynomial order up to 6
does little help.
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Fig. 4.2: Evolution of mean of lift (upper) and drag (lower) coefficient.
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Fig. 4.4: p-Convergence rate of SCM for the simulation of flow around a cylinder at different time
level.
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5. Conclusions. In this paper, an error analysis of stochastic collocation meth-
ods for a fully discrete Navier-Stokes scheme with random input data was carried out.
At each fixed time level, we proved the exponential convergence in the probability
space. At each fixed total number of collocation points, our analysis indicated that
the interpolation error may grow to O(1) in long term. A numerical example of 2D
flow around a cylinder is given to illustrate our theoretical results.

The analysis provided herein deals with the first order (BECE) scheme, to help us
focus on interpolation error and keep things simple. Extension to higher order, more
applicable semi-implicit and fully implicit Navier-Stokes schemes is worth further
study.
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