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Abstract

We provide a survey of results concerning both the direct and inverse problems to
the Cauchy-Davenport theorem and Erdős-Heilbronn problem in Additive Combina-
torics. We formulate a conjecture concerning the inverse Erdős-Heilbronn problem
in nonabelian groups. We prove an inverse to the Dias da Silva-Hamidoune The-
orem to Z/nZ where n is composite, and we generalize this result for nonabelian
groups.

1. Introduction

A basic object in additive combinatorics/additive number theory is the sumset of
sets A and B:
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Definition 1.1. [Sumset]

A+B := {a+ b | a ∈ A, b ∈ B}.

A simple example of a problem in Additive Number Theory is given two subsets
A and B of a set of integers, what facts can we determine about sumset A + B?
One such classic problem was a conjecture of Paul Erdős and Hans Heilbronn [12],
an open problem for over 30 years until proved in 1994. The conjecture originates
from a theorem proved by Cauchy [6] in 1813 and independently by Davenport [8]
in 1935.

In this paper, we present a survey of results concerning both the Cauchy-Davenport
theorem and Erdős-Heilbronn problem1. We introduce the two main types of prob-
lems: direct and inverse problems, and we then list results and extensions of these
theorems into groups. In particular, we formulate a conjecture concerning the in-
verse Erdős-Heilbronn problem into nonabelian groups and provide a nontrivial
example to support it. In section 5, we present an elementary proof providing an
inverse to the Dias da Silva-Hamidoune theorem for Z/nZ where n is composite. In
section 6, we generalize this result to nonabelian groups which proves one direction
of the conjecture under an assumption that our sets are arithmetic progressions
with the same common difference. This result is a first step towards proving the
full inverse Erdős-Heilbronn problem in nonabelian groups.

2. The Cauchy-Davenport Theorem and Erdős-Heilbronn Problem

As described by Melvyn B. Nathanson in [28], a direct problem in Additive Num-
ber Theory is a problem concerned with properties of the resulting sumset. We
first consider two direct results; the first a classic result and the second a simple
adaptation of the first - yet significantly more subtle to prove.

2.1. The Cauchy-Davenport Theorem

The first result is a theorem proved by Cauchy2 in 1813 [6] and independently by
Davenport in 1935 [8] (Davenport discovered in 1947 [9] that Cauchy had previously
proved the theorem). In particular,

Theorem 2.1. [Cauchy-Davenport]
Let A and B be nonempty subsets of Z/pZ with p prime. Then |A+B| ≥ min{p, |A|+
|B| − 1} where A+B := {a+ b | a ∈ A and b ∈ B}.

We note that in 1935 Inder Cholwa [7] extended the result to composite moduli
m when 0 ∈ B and the other members of B are relatively prime to m.

1See Appendix for a timeline summarizing these results
2Cauchy used this theorem to prove that Ax2 + By2 + C ≡ 0(mod p) has solutions provided

that ABC 6≡ 0. Cauchy then used this to provide a new proof of a lemma Lagrange used to

establish his four squares theorem in 1770 [1].
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2.2. A Conjecture of Erdős-Heilbronn

The second result we consider is a slight modification of the Cauchy-Davenport
Theorem and is surprisingly much more difficult. In the early 1960’s, Paul Erdős and
Hans Heilbronn conjectured that if the sumset addition is restricted to only distinct
elements, then the lower bound is reduced by two. Erdős stated this conjecture
during a 1963 University of Colorado number theory conference [12]. While the
conjecture did not appear in their 1964 paper on sums of sets of congruence classes
[15], Erdős lectured on the conjecture (see [28], p.106). The conjecture was formally
stated in [13] and [14] as follows:

Theorem 2.2. [Erdős-Heilbronn Problem]
Let p be a prime and A, B ⊆ Z/pZ with A,B 6= ∅. Then

|A+̇B| ≥ min{p, |A|+ |B| − 3},

where A+̇B := {a+ b mod p | a ∈ A, b ∈ B and a 6= b }.

The conjecture was first proved for the case A = B by J.A. Dias da Silva and
Y.O. Hamidoune in 1994 [10] using methods from linear algebra with the more
general case (namely A 6= B) established by Noga Alon, Melvin B. Nathanson, and
Imre Z. Ruzsa using their powerful polynomial method in 1995 [2].

Remark 2.3. Throughout this paper, we will label the Erdős-Heilbronn problem
for the case where A = B as the Dias da Silva-Hamidoune theorem.

3. Extension of the Problems to Groups

The structures over which the Cauchy-Davenport Theorem holds have been ex-
tended beyond Z/pZ. Before stating the extended versions, the following definition
is needed.

Definition 3.1 (Minimal Torsion Element). Let G be a group. We define p(G) to
be the smallest positive integer p for which there exists a nontrivial element g of G
with pg = 0 (or, if multiplicative notation is used, gp = 1). If no such p exists, we
write p(G) =∞.

Remark 3.2. When G is finite, then p(G) is the smallest prime factor of |G| or
equivalently, p(G) is the size of the smallest nontrivial subgroup of G.

Equipped with this we can state the Cauchy-Davenport Theorem which was
extended to abelian groups by Kneser [25] and then to all finite groups by Gy.
Károlyi [21]:

Theorem 3.3 (Cauchy-Davenport Theorem for Finite Groups). If A and B are
non-empty subsets of a finite group G, then |AB| ≥ min{p(G), |A|+ |B|−1}, where
AB := {a · b | a ∈ A and b ∈ B}.
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J.E. Olson [29] also proved the following result which implies the Cauchy-Davenport
theorem for arbitrary groups:

Theorem 3.4. If A and B are two finite sets in a group, then both
1) |A ·B| ≥ |A|+ 1

2 |B| unless A ·B · (−B ·B) = A ·B, and
2) there is a subset S ⊆ A ·B and subgroup H such that |S| ≥ |A|+ |B| − |H|

and either H · S = S or S ·H = S.

Similarly, work has been done to extend the Erdős-Heilbronn Problem into
groups. Starting with abelian groups, Gy. Károlyi proved the following result
in [19, 20]:

Theorem 3.5. If A is a nonempty subset of an abelian group G, then |A+̇A| ≥
min{p(G), 2|A| − 3}.

He also extended the Erdős-Heilbronn Problem to cyclic groups of prime powered
order in 2005 [22].

To state the result that extends the problem into finite, not necessarily abelian,
groups, we introduce the following definition:

Definition 3.6. For a group G, let Aut(G) be the group of automorphisms of G.
Suppose θ ∈ Aut(G) and A,B ⊆ G. Write

A
θ· B := {a · θ(b) | a ∈ A, b ∈ B, and a 6= b }.

Given this definition, we can clearly state the Erdős-Heilbronn theorem for finite
groups which was proven in 2009 by P. Balister and J.P. Wheeler [5]:

Theorem 3.7 (Generalized Erdős-Heilbronn Problem for Finite Groups). Let G

be a finite group, θ ∈ Aut(G), and let A,B ⊆ G with |A|, |B| > 0. Then |A θ· B| ≥
min{p(G) − δθ, |A| + |B| − 3} where A

θ· B := {a · θ(b) | a ∈ A, b ∈ B, and a 6= b}
and where

δθ =

{
1 if θ has even order in Aut(G),
0 if θ has odd order in Aut(G).

We note that Lev [27] has shown that Theorem 3.7 does not hold in general for
an arbitrary bijection θ.

4. Inverse Problems

The previous problems were concerned with properties of the sumset given some
knowledge of the individual sets making up the sumset. This leads one to consider
questions in the other direction. In particular, if we know something about the
sumset, does this give us any information about the individual sets making up the
sumset? Again we borrow the language of [28] and refer to these problems as inverse
problems. In each case, the inverse of the previously stated problems yields beautiful
results.
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4.1. Inverse Problems for the Cauchy-Davenport Theorem

The first result is the inverse to the Cauchy-Davenport theorem in Z/pZ due to
A.G. Vosper [31]:

Theorem 4.1 (Vosper’s Inverse Theorem).
Let A and B be finite nonempty subsets of Z/pZ. Then |A+ B| = |A|+ |B| − 1 if
and only if one of the following cases holds:

(i) |A| = 1 or |B| = 1;

(ii) A+B = Z/pZ;

(iii) |A+B| = p− 1 and B is the complement of the set c−A in Z/pZ where
{c} = (Z/pZ) \ (A+B);

(iv) A and B are arithmetic progressions of the same common difference.

Remark 4.2. We note that when |A+ B| = |A|+ |B| − 1, we label sets A and B
as a critical pair.

In 1960, J.H.B. Kemperman [24] extended a weaker version of Vosper’s Theorem
to abelian groups. Namely,

Theorem 4.3 (Kemperman).
Let A be a nonempty subset of an abelian group. Let p(G) be as in Definition 3.1.
Suppose p(G) > 2|A| − 1. Then |A+A| = 2|A| − 1 if and only if A is an arithmetic
progression.

To generalize the inverse problem in groups, we introduce the notion of an arith-
metic progression in a group:

Definition 4.4 (Group Arithmetic Progression).
Let G be a group and A ⊆ G with |A| = k. Then A is a group arithmetic progression
if there exists both g and h in G such that A = {g + ih | 1 ≤ i < k}.

In the above definition, we say that A is a k-term group arithmetic progression
with common difference h. If the group G is nonabelian, we utilize multiplicative
notation and form the intuitive definitions of left and right arithmetic progressions.

Y.O. Hamidoune further extended this idea to finitely generated groups [17].

Theorem 4.5 (Hamidoune).
Let G be a (not necessarily abelian) group generated by a finite subset S where 0 ∈ S.
Then either

1. for every subset T such that 2 ≤ |T | < ∞, we have |S + T | ≥ min{|G| −
1, |S|+ |T |} or

2. S is an arithmetic progression.
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Finally, Gy. Károlyi obtained the inverse to the Cauchy-Davenport theorem in
finite groups [21]:

Theorem 4.6. Let A,B be subsets of a finite group G such that |A| = k, |B| = l,
and k + l − 1 ≤ p(G)− 1. Then |AB| = k + l − 1 where AB = {ab| a ∈ A, b ∈ B}
if and only if one of the following conditions holds:

(i) k = 1 or l = 1;

(ii) there exists a, b, q ∈ G such that

A = {a, aq, aq2, . . . , aqk−1} and B = {b, qb, q2b, . . . , ql−1b};

(iii) k + l − 1 = p(G) − 1 and there exists a subgroup F of G of order p(G)
and elements u, v ∈ G, z ∈ F such that

A ⊂ uF,B ⊂ Fv and A = u(F \ zvB−1).

4.2. Inverse Problems Related to the Erdős-
Heilbronn Problem

We as well have inverse problems for the Erdős-Heilbronn Problem. More specifi-
cally, we have inverse results for the Dias da Silva-Hamidoune Theorem. In partic-
ular, Gy. Károlyi established the following in [22]:

Theorem 4.7 (Inverse Theorem of the Dias da Silva-Hamidoune Theorem). Let A
be a subset of Z/pZ where p is a prime. Further suppose |A| ≥ 5 and p > 2|A| − 3.
Then |A+̇A| = 2|A| − 3 if and only if A is an arithmetic progression.

He also extended this result to the following:

Theorem 4.8.
Let A be a subset of an abelian group G where p(G) is as in Definition 3.1 prime.
Further suppose |A| ≥ 5 and p(G) > 2|A| − 3. Then |A+̇A| = 2|A| − 3 if and only
if A is a group arithmetic progression.

Similar to the inverse to the Cauchy-Davenport theorem which holds in non-
abelian groups, Gy. Károlyi conjectured that the inverse to the Erdős-Heilbronn
problem in a nonabelian setting should hold, namely that only sets that are arith-
metic progressions achieve the lower bound placed on their restricted sumset by the
Erdős-Heilbronn problem [23]. We note that previous work by V. F. Lev proved an
inverse Erdős-Heilbronn theorem in an asymptotic sense for Z/pZ with p very large
[26], and that this result was improved by Van Vu and Philip M. Wood [32]. Du
and Pan [11] have recently submitted a proof for the following result:

Theorem 4.9. Suppose that A,B are two non-empty subsets of the finite nilpotent

group G. If A 6= B, then the cardinality of A
ι· B is at least the minimum of p(G)

and |A|+ |B| − 2.

6



They also proved that if |A+̇A| = 2|A| − 3 with A a non-empty subset of a finite
group G with |A| < (p(G) + 3)/2, then A is commutative.

Thus we formulate a conjecture for the inverse Erdős-Heilbronn problem to hold
in groups that are not nilpotent. We only consider restricted product sets with
θ = ι being the identity automorphism.

Conjecture 4.10. Let A,B be nonempty subsets of a finite (not necessarily abelian),
non-nilpotent group G where p(G) is as in Definition 3.1. Further suppose |A| =

k ≥ 3, |B| = l ≥ 3, and k + l − 3 < p(G). Then |A ι· B| = |A| + |B| − 3 where

A
ι· B = {ab | a ∈ A, b ∈ B, a 6= b} if and only if there exists a, q ∈ G such that

A = {a, aq, aq2, . . . , aqk−1} and B = {a, qa, q2a, . . . , ql−1a}

where aqk−1 = ql−1a, i.e. A,B share the same endpoints.

We note that the if statement of the conjecture is trivial, and if G is nilpotent,
such pairs A and B only exist when A = B is a progression lying in an abelian
subgroup as shown in [11].

We now present an example of sumset addition in a non-nilpotent group that
gives evidence that extra critical pairs can indeed arise. The difficulty in testing this
conjecture is finding an appropriate group whose p(G) is relatively large compared
to the cardinalities of sets A and B. Standard nonabelian groups such as dihedral
groups or symmetric groups do not satisfy this condition because p(G) = 2 in these
groups. Thus in the following example, we construct a large (in terms of p(G))
nonnilpotent group to test the conjecture. Note: since writing this manuscript, we
have discovered simpler and more general examples that will be presented in future
work [18].

Example 4.11.

Let G be a nonabelian group constructed by G = (Z47 × Z47) oφ Z23.3 Since
Aut(Z47 × Z47) ∼= GL2(F47), we construct the homomorphism φ : Z23 → GL2(F47)
as follows:

φ(x) =

(
2x 0
0 1

)
.

Explicitly, we can think of elements of G having the form

((
x
y

)
, z

)
where

the group operation is((
x
y

)
, z

)
·G
((

x′

y′

)
, z′
)

=

((
x
y

)
+ φ(z)

(
x′

y′

)
, z + z′

)
.

=

((
x+ 2zx′

y + y′

)
, z + z′

)
.

3We denote Z/47Z as Z47 for notational purposes, and note that Z47
∼= F+

47.
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Observe that p(G) = 23 since |G| = 23 · 472. Take

A =

{((
0
0

)
, 1

)
·
((

1
0

)
, 0

)k ∣∣ 0 ≤ k ≤ 4

}

=

{((
0
0

)
, 1

)
,

((
2
0

)
, 1

)
,

((
4
0

)
, 1

)
,

((
6
0

)
, 1

)
,

((
8
0

)
, 1

)}
.

and let

B =

{((
1
0

)
, 0

)l
·
((

0
0

)
, 1

) ∣∣ 0 ≤ l ≤ 8

}

=

{((
0
0

)
, 1

)
,

((
1
0

)
, 1

)
,

((
2
0

)
, 1

)
,

((
3
0

)
, 1

)
,

((
4
0

)
, 1

)
,((

5
0

)
, 1

)
,

((
6
0

)
, 1

)
,

((
7
0

)
, 1

)
,

((
8
0

)
, 1

)}
.

So A is right arithmetic progression with cardinality |A| = 5 and B is a left
arithmetic progression with cardinality |B| = 9. Further, A and B share the same

endpoints and have the same “common difference” q. Explicitly computing A
ι· B,

we get 11 elements, which is equal to |A|+ |B| − 3 as Conjecture 4.10 predicts.

A
ι· B =

{((
2
8

)
, 4

)
,

((
4
8

)
, 4

)
,

((
6
8

)
, 4

)
,

((
8
8

)
, 4

)
,

((
10
8

)
, 4

)
,

((
12
8

)
, 4

)
,

((
14
8

)
, 4

)
,

((
16
8

)
, 4

)
,

((
18
8

)
, 4

)
,

((
20
8

)
, 4

)
,

((
22
8

)
, 4

)}
.

In the following two sections, we prove a series of results that prove the forward
direction of this conjecture under the assumption that we have a priori knowledge
that A and B are arithmetic progressions with the same common difference.

5. An Extension to Z/nZ for the Inverse Theorem of the Dias da Silva-
Hamidoune Theorem

Our first result extends Theorem 4.7 in Z/nZ for composite n by assuming we have a
priori knowledge of the sets A,B as arithmetic progressions with the same common
difference, and characterizing when such A,B form a critical pair, i.e. reach the
lower bound of the Erdős-Heilbronn Problem.

Theorem 5.1. Let A,B ⊆ G = Z/nZ where |A| = k, |B| = l and p(G) is the
smallest prime dividing n. Suppose p(G) > k+ l−3 where k, l ≥ 3. Further suppose
that A,B are arithmetic progressions with the same common difference. Then we
have that:

|A
·
+B| = |A|+ |B| − 3 implies A = B.
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Proof. Let d be the common difference of the arithmetic progressions A and B, i.e.
A = {a + sd | 0 ≤ s ≤ k − 1} and B = {b + td | 0 ≤ t ≤ l − 1}. Without loss of
generality, we can suppose that |A| ≥ |B|, i.e. k ≥ l.

We have that

A
·
+B = {a+ sd+ b+ td | 0 ≤ s ≤ k − 1, 0 ≤ t ≤ l − 1, a+ sd 6= b+ td}.

Since
a+ sd+ b+ td = a+ (s± 1)d+ b+ (t∓ 1)d, (1)

then even if a+ sd = b+ td, by the above we have that the sum can still be written
as the sum of two distinct elements from A and B unless

(i) s = t = 0 or

(ii) s = k − 1 and t = l − 1.

In other words, we can find another pair of elements, a+(s±1)d ∈ A , and b+(t∓
1)d ∈ B, that yield the same sum, unless the term in question is a shared endpoint
of the arithmetic progression where s, t = 0 corresponds to the first endpoint and
s = k − 1, t = l − 1 corresponds to the last endpoint.

Thus A
·
+B = A+B (⇒ |A

·
+B| ≥ |A|+ |B| − 1, contrary to our assumption),

unless:

(i) a = b or

(ii) a+ (k − 1)d = b+ (l − 1)d

Notice without loss of generality that (ii) can be reduced to (i) by putting ā =
a + (k − 1)d, b̄ = b + (l − 1)d and forming the arithmetic progressions by setting
d̄ = −d.

Now since a = b, we have that

A
·
+B = {a+ sd+ a+ td | sd 6= td}.

Notice if sd = td for s 6= t (say without loss of generality that s > t), then (s−t)d ≡ 0
in Z/nZ, which implies that n|(s− t)d . Because d 6≡ 0, there is a prime p0 dividing
n such that p0|(s − t). By our definition of p(G) as the smallest prime dividing n,
we have

k ≥ (s− t) ≥ p0 ≥ p(G) > k + l − 3 ≥ k + 3− 3 = k

which is a contradiction (Note: if we had assumed t > s, we would have derived a
similar contradiction using l). Thus we must conclude that sd = td implies s = t.

Again, we now point out that if sd = td, then we can write

a+ sd+ a+ td = a+ (s± 1)d+ a+ (t∓ 1)d
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unless s, t = 0 or s = t = k − 1 = l − 1 by the previous paragraph. But if k > l,
then we only get the case s = t = 0 which means that

|A
·
+B| ≥ |A+B \ {a+ a}| ≥ |A|+ |B| − 1− 1 = |A|+ |B| − 2.

This is a contradiction to our assumption, so we are forced to conclude that k = l,
and so then A = B. This completes the proof.

Corollary 5.2. Let A,B ⊆ Z/nZ be arithmetic progressions with the same common
difference where |A| = k, |B| = l. Suppose p > k + l − 3 where k, l ≥ 5. Then we
have that:

|A
·
+B| = |A|+ |B| − 3 if and only if A = B.

Proof. The forward direction is a consequence of Theorem 5.1. The converse is a
special case of Theorem 4.6 where the abelian group is Z/nZ.

Remark 5.3.

As pointed out to us by Gy. Károlyi, the assumption that A and B are arithmetic
progressions can be dropped when we are in Z/pZ where p is prime to yield the
following result [23]:

Theorem 5.4. Let A,B ⊆ Z/pZ be nonempty subsets such that p ≥ |A|+ |B| − 2.

Then |A
·
+B| = |A|+ |B| − 3 if and only if A = B and one of the following holds:

(i) |A| = 2 or |A| = 3;

(ii) |A| = 4, and A = {a, a+ d, c, c+ d};

(iii) |A| ≥ 5, and A is an arithmetic progression.

We note that the proof of this statement relies on the polynomial method of
Alon, Nathanson, and Rusza, while our proof relies solely on elementary methods
albeit with the additional a priori knowledge of A,B being arithmetic progressions
to prove the result for general Z/nZ. It is not clear to us whether the methods
used to prove Theorem 5.4 can be easily applied to prove Theorem 5.1, but we also
present our elementary proof to foreshadow methods used to extend this result into
nonabelian groups in the next section.

6. A Generalization of the Inverse Theorem of the Dias da Silva-Hamidoune
Theorem to Nonabelian Groups

In this section, we extend the results of Theorem 5.1 to nonabelian groups when the

automorphism θ = ι is the identity map so that A
ι· B = {ab| a ∈ A, b ∈ B, a 6= b}.

10



Theorem 6.1. Let A,B ⊆ G, where |A| = k, |B| = l and p(G) is the smallest
prime dividing the order of Gy. Suppose p(G) > k + l − 2 where k, l ≥ 3. Further
suppose that A is a right geometric progression and B is a left geometric progression
and that they have the same common ratio. Then we have that:

|A ι· B| = |A|+ |B| − 3 implies A and B have the same endpoints.

Proof. Let d be the common ratio of the geometric progressions A and B, i.e.
A = {ads | 0 ≤ s ≤ k − 1} and B = {dtb | 0 ≤ t ≤ l − 1}.

So we see

A
ι· B = {adsdtb | 0 ≤ s ≤ k − 1, 0 ≤ t ≤ l − 1, ads 6= dtb}.

We note that adsdtb = ads±1dt∓1b.

Subcase 1:
First suppose that there is at least one pair of elements that cannot be rewritten,
i.e. that there exists s, t such that ads = dtb and ads+1 = dt−1b. Then we see that
we have dt−1b = dtbd which implies b = dbd and similarly ads+1 = dads implies that
a = dad. Looking at the unrestricted productset, we see that AB = {adrb | 0 ≤
r ≤ k + l − 2} and since from our initial assumption |d| ≥ p(G) > k + l − 2,
|AB| = k + l − 1. So we see the only way the order of the product can achieve
the lower bound is to have two or more pairs of elements that are equal. In other
words, our assumption requires the existence of s1, t1, s2, t2 such that ads1 = dt1b,
ads2 = dt2b, with s1 + t1 6= s2 + t2. Using the identities a = dad and b = dbd
from above, we obtain d(s1+t1)−(s2+t2) = 1, from which it follows that |d| divides
(s1 + t1)− (s2 + t2). Hence

k + l − 2 < p(G) ≤ |d| ≤ (s1 + t1)− (s2 + t2) ≤ k + l − 2

which is a contradiction. Thus we may conclude that this case is not possible with
our conditions.

Subcase 2:
We are now reduced to the case when ads = dtb always implies ads±1 6= dt∓1b for
all s, t. Then for each instance of restriction, we can find another pair of elements,
ads±1 ∈ A, and dt∓1b ∈ B, that yield the same product, unless the term in question
is a shared endpoint of the geometric progression where s, t = 0 corresponds to the
first endpoint and s = k − 1, t = l − 1 corresponds to the last endpoint.

Thus A
ι·B = AB = {adrb | 0 ≤ r ≤ k+ l−2} (and from our initial assumptions

|d| > k + l − 2), so |A ι· B| = |AB| = k + l − 1 unless a = b or adk−1 = dl−1b.

Notice without loss of generality that the second case can be reduced to the first
by putting ā = adk−1, b̄ = dl−1b and forming the geometric progressions by setting
d̄ = d−1.

So we can assume a = b. Now suppose adk−1 6= dl−1b. Then A
ι· B = AB \ {ab}

implies that |A ι· B| = k + l − 2, which contradicts the initial assumption.
Hence we have shown for both subcases that we reach a contradiction. Therefore,
we are forced to conclude that A and B must share both endpoints.
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Remark 6.2. As opposed to the abelian case, we note that A and B can share the
same endpoints and still not have the same cardinalities as shown in Example 4.11.

7. Current Progress on the Full Conjecture

We note in this section our most recent result whose proof will be presented in
another manuscript [18] that is the most general statement we can prove towards
the conjecture:

Theorem 7.1. Let A,B be subsets of a finite group G such that k = |A|, l = |B| >
10 and p(G) > (2k + 2l)k+l, and let σ ∈Aut(G). If |A σ· B| = k + l − 3, then there
exist a, q, r ∈ G such that σ(r) = q, aqk−1 = pl−1a and

A = {a, aq, . . . , aqk−1}, B = {a, ra, . . . , rl−1a}.

8. Concluding Remarks

We have provided a survey of results concerning both direct and inverse problems
related to the Cauchy-Davenport and Erdős-Heilbronn problems. We formulated
an open conjecture concerning the inverse Erdős - Heilbronn problem in nonabelian
groups and provided a nontrivial group as an example to support our formulation.
We proved an inverse theorem of the Dias da Silva-Hamidoune theorem in Z/nZ
for composite n under the assumption that A,B are arithmetic progressions of
the same common difference. While this result may be deducible from methods
used to prove Theorem 5.4 (it is not immediate to us whether this theorem can
easily be generalized to Z/nZ), we present a novel proof using only elementary
methods. Further, this proof foreshadows a similar argument to extend the result
into nonabelian groups for the restricted product set with identity automorphism

A
ι· B = {ab | a ∈ A, b ∈ B, a 6= b}.
Further research includes trying to settle Conjecture 4.10. The example of a

critical pair presented in Section 4 has led to recent discoveries of other critical
pairs, and we state our latest result in Section 7 that will be presented in [18]. The
full conjecture still eludes us, and it is unclear if our elementary methods can be
utilized further in this domain. We hope a promising line of attack involving the
polynomial method can be developed for nonabelian groups, and that the inverse
Erdős-Heilbronn problem with arbitrary automorphism θ can be fully established
in an elegant manner.

12



Acknowledgements

The authors are very deeply indebted to Gyula Károlyi for invaluable insight and
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9. Appendix

Table 1: Timeline for Cauchy-Davenport Theorem and Erdős-Heilbronn Problem

Year Contents Person(s) Cite

1813 Cauchy-Davenport Theorem for Z/pZ Cauchy, A.L. [6]
1935 Cauchy-Davenport Theorem for Z/pZ Davenport, H. [8]
1935 Cauchy-Davenport Theorem for Z/mZ Chowla, I. [7]
1947 acknowledged Cauchy’s work Davenport, H. [9]
1953 CDT extended to abelian groups Kneser, M. [25]
early developed the Erdős-Heilbronn conjecture Erdős, P.
1960’s Heilbronn, H.
1963 stated EHP at Number Theory conference Erdős, P. [12]
1964 EHP in paper on sumsets of congruence classes Erdős, P. [15]

Heilbronn, H.
1971 EHP appeared in the book Erdős, P. [13]

Some Problems in Number Theory
1980 EHP in Old and New Problems and Erdős, P. [14]

Results in Combinatorial Number Theory Graham, R.
1984 CDT for finite groups proven Olson, J.E. [29]

(special case of Olson’s theorem)
1994 EHP proved for special case A = B Dias da Silva, J.A. [10]

Hamidounne, Y.O.
Alon, Noga

1995 EHP proved by the Polynomial Method Nathanson, M.B. [3]
Ruzsa, I.

2000 proved inverse EHP in the asymptotic sense for Z/pZ Lev, V.F. [26]
2003 inverse CDT extended to abelian groups Károlyi, Gy. [21]
2004 EHP to abelian groups for A = B Károlyi, Gy. [19, 20]
2004 EHP to groups of prime power order Károlyi, Gy. [20]

2005/2006 CDT extended to finite groups Károlyi, Gy., Wheeler, J.P. [21] , [33]
(independent of Olson and each other)

2006 EHP for finite groups Balister, P. [5]
Wheeler, J.P.

2009 improved asymptotic inverse EHP result for Z/pZ Vu, V. [32]
Wood, Philip M.

2012 submitted proof that all critical pairs in a finite Du, S. [11]
nilpotent group G are of the form A = B Pan, H.

KEY: CDT = Cauchy-Davenport Theorem, EHP = Erdős-Heilbronn Problem
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[20] Gy. Károlyi, The Erdős-Heilbronn problem in abelian groups, Israel Journal of
Mathematics, 139 (2004) 349–359.
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