Linear Algebra Preliminary Exam May 2025

Problem 1 Find the Jordan Canonical Form of

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 4 \end{pmatrix}.$$

<u>Note:</u> You do not have to perform the change of basis computations.

Problem 2 Let A, B be matrices, A invertible. Show that there exists $r_0 > 0$ such that A - (1/r) B is invertible if $r > r_0$.

Problem 3 Let $n \ge 1$, and P_n be the linear space of all real coefficients polynomials of order at most n,

$$P_{n} = \left\{ p\left(t\right) = \sum_{k=0}^{n} c_{k} t^{k} : c_{k} \in \mathbb{R}, 0 \le k \le n \right\}.$$

Show that there exist constants a_k , $0 \le k \le n$ such that $p(2024) = \sum_{k=0}^n a_k p(k)$ for every $p \in P_n$.

Problem 4 Let A be a real $n \times n$ matrix. Show that the kernel of $A^T A$ is the same as the kernel of A.

Problem 5 Show that there exist no matrices $A \in \mathbb{R}^{3 \times 2}$ and $B \in \mathbb{R}^{2 \times 3}$ such that

$$AB = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}.$$

Problem 6 Let $A \in \mathbb{C}^{n \times n}$ be a normal $n \times n$ -matrix. Show that $||A^n|| = ||A||^n$ for the standard operator norm.