Preliminary Exam in Analysis, May, 2025

1. Let $(a_k)_{k \in \mathbb{N}}$ be a strictly monotone increasing sequence with $a_k > 0$ for all k. Show that there exists a constant C > 0, depending only on a_1 , such that the following inequality holds for all $k \in \mathbb{N}$:

$$\sum_{j=1}^k \left(1 - \frac{a_j}{a_{j+1}}\right) \le \log a_k + C.$$

- 2. Let $f_k: [0,1] \to \mathbb{R}$ be a sequence of continuously differentiable functions and $f: [0,1] \to \mathbb{R}$, such that
 - (1) for all $x \in [0, 1]$, the sequence $(f_k(x))_{k \in \mathbb{N}}$ converges to f(x), and

(2)
$$\sup_{k \in \mathbb{N}} \int_{[0,1]} |f'_k(x)|^2 dx < \infty$$

Show that $(f_k)_{k \in \mathbb{N}}$ (**not** just a subsequence) converges uniformly to f.

3. Let (X, d) be a nonempty, complete metric space and $f : X \to X$ (not necessarily continuous), let $N \in \mathbb{N}$ be a number, and let $\lambda \in (0, 1)$ such that f^N satisfies

$$d\left(f^{N}(x), f^{N}(y)\right) \leq \lambda d(x, y) \quad \forall x, y \in X.$$

Here f^n denotes *n*-times application of f, e.g. $f^2(x) = f(f(x))$.

Show that there exists $a \in X$ such that $\lim_{n\to\infty} f^n(x) = a$ for any $x \in X$. Also show that a is the unique fixed point of f.

4. Let $\{a_j\}_{j=1}^{\infty}$ be a sequence of real numbers, such that $\sum_j |a_j| = 1$ and $\sum_{j=1}^{\infty} a_j = \sum_{j=1}^{\infty} a_j^3 = 0$. Show that

$$\left|\sum_{j=1}^{\infty} \sin(a_j)\right| < \frac{1}{1000}$$

Hint: You could start by showing that $|a_j| \leq \frac{1}{2}$ for each $j \in \mathbb{N}$.

- 5. Assume $n \ge 2$. Show that the following holds for any $f \in C^1(\mathbb{R}^n)$ which satisfies $f \equiv 0$ outside a compact set:
 - (a) Fix any $x \in \mathbb{R}^n$, then

$$\sum_{i=1}^n \int_{\mathbb{R}^n \setminus B(x,\varepsilon)} \frac{x_i - y_i}{|x - y|^n} \,\partial_i f(y) \, dy = \varepsilon^{1-n} \int_{\partial B(x,\varepsilon)} f(y) dy.$$

(b) Conclude that there exists a constant C(n) such that

$$C(n) f(x) = \lim_{\varepsilon \to 0^+} \sum_{i=1}^n \int_{\mathbb{R}^n \setminus B(x,\varepsilon)} \frac{x_i - y_i}{|x - y|^n} \,\partial_i f(y) \, dy.$$

Here, we denote vectors in \mathbb{R}^n by $z = (z_1, z_2, ..., z_n)$, and the Euclidean norm $|z| = (\sum_{i=1}^n |z_i|^2)^{\frac{1}{2}}$.

6. Fix a **continuous** function $F : \mathbb{R} \to \mathbb{R}$ such that $F(0) \neq 0$. Show that for some $\varepsilon > 0$ the problem

$$\begin{cases} \frac{dy}{dt} = F(y) & t \in (-\varepsilon, \varepsilon) \\ y(0) = 0 \end{cases}$$

has a unique solution $y \in C^1((-\varepsilon, \varepsilon), \mathbb{R})$.

Hint: Formally consider a solution to the differential equation $\frac{dt}{dy} = \frac{1}{F(y)}$.

/