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ENERGY STABILITY OF A FIRST ORDER

PARTITIONED METHOD FOR SYSTEMS WITH GENERAL

COUPLING

WILLIAM LAYTON AND AZIZ TAKHIROV

(Communicated by Aziz Takhirov)

Abstract. We give an energy stability analysis of a first order, 2 step partitioned time dis-

cretization of systems of evolution equations. The method requires only uncoupled solutions of
sub-systems at every time step without iteration, is long time stable and applies to general system

couplings. We give a proof of long time energy stability under a time step restriction relating the

time step to the size of the coupling terms.
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1. Introduction

The most natural approach to numerical simulation of multi-domain, multi-
physics systems is to build a partitioned method for the system from components
optimized for the individual sub-domain and sub-physics problems. The two most
common approaches to partitioning are implicit-explicit methods where the sys-
tem’s’ coupling terms are discretized by explicit methods and sub-domain / sub-
physics terms by implicit methods, and splitting methods where the coupling terms
are themselves separated in each equation according to the subproblems. Appli-
cation of either to complex problems requires analytic foundations as a guide for
practical computation. Herein, we consider the first, implicit-explicit, approach for
general couplings (the main point herein) but restricted to first order, two step
methods. Thus, for a system

d

dt
u1 +A1u1 +B11u1 +B12u2 = f1,

d

dt
u2 +A2u2 +B21u1 +B22u2 = f2,(1.1)

we analyze long-time, energy stability of a method (1.6) below which requires at
each step that the two uncoupled linear systems be solved

(1.2) [I + 24tAi]u
n+1
i = RHS, i = 1, 2.
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Thus, we consider methods implicit in A1u1 and A2u2 but explicit in the coupling
terms B11u1 + B12u2 and B21u1 + B22u2. In the method, the diagonal terms
B11u1 and B22u2 could be incorporated into the part treated implicitly (the Ai’s ).
However, the part treated implicitly in (1.3), (1.1) is often determined by existing
codes and the coupling terms are those that remain.

Letting u = (u1, u2)T : [0,∞)→ Rd and A,B represent the d× d block matrices
in (1.1), we develop the stability analysis for

(1.3)
du

dt
+Au+Bu = f, u(0) = u0.

Let 〈·, ·〉, || · || denote the Euclidean inner product and norm. Suppose

A > 0 i.e., 〈Au, u〉 > 0 for all u ∈ Rd.

Partitioned methods, herein, are useful tools and not best for every circumstance.
The equally useful alternative is a monolithic method where the fully coupled sys-
tem is assembled and solved by some iterative method wherein uncoupling can
occur in the preconditioning step, e.g., [9] for one example. Conservative couplings
(B∗ = −B, where B∗ satisfies 〈Bx, y〉 = 〈x,B∗y〉 ∀x, y ) occur when what is lost
to one domain or variable is transferred to the other. One important example
is the evolutionary Stokes-Darcy model under the Beaver-Joseph-Saffman-Jones
(BJSJ) interface condition, [18], [14], [15], [10], [13], [12]. Dissipative couplings
(B = B∗ > 0) occur when there is energy lost through the interaction of the two
systems. One important example is in atmosphere-ocean couplings under the rigid
lid condition under which there are frictional lossess in transmitting wind energy at
the ocean surface to the ocean ( and vice versa), e.g., [3], [5], [6], [7]. Another im-
portant example of dissipative couplings is compressible flow in a porous medium.
The double porosity model of slightly compressible flow in a porous medium [17]
is: find u1(x, t), u2(x, t)

(c1u1)t −
k1c0
µ
4u1 + α−1(u1 − u2) = f,

(c2u2)t −
k2c0
µ
4u2 + α−1(u2 − u1) = g.

The coupling term satisfies

(Bu,u) =

∫
flow domain

α−1(u1 − u2)u1 + α−1(u2 − u1)u2dx

= α−1

∫
flow domain

(u1 − u2)2dx ≥ 0

and is thus dissipative.
One important case where dissipative, conservative and resonant couplings dom-

inated by system dissipation are present is the (above discussed) Stokes-Darcy
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problem under the orginal (BJ) Beavers-Joesph condition, studied in [4], [16]. Com-
pared to the BJSJ condition, extra terms occur which are resonant and must be
sufficiently small in the theory developed in these papers. Building on this previous
work, we give combination of these treatments stable for general couplings. The
method we study is related to work in [1], [14] and of implicit-explicit type, e.g., [2],
[8]. The analytical treatments of component discretizations of the coupling terms
in (1.3), (1.1) are known (by a different analytical path for each type of coupling).
However, the analysis of energy stability of their combination presents the techni-
cal difficulty that one discrete evolution equation with all type present requires one
analytical path.

We decompose B = C+P−N (skew symmetric, symmetric positive and symmet-
ric negative parts) and use explicit time discretizations suggested by linear stability
theory for each part. Let

(1.4)

{
B = C + P −N where,

C∗ = −C, P ∗ = P ≥ 0, and N∗ = N ≥ 0.

The coupling term Cu is conservative, the term Pu is dissipative, the term −Nu is
resonant. For long time stability of (1.1), the resonant coupling must be dominated
by the sub-system dissipation. Thus, we assume

(1.5) A > 0 and A−N ≥ a0I > 0.

These assumptions imply the basic stability properties sought to be preserved under
discretization:

sup
[0,∞)

||u(t)|| ≤ ||u0||+ C sup
[0,∞)

||f(t)||

and if f = 0,

||u(t)||2 → 0 as t→∞.

1.1. The Method. We thus consider a method that is a combination of Backward
Euler - Leapfrog - Forward Euler for the components of (1.3): Given u0 and (cal-
culated by some other method to appropriate accuracy [19]) u1 ∈ X find un ∈ X
for n ≥ 2 satisfying

(1.6)
un+1 − un−1

24t
+Aun+1 + Cun + (P −N)un−1 = f(tn+1).

This is a 2 step method due to the use of leap frog for the skew symmetric, coupling
term. Approximations are needed at the first time step to appropriate accuracy,
[19]. For (1.1) above, discretized in time by (1.6), at each step, the uncoupled linear
systems (1.2) must be solved.

2. Energy Stability

We prove long time, energy stability of the uncoupling method (1.6) under time
step conditions (2.1) or (2.2) below. For a self-adjoint, positive semi-definite matrix
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Q, we denote the induced semi-norm and semi-inner product by

〈u, v〉Q := 〈Qu, v〉, ||u||Q :=
√
〈u, v〉Q.

Stability requires a time step condition which will be independent of ||N || due to
(1.5). We suppose that, for some α > 0, there holds either

4t||C|| ≤ 1− α < 1,

44t||P || ≤ 1− α < 1,(2.1)

24t||C|| ≤ (1− α)a0 < a0.

or

(2.2) 4t(||P ||+ ||C||) ≤ 1− α < 1.

Theorem 1 (Energy Stability). Consider the discretization (1.6) of (1.3) under
the structure conditions (1.4), (1.5). Suppose that 4t satisfies either (2.1) or
(2.2).

If (2.1) holds, then

α
(
||uN ||2 + ||uN−1||2

)
+ 24t||uN ||2A + 24t||uN−1||2A +4t||uN ||2A−N

+

N−1∑
n=1

α

2
||un+1 − un−1||2 + 24t

N−1∑
n=1

||uN−1||2A−N

+4t
N−1∑
n=1

[a0

2
||un+1||2 + αa0||un||2 + 2||un+1||2P + 2||un−1||2P + 2||un+1 − un−1||2N

]
≤ (||u1||2 + ||u0||2 + 24t

〈
Cu0, u1

〉
+ 24t||u0||2A + 24t||u1||2A +4t||u1||2A−N )+

+4t
N−1∑
n=1

8

a0
||f(tn+1)||2.(2.3)

If (2.2) holds, then

α
(
||uN ||2 + ||uN−1||2

)
+4t||uN ||2A+N +4t||uN−1||2A+N

+4t
N−1∑
n=1

||un+1 + un−1||2P+Ia0/2

≤ (||u1||2I−4tP + ||u0||2I−4tP ) +4t|
〈
Cu0, u1

〉
|+4t||u0||2A+N +4t||u1||2A+N

+4t
N−1∑
n=1

2

a0
||f(tn+1)||2.(2.4)

If f(t) ≡ 0 for t large enough, or more generally if
∑∞

n=1 ||f(tn+1)||2 < ∞, we
have

un → 0 as tn →∞ under (2.1),

un+1 + un−1 → 0 as tn →∞ under (2.2).
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Proof. The case of 4t condition (2.1). The key will be the treatment of
the coupling terms. Before addressing them, we begin with a few standard steps.
Multiply through by 44t, take the inner with un+1, use the polarization identity
for the term

〈
un+1, un−1

〉
and add and subtract ||un||2. This gives

(||un+1||2 + ||un||2)− (||un||2 + ||un−1||2) + ||un+1 − un−1||2

+44t||un+1||2A+

+44t
〈
Cun, un+1

〉
+ 44t

〈
(P −N)un−1, un+1

〉
= 44t

〈
f(tn+1), un+1

〉
.

Since P ≥ 0 we apply the polarization identity to the term
〈
Pun−1, un+1

〉
〈
Pun−1, un+1

〉
=

1

2
||un+1||2P +

1

2
||un−1||2P −

1

2
||un+1 − un−1||2P .

Rewrite the skew coupling term as

44t
〈
Cun, un+1

〉
= 24t

〈
Cun, un+1

〉
−24t

〈
Cun−1, un

〉
+24t

〈
Cun, un+1 − un−1

〉
.

The last term on the RHS satisfies

(2.5) |24t
〈
Cun, un+1 − un−1

〉
| ≤ 1

2
||un+1 − un−1||2 + 24t2||Cun||2.

Combining and rearranging gives

(||un+1||2 + ||un||2 + 24t
〈
Cun, un+1

〉
)− (||un||2 + ||un−1||2 + 24t

〈
Cun−1, un

〉
)+

+

[
1

2
||un+1 − un−1||2 − 24t||un+1 − un−1||2P

]
+44t||un+1||2A + 24t||un+1||2P + 24t||un−1||2P − 24t2||Cun||2

−44t
〈
Nun−1, un+1

〉
≤ 44t

〈
f(tn+1), un+1

〉
.(2.6)

In the balance between the global dissipation and the resonant coupling, the polar-
ization identity on the N semi-inner product:

||un+1||2A −
〈
Nun−1, un+1

〉
=

= ||un+1||2A −
[

1

2
||un−1||2N +

1

2
||un+1||2N −

1

2
||un+1 − un−1||2N

]
=

1

2

〈
(A−N)un+1, un+1

〉
+

1

2
||un+1 − un−1||2N +

1

2

[
||un+1||2A − ||un−1||2N

]
=

1

2

〈
(A−N)un+1, un+1

〉
+

1

2
||un+1 − un−1||2N

+
1

2

[
||un+1||2A − {||un−1||2A −

〈
(A−N)un−1, un−1

〉
}
]

=
1

2

〈
(A−N)un+1, un+1

〉
+

1

2

〈
(A−N)un−1, un−1

〉
+

1

2
||un+1 − un−1||2N +

1

2

[
||un+1||2A − ||un−1||2A

]
.
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Insert this for the corresponding terms in (2.6) and add and subtract 24t||un||2A.
We obtain (recalling that A−N > 0)

[||un+1||2 + ||un||2 + 24t
〈
Cun, un+1

〉
+ 24t||un+1||2A + 24t||un||2A]

−[||un||2 + ||un−1||2 + 24t
〈
Cun−1, un

〉
+ 24t||un−1||2A + 24t||un||2A]

+

[
1

2
||un+1 − un−1||2 − 24t||un+1 − un−1||2P + 24t||un+1 − un−1||2N

]
+24t

(
||un+1||2A−N + ||un−1||2A−N −4t||Cun||2

)
+24t||un+1||2P + 24t||un−1||2P ≤ 44t

〈
f(tn+1), un+1

〉
.

The following term requires more analysis:

24t
(
||un+1||2A−N + ||un−1||2A−N −4t||Cun||2

)
=

= 4t[||un+1||2A−N + 〈(A−N)un, un〉 − 24t||Cun||2]+

+4t[||un+1||2A−N − ||un||2A−N ] + 24t‖un−1‖2A−N .

Since 24t||C|| ≤ (1− α)a0 we have

〈(A−N)un, un〉 − 24t||Cun||2 ≥ αa0||un||2.

These identities give En+1/2-En−1/2 + {positive} ≤ 44t
〈
f(tn+1), un+1

〉
:[

||un+1||2 + ||un||2 + 24t
(〈
Cun, un+1

〉
+ ||un+1||2A + ||un||2A +

1

2
||un+1||2A−N

)]
−
[
||un||2 + ||un−1||2 + 24t

(〈
Cun−1, un

〉
+ ||un−1||2A + ||un||2A +

1

2
||un||2A−N

)]
+

{
1

2
||un+1 − un−1||2 − 24t||un+1 − un−1||2P + 24t||un+1 − un−1||2N(2.7)

+4t||un+1||2A−N + 24t||un−1||2A−N +4tαa0‖un‖2

+24t||un+1||2P + 24t||un−1||2P
}
≤ 44t

〈
f(tn+1), un+1

〉
.

The energy En+1/2 is positive provided 4t||C|| < 1− α:

||un+1||2 + ||un||2 + 24t
(〈
Cun, un+1

〉
+ ||un+1||2A + ||un||2A +

1

2
||un+1||2A−N

)
≥ ||un+1||2 + ||un||2 − 24t||C||||un||||un+1||+

+24t
(
||un+1||2A + ||un||2A +

1

2
||un+1||2A−N

)
≥ α

(
||un+1||2 + ||un||2

)
+ 24t

(
||un+1||2A + ||un||2A

)
+4t||un+1||2A−N .
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The third line in (2.7) is positive under 44t||P || ≤ 1− α:[
1

2
||un+1 − un−1||2 − 24t||un+1 − un−1||2P + 24t||un+1 − un−1||2N

]
≥

=
1

2

〈
(I − 44tP )

(
un+1 − un−1

)
, un+1 − un−1

〉
+ 24t||un+1 − un−1||2N ≥

≥ α

2
||un+1 − un−1||2 + 24t||un+1 − un−1||2N ≥ 0.

Inserting these lower estimates we have[
||un+1||2 + ||un||2 + 24t

(〈
Cun, un+1

〉
+ ||un+1||2A + ||un||2A +

1

2
||un+1||2A−N

)]
−
[
||un||2 + ||un−1||2 + 24t

(〈
Cun−1, un

〉
+ ||un−1||2A + ||un||2A +

1

2
||un||2A−N

)]
+
α

2
||un+1 − un−1||2 + 24t||un+1 − un−1||2N +4t(2||un−1||2A−N

+a0||un+1||2 + αa0||un||2 + 2||un+1||2P + 2||un−1||2P ) ≤ 44t
〈
f(tn+1), un+1

〉
.

Consider now the RHS

44t
〈
f(tn+1), un+1

〉
≤ 4ta0

2
||un+1||2 +4t 8

a0
||f(tn+1)||2.

Thus,[
||un+1||2 + ||un||2 + 24t

(〈
Cun, un+1

〉
+ ||un+1||2A + ||un||2A +

1

2
||un+1||2A−N

)]
−
[
||un||2 + ||un−1||2 + 24t

(〈
Cun−1, un

〉
+ ||un−1||2A + ||un||2A +

1

2
||un||2A−N

)]
+
α

2
||un+1 − un−1||2 + 24t||un+1 − un−1||2N + 24t(|un−1||2A−N

+
a0

4
||un+1||2 +

αa0

2
||un||2 + ||un+1||2P + ||un−1||2P ) ≤ 4t 8

a0
||f(tn+1)||2.

Summing n = 1, · · ·, N − 1 and the lower bound for E gives

α
(
||uN ||2 + ||uN−1||2

)
+ 24t||uN ||2A + 24t||uN−1||2A +4t||uN ||2A−N

+

N−1∑
n=1

α

2
||un+1 − un−1||2 + 24t

N−1∑
n=1

||un+1 − un−1||2N

+4t
N−1∑
n=1

[
2||uN−1||2A−N +

a0

2
||un+1||2 + αa0||un||2 + 2||un+1||2P + 2||un−1||2P

]
≤ (||u1||2 + ||u0||2 + 24t|

〈
Cu0, u1

〉
|+ 24t||u0||2A + 24t||u1||2A +4t||u1||2A−N )+

+4t
N−1∑
n=1

8

a0
||f(tn+1)||2.
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The case of 4t condition (2.2). Take the inner product of (1.6) with un+1 +
un−1, rewrite the skew coupling terms as〈

Cun, un+1 + un−1
〉

=
〈
Cun, un+1

〉
−
〈
Cun−1, un

〉
.

This gives

||un+1||2 − ||un−1||2

24t
+
[〈
Cun, un+1

〉
−
〈
Cun−1, un

〉]
+
[〈
Aun+1, un+1 + un−1

〉
+
〈
(P −N)un−1, un+1 + un−1

〉]
=
〈
f(tn+1), un+1 + un−1

〉
.

If we add, subtract
〈
Aun−1, un−1 + un+1

〉
to the last bracketed terms and use the

fact that
〈
A(un+1 − un−1), un−1 + un+1

〉
= ‖un+1‖2A − ‖un−1‖2A, we obtain〈

Aun+1, un+1 + un−1
〉

+
〈
(P −N)un−1, un+1 + un−1

〉
= ‖un+1‖2A − ‖un−1‖2A +

〈
Aun−1, un−1 + un+1

〉
+
〈
(P −N)un−1, un+1 + un−1

〉
.

Applying the polarization identity to
〈
Pun−1, un+1 + un−1

〉
gives

〈Pun−1, un−1 + un+1〉 =
1

2
||un−1||2P +

1

2
||un+1 + un−1||2P −

1

2
||un+1||2P .

Thus, we have that〈
Aun+1, un+1 + un−1

〉
+
〈
(P −N)un−1, un+1 + un−1

〉
= ‖un+1‖2A − ‖un−1‖2A +

〈
(A−N)un−1, un−1 + un+1

〉
+

1

2
||un−1||2P +

1

2
||un+1 + un−1||2P −

1

2
||un+1||2P .

Similarly, the second term satisfies〈
(A−N)un−1, un−1 + un+1

〉
=

1

2

(
||un−1||2A−N − ||un+1||2A−N

)
+

1

2
||un+1+un−1||2A−N .

Combining and rearranging gives〈
Aun+1, un+1 + un−1

〉
+
〈
(P −N)un−1, un+1 + un−1

〉
=

1

2

(
||un+1 + un−1||2A−N + ||un+1 + un−1||2P

)
+

1

2

(
||un+1||2A+N − ||un−1||2A+N

)
+

1

2

(
||un−1||2P − ||un+1||2P

)
.

Using A−N ≥ a0I > 0 and incorporating above calculations, we have

En+1/2 − En−1/2 + 4t||un+1 + un−1||2P + a04t||un+1 + un−1||2

≤ 24t
〈
f(tn+1), un+1 + un−1

〉
.

where the energy

En+1/2 = ||un+1||2I−4tP + ||un||2I−4tP + 24t
〈
Cun, un+1

〉
+ 4t

(
||un+1||2A+N + ||un||2A+N

)
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is positive provided 4t(||C||+ ||P ||) ≤ 1− α < 1. Indeed,

||un+1||2I−4tP + ||un||2I−4tP + 24t
〈
Cun, un+1

〉
+4t

(
||un+1||2A+N + ||un||2A+N

)
≥

||un+1||2I−4tP + ||un||2I−4tP − 24t‖C‖‖un‖‖un+1‖+4t
(
||un+1||2A+N + ||un||2A+N

)
≥

α
(
||un+1||2 + ||un||2

)
+4t

(
||un+1||2A+N + ||un||2A+N

)
≥ 0.

Consider now the RHS

24t
〈
f(tn+1), un+1 + un−1

〉
≤ 4t

(
a0
||un+1 + un−1||2

2
+

2

a0
||f(tn+1)||2

)
.

Thus

[||un+1||2I−4tP + ||un||2I−4tP +4t
(
2
〈
Cun, un+1

〉
+ ||un+1||2A+N + ||un||2A+N

)
]

−[||un||2I−4tP + ||un−1||2I−4tP +4t
(
2
〈
Cun−1, un

〉
+ ||un||2A+N + ||un−1||2A+N

)
]

+4t||un+1 + un−1||2P+Ia0/2 ≤ 4t
2

a0
||f(tn+1)||2.

Summing from n = 1, · · ·, N − 1 and using the lower bound for the system energy
gives

α
(
||uN ||2 + ||uN−1||2

)
+4t||uN ||2A+N +4t||uN−1||2A+N

+4t
N−1∑
n=1

||un+1 + un−1||2P+Ia0/2

≤ (||u1||2I−4tP + ||u0||2I−4tP ) + 24t|
〈
Cu0, u1

〉
|+4t||u0||2A+N +4t||u1||2A+N

+4t
N−1∑
n=1

2

a0
||f(tn+1)||2.

Asymptotic stability. For the claim that un → 0 as n → ∞, set f = 0 and
simply drop some non-negative terms from the LHS. We then have, in cases 1 and
2 respectively,

(
||uN ||2 + ||uN−1||2

)
+4t

N−1∑
n=1

[
||un+1||2 + ||un||2

]
< ∞,

α
(
||uN ||2 + ||uN−1||2

)
+
a04t

2

N−1∑
n=1

[
||un+1 + un−1||2

]
< ∞.

Since each RHS is independent of N , the sums
∑∞

n=1 [·] converge and thus the nth

terms → 0. �
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3. Numerical experiment

We consider a simple example. Let T = 1, f = (−1, 0)T and

A =

(
3 0
0 2

)
, N =

(
2 0
0 1

)
, C =

(
0 −50
50 0

)
,

P =

(
3 0
0 2

)
, u0 =

(
1
1

)
, u1 =

(
1.1
0.9

)
.

The true solution is given by

u =

 8382495e−
7x
2 cos 3

√
1111x
2 −9999 cos

[
3
√

1111x
2

]2
+243685

√
1111e−

7x
2 sin 3

√
1111x
2 −9999 sin

[
3
√

1111x
2

]2
8372496

4102923e−
7x
2 cos 3

√
1111x
2 +83325 cos

[
3
√

1111x
2

]2
−124519

√
1111e−

7x
2 sin 3

√
1111x
2 +83325 sin

[
3
√

1111x
2

]2
4186248

 ,

which was computed using Mathematica command DSolve.
With the above choices of matrices, we have ‖C‖2 = 50, ‖P‖2 = 3. Since a0 = 1,

the two time step restrictions (2.1),(2.2) are, respectively,

4t < 1/min{2||C||, 4||P ||} =
1

100
,

4t < 1/(||C||+ ||P ||) =
1

53

We performed two tests. As expected, for 4t = 1
54 , the solution is stable (Fig.

1) and for 4t = 1
48 it is not (Fig. 2).

Figure 1. Stable approximation, T = 1,4t = 1
54 .

Next, we consider the case of f = 0, T = 8 to test the asymptotic stability. If
4t < 1/54, then we should get un+1 + un−1 → 0. The theorem fails to indicate
whether un → 0 thus we test this distinction in the Table 1.
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Figure 2. Unstable approximation, T = 1,4t = 1
48 .

4t ‖uN‖ ‖uN + uN−2‖
Test1 1

54 2e− 12 5.8e− 12

Test2 1
48 3.1e+ 15 4.6e+ 12

Test3 1
50 1.3e− 11 1.1e− 12

Table 1

In Test 2, 4t > 1/54 > 1/100 and ‖un‖ 9 0, consistent with the theory. In
test 1, 1/100 < 4t < 1/54 and ‖un + un−2‖ → 0 confirming the theory. Further,
in Test 1 we get un → 0. In Test 3, 4t > 1/54 (slightly), while ‖un‖ → 0. Test
3 suggests that the time step limit is reasonably sharp and that the result that
un+1 + un−1 → 0 may be improvable to un → 0. In the figures below, we also
present the plots of ‖un‖ vs. time step tn consistent with behavior seen in the
tables.

4. Conclusions

We have studied two step, first order uncoupling methods. The stability analysis
presented herein shows that for systems the different methods can be combined as
suggested by their individual components. This result validates (low order) implicit-
explicit based methods for general couplings. The numerical tests identify an open
question: Whether the second time step restriction (2.2) suffices to control the
asymptotic behavior of the unstable mode of LF for the combined method.
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2 4 6 8
t

0.01

0.02

0.03

0.04

0.05

0.06

°un´

Figure 3. Test 1, 4t = 1
54 , f = 0

2 4 6 8
t

5.0´ 10
12

1.0´ 10
13

1.5´ 10
13

2.0´ 10
13

°un´

Figure 4. Test 2, 4t = 1
48 , f = 0
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