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Instability of Crank-Nicolson Leap-Frog for Nonautonomous Systems
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The implicit-explicit combination of Crank-Nicolson and Leap-Frog methods is widely used for atmo-
sphere, ocean and climate simulations. Its stability under a CFL condition in the autonomous case was
proven by Fourier methods in 1962 and by energy methods for systems in 2012. We prove weak but
unconditional instability for Leap-Frog in the nonautonomous case herein.
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1. Introduction

This note considers stability of CNLF, the Crank-Nicolson Leap-Frog method (CNLF) below, for sys-
tems with nonautonomous A(t),Λ(t):

du
dt

+A(t)u+Λ(t)u = 0, for t > 0, and u(0) = u0. (1.1)

A(t),Λ(t) are d× d matrices and u(t) is a d vector. A(t) is positive semi-definite symmetric part and
Λ(t) is skew symmetric. Let | · |2 denote the euclidean norm. Under the timestep condition

∆ t|Λ |2 6 α < 1, (1.2)

stability in the autonomous, scalar case was proven in 1963 in Johansson and Kreiss (9), see also (4),
and for non-commuting, autonomous systems in 2012 (12), see also (17) for background. We prove
herein weak instability in the nonautonomous case.

The extension of stability for ODEs from autonomous to nonautonomous (with test problem y′ =
λ (t)y) has a rich history. Dahlquist (3) proved that an A-stable method is similarly stable for y′ = λ (t)y
when Re(λ (t)) 6 0, further developed in (13). For the corresponding AN-stability theory for Runge-
Kutta methods, see Hundsdorfer and Stetter (7). For non-A-stable multi-step methods, nonautonomous
stability theory was recently developed in Boutelje and Hill (2). Their theory gives conditions under
which a method will be stable for y′ = λ (t)y and under which it will be unstable. For example, given a
linear multistep method for y′ = λ (t)y , let ρ(z),σ(z) be the complex polynomials associated with the
method in a standard way and form

a(i) := Re
[

ρ(z)
σ(z)

∣∣∣∣
z=i

]
.
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If ∆ t small enough to be in the stability region of the method, and a(i)< 0 then there exists a λ (t)< 0
for which the method is unstable, (2).

In the Boutelje-Hill theory, the leap-frog method (CNLF with A(t) = 0) is an important wedge
example. Indeed, for leap frog, we calculate ρ(z) = 1

2 z2 − 1
2 , and σ(z) = z. Thus a(i) ≡ 0. Many

interesting behaviors are possible between exponential asymptotic stability and exponential instability.
One hint is that there is a rich catalog (e.g., (1),(14),(15),(18) ) of exotic behavior of leap-frog for
Burgers equation starting (to our knowledge) with Fornberg’s 1973 paper (6). CNLF is also particularly
important since it is the method used for the dynamic core of most current atmosphere, ocean and
climate codes, e.g., (4), (10), (16), and other geophysics problems, (11) .

We consider thus CNLF: let tn = n∆ t; given u0,u1 find un ∈ X for n> 2 satisfying

un+1−un−1

2∆ t
+A(tn)

un+1 +un−1

2
+Λ(tn)un = 0, (CNLF)

with approximations to appropriate accuracy, (17), at the first two time steps.
To summarize the results, first suppose

|Λ(tn)−Λ(tn−1)|2 6 a0∆ t. (1.3)

We prove in Theorem 1 the upper bound

|uN+1|22 + |uN |22 6C(α,u0,u1)exp
[

∆ t
a0

1−α
tN
]
. (1.4)

For Lipschitz Λ(t), the rate constant ∆ ta0→ 0 as ∆ t → 0 but exp
[

∆ ta0tN

1−α

]
→ ∞ as tN → ∞. However,

the true solution u(t)→ 0 as t → ∞. Thus, if this estimate is sharp, CNLF has a weak instability in the
nonautonomous case. This raises the possibilities that either (i) the bound, while unusual, may be sharp,
(ii) the true rate of growth may be linear (or polynomial) in tN , or (iii) stability may require both (1.2)
and a second timestep condition. We give two constructions that show that (1.4) is best possible.

EXAMPLE 1.1 (Exponential instability under (1.2)) Take A(t) = 0 (so CNLF reduces to LF), ∆ t = 1/2,
u = (u1,u2)

t , y0 = (1,1)t , y1 = (1,−1)t and choose `(t) = cos(2πt). Consider LF for the 2×2 system:

u′+Λ(t)u = 0,Λ(t) = `(t)
[

0 −1
+1 0

]
. (1.5)

In this example

∆ t|Λ(tn)|2 =
1
2
< 1 but ∆ t|Λ(tn)−Λ(tn−1)|2 = 1.

LF is given by: u0,u1 given, un+1 = un−1−2∆ tΛ(tn)un, where

Λ(tn) = (−1)n+1
[

0 +1
−1 0

]
It is easily proven by induction that un is given by un = Fn(1,(−1)n+1)T where {Fn} is the Fibonacci
sequence. Thus |un| → ∞, as n→ ∞.

The instability in this example is so dramatic that it is surprising that in our numerical tests stability
seemed to be the generic behavior.
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EXAMPLE 1.2 (For smaller ∆ t the instability appears to vanish) We computed the growth rates of CNLF
for smaller time steps in the previous example with `(tn) = cos(2πtn), and (smaller) timesteps ∆ t =P/K
for integers K, P6 K, K 6 1400. We applied LF, (CNLF) with A(t)=0.

The average growth rate ρ was computed by constructing the 2× 2 matrix given in (3.6) below
and computing its eigenvalues λ j. The value σ = max{|λ j|} is the largest possible net growth attained
for some starting values after K steps of LF. Thus, for some starting values, the nth LF step satisfies
|un| ≈ |u0|σn/K = |u0|eρn, with ρ = 1

K logσ . When ρ = 0, (we shall take 10−8 as numerically zero) the
iteration is stable while if ρ > 0 the LF iterates grow exponentially.

Figure 1 plots the largest growth rate, ρ , attainable (by suitable choice of starting value) of LF vs.
∆ t. The vertical axis is ρ scaled logarithmically and labelled with ρ values and the horizontal axis is
∆ t. Values of ρ smaller than 10−8 can be regarded as numerically zero because it would take 106 steps
before un would increase 1% in size.

Notice that the values of ∆ t which give ρ = 0 (to numerical precision) are overwhelmingly more
common than values of ∆ t for which ρ is of significant size. Thus, a randomly-chosen ∆ t along with
randomly-chosen initial values would be unlikely to produce an instability. Notice also that as ∆ t
becomes smaller, values of ∆ t which produce an instability become even less common. It even appears
that there are no values of ∆ t which produce an instability for ∆ t < 0.05. (We shall show that this is not
true for a different `(t) in section 3.)

It is hard to observe a pattern in the scattered values of ∆ t which yield instabilities in Figure 1. It is
clear that values of ∆ t that give rise to significant growth rates are not easy to guess.

In Section 3 we give a construction that shows that LF (and thus CNLF) is exponentially unstable
for arbitrarily small timesteps for (1.5) when `(t) is a bounded function that changes sign periodically.
The example in Section 3 shows conclusively that the upper estimate in Theorem 2.1 is attained.

2. CNLF when Λ = Λ(t)

We prove the claimed stability bound for the CNLF method.

THEOREM 2.1 Assume for every tn (1.2) holds. Then CNLF satisfies: for every N > 2

|uN+1|22 + |uN |22 6C(α,u0,u1)exp

[
∆ t

1−α

N

∑
n=1
|Λ(tn+1)−Λ(tn)|22

]
, (2.1)

where C(α,u0,u1) = [ |u1|22 + |u0|22 +2∆ t(u1)T Λ(t0)u0]/(1−α).

Proof. Define En+1/2 := |un+1|2 + |un|2. Take the dot product of (CNLF) with
(
un+1 +un−1

)
and add

and subtract |un|22. This gives

[En+1/2−En−1/2]+∆ t
(
un+1 +un−1)T

A(tn)
(
un+1 +un−1)+

+2∆ t
(
un+1 +un−1)T

Λ(tn)un = 0.

Since A is positive semi-definite
(
un+1 +un−1

)T A(tn)
(
un+1 +un−1

)
> 0 and can be dropped. From

skew symmetry of Λ(tn) we can write

[En+1/2−En−1/2]+2∆ t
[(

un+1)T
Λ(tn)un− (un)T

Λ(tn)un−1
]
6 0.
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FIG. 1. Average growth rate ρ vs. ∆ t for `(t) = cos(2πt)

Rewrite the Λ terms as Cn+1/2 −Cn−1/2 −Qn with Qn the extra term that now occurs due to time
dependence (

un+1)T
Λ(tn)un− (un)T

Λ(tn)un−1 =Cn+1/2−Cn−1/2−Qn,

Cn+1/2 :=
(
un+1)T

Λ(tn)un, Cn−1/2 := (un)T
Λ(tn−1)un−1,

Qn := (un)T [
Λ(tn)−Λ(tn−1)

]
un−1.

Note that by the usual inequalities 2Qn 6 |Λ(tn)−Λ(tn−1)|2En−1/2 , giving, for n> 1,

En+1/2 +2∆ tCn+1/2 6 En−1/2 +2∆ tCn−1/2 +∆ t|Λ(tn)−Λ(tn−1)|2En−1/2

The timestep condition (1.2) implies En+1/2 +∆ tCn+1/2 > (1−α)En+1/2. Summing we have

EN+1/2 6
1

1−α

[
E1/2 +∆ tC1/2

]
+

∆ t
1−α

N

∑
n=1
|Λ(tn)−Λ(tn−1)|2En−1/2.
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Thus by the discrete Gronwall lemma we have, for every N > 1

EN+1/2 6
1

1−α

[
E1/2 +∆ tC1/2

]
+[

E1/2 +∆ tC1/2
]

∆ t

(1−α)2

N

∑
n=1
|Λ(tn)−Λ(tn−1)|2 ·MN ,

where MN := ∏
n< j6N

(
1+ ∆ t

1−α
|Λ(t j)−Λ(t j−1)|2

)
.

In particular, as a special case

EN+1/2 6
1

1−α

[
E1/2 +∆ tC1/2

]
exp

[
∆ t

1−α

N

∑
n=1
|Λ(tn)−Λ(tn−1)|2

]
.

This completes the proof under the assumed timestep restriction. �
How big is the predicted growth rate? Consider the growth term on the RHS of (2.1). If Λ(t) is

Lipschitz continuous (1.3) then

exp

[
∆ t

1−α

N

∑
n=1
|Λ(tn)−Λ(tn−1)|2

]
6 exp

[
∆ t

1−α
a0tN

]
.

Returning to the proof, the growth rate arises from(
1+

a0∆ t2

1−α

)N

6

(
1+

a0∆ t2

1−α
+

(
a0∆ t2

)2

(1−α)2!
+ · · ·

)N

6 exp
(

∆ t
1−α

a0N∆ t
)
,

in which the first step obviously is not sharp. If we rescale by s = a0
1−α

(n∆ t)2 = a0
1−α

(tn)2,m = n2, we

have
(
1+ a0

1−α
∆ t2
)n

=
(
1+ s

m

)√m. Sharp double asymptotic limits m→ ∞ and s→ ∞ can be obtained
using calculus giving a slight improvement for large timesteps:(

1+
a0

1−α
∆ t2
)N

6

 exp
(

∆ ta0tN

1−α

)
, for ∆ t <

√
0.6117a−1

0 (1−α)

exp
(

0.807a0tN

1−α

)
, for ∆ t >

√
0.6117a−1

0 (1−α)

3. Exponential growth for small ∆ t

In this section, we present a construction of a 2×2 system (1.1) for which LF is unstable for arbitrarily
small timesteps. Let A(t) = 0 so CNLF reduces to LF. The skew symmetric matrix Λ is constructed to
satisfy

|Λ(t)|2 ≡ 1 and |Λ(tn)−Λ(tn−1)|2 6 2.

A sequence ∆ tk → 0 is exhibited for which the solution to (CNLF) grows as e∆ tkct . This example
shows that the RHS of (2.1) has asymptotic behavior that cannot be improved and thus (CNLF) is
unconditionally unstable.

Choose `(t) a periodic function (specified below) and

Λ(t) = `(t)
[

0 1
−1 0

]
he construction is performed in several steps:



6 of 10 W. LAYTON ET AL.

1. Define a sequence of complex zn derived from the original sequence vn.

2. Rewrite the nonautonomous recursion (CNLF) as an autonomous recursion A1Zm = A2Zm−1.
Where the complex vectors Zm are defined by grouping the iterates zn according to the period
of `(t).

3. Write an explicit recursive expression for Zm = A−1
1 A2Zm−1.

4. Construct a 2×2 matrix B2×2 whose eigenvalues agree with the nontrivial eigenvalues of A−1
1 A2.

5. Construct a specific `(t).

6. Show that the eigenvalues of B2×2 are real and one of them has magnitude 1+2∆ t +O(∆ t2)> 1.

Step 1. Equivalent complex recursion. Rewrite the vector (u1,u2) as a complex scalar z= u1+ iu2.
Since A = 0, (CNLF) becomes

zk+1 = zk−1−2i∆ t `(tk)zk. (3.1)

Step 2. Autonomous recursion. Assume that `(k∆ t) is periodic with period K∆ t. Set ak =
2∆ t `(k∆ t). Periodicity implies that ak+K = ak. Define a complex vector Zm with components Zm

k ,
for k = 1, . . . ,K as

Zm
k = zmK+k. (3.2)

Substituting m−1 for m gives Zm−1
k = zmK+k−K .

From (3.1) we have

zmK+1 = zmK−1− (iamK)zmK

zmK+2 = zmK− (iamK+1)zmK+1

zmK+3 = zmK+1− (iamK+2)zmK+2

zmK+4 = zmK+2− (iamK+3)zmK+3

...

zmK+K = zmK+K−2− (iamK+K−1)zmK+K−1
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Writing this in terms of Zm
k gives

1 0 0 0 · · · 0
ia1 1 0 0 · · · 0
−1 ia2 1 0 · · · 0
0 −1 ia3 1 · · · 0
...

...
. . . . . . . . .

...
0 0 0 −1 iaK−1 1





Zm
1

Zm
2

Zm
3

Zm
4
...

Zm
K


= (3.3)

=



0 0 0 · · · 1 −iaK
0 0 0 · · · 0 1
0 0 0 · · · 0 0
0 0 0 · · · 0 0
...

...
... · · ·

. . .
...

0 0 0 · · · 0 0





Zm−1
1

Zm−1
2

Zm−1
3

Zm−1
4
...

Zm−1
K


Denoting the two matrices in (3.3) as A1 and A2,

A1Zm = A2Zm−1 (3.4)

where Zm is the vector of Zm
k and A1 and A2 are the above matrices.

Step 3. Explicit recursion expression. The only nontrivial columns of the matrix A2 are the final
two, so the the only nontrivial columns in the product B=A−1

1 A2 are its final two columns. Furthermore,
the matrix A1 is lower triangular with only three nontrivial diagonals, so B can be written in recursive
form as

B1,K−1 = 1
B2,K−1 = −iaK
B1,K = −ia1B1,K−1
B2,K = 1− ia1B2,K−1
Bk, j = Bk−2, j− iak−1Bk−1, j for k = 3, . . . ,K and j = K−1,K

(3.5)

Step 4. Reduction to a 2×2. Since the recursion (3.4) is autonomous, its stability is determined by
the spectral radius of the matrix B. It turns out that the spectral radius of B is equal to the spectral radius
of a derived 2×2 matrix B2×2. We will choose a function `(t) for which the spectral radius of B2×2 is
larger than one for a sequence of values K→ ∞.

Because of its structure, there are necessarily K − 2 null eigenvalues of B. If a vector Z is an
eigenvector of B with eigenvalue λ 6= 0, then the following 2×2 system must be satisfied.

B2×2

[
ZK−1
ZK

]
=

[
BK−1,K−1 BK−1,K
BK,K−1 BK,K

][
ZK−1
ZK

]
= λ

[
ZK−1
ZK

]
. (3.6)

Each eigenvector of B2×2 can be expanded into an eigenvector of B, by choosing its two components as
the two initial values in (3.1), so the non-null eigenvalues of B and B2×2 agree.

Step 5. Choice of `. Choose `(t) to be the periodic function of period 1

`(t) =


+1 06 t < 1/4
−1 1/46 t < 3/4
+1 3/46 t < 1
periodic otherwise

(3.7)
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For an even1 integer k0, let K = 2(2k0 +1), and ∆ t = 1/K. With this choice of K, the values tk = k∆ t
never exactly equal a point of discontinuity of `(t), and ∆ t can be chosen arbitrarily small.

Step 6. Spectral radius. A straightforward but tedious induction shows that

B2×2 =

[
1 −2i∆ t

2i∆ t 1+4∆ t2

]
+O(∆ t3). (3.8)

The eigenvalues of B2×2 are
λ = 1±2∆ t +2∆ t2 +O(∆ t3).

Thus, the spectral radius is larger than 1

σ = spr(B2×2) = spr(A−1
1 A2) = 1+2∆ t +O(∆ t2)> 1.

Choose an initial vector Z0 as the dominant eigenvector of B, Zk = σZk−1. Since each vector Zk repre-
sents K = 1/∆ t LF timesteps, the complex iterates satisfy |zKn|= |z0|e(Kn∆ t) logσ +O(∆ t2). On average,
then, with tn = n∆ t, |zn| ≈ |z0|e(2∆ t/K)tn

+O(∆ t2). Denote the average growth rate per timestep as
ρ = 2∆ t +O(∆ t2).

For each even integer k0 = 2,4, . . ., letting K = 2(2k0 + 1), and ∆ t = 1/K → 0 results in an expo-
nentially divergent LF iteration. The average rate of growth of the iterates is ρ = 2∆ t +O(∆ t2). There
is no limiting size of ∆ t below which the iteration does not diverge.

This choice of Λ(t) is not Lipschitz, but Theorem 2.1 does apply. The exponential factor in the
theorem is

exp

[
∆ t

1−α

N

∑
n=1
|Λ(tn+1)−Λ(tn)|22

]
.

For this choice of Λ , the difference |Λ(tn+1)−Λ(tn)|22 is nonzero (and then equal to 4) only twice per
period. Replacing N with nK, the exponential factor becomes

exp
[

∆ t
1−α

4nK(2/K)

]
= exp

[
∆ t

1−α
8t
]

since nK∆ t = t. Thus the average growth rate in Theorem 2.1 is ρ = 8∆ t/(1−α), and α can be taken
to be small.

REMARK 3.1 It is interesting to note that (3.8) contains no explicit dependence on the value k0. This is
a consequence of the average of `(t) over a period being zero. Just after the point t = k0/K, where `(t)
jumps from +1 to -1, the analogous matrix is[

−ik0∆ t 1− k0(k0 +2)/2∆ t2

1− k0(k0+2)/2∆ t2 −i(k0 +2)∆ t

]
The function `(t) was chosen because it has a Fourier series with terms related to the function in

the first example, `(t) = (4/π)∑
∞
n=0 cos(2(2n+1)πt)/(2n+1). For K = 2(2k0 +1), and ∆ t = 1/K, as

above, the term n = k0 takes the values ±1, so that growth appears just as in the first example.
The leapfrog method for the differential equation

du
dt
− i`(t)u = 0

1Odd integers work similarly and with the same spectral radius, but the formulæ are slightly different.
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is precisely (3.1), and the solution of this equation, starting with u(0) = uo is

u(t) =


u0eit 06 t < 1/4
uoe−i(t−1/2) 1/46 t < 3/4
u0ei(t−1) 3/46 t < 1
periodic t > 1

(3.9)

This function is bounded, so the growth of the leapfrog approximation is due to the numerical approxi-
mation.

4. Conclusions

In contrast to the autonomous case, in the nonautonomous case we have shown through two construc-
tions that CNLF (and, as a special case, leapfrog) computed solutions can grow even when the system
itself has bounded or decaying solutions. In Theorem 2.1 we prove that the growth rate, however, is at
worst proportional to ∆ t when Λ(t) is Lipschitz, a rate attained in the examples constructed.
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