PARTITIONED SECOND ORDER METHOD FOR MAGNETOHYDRODYNAMICS IN
ELSASSER FIELDS

YONG LI* AND CATALIN TRENCHEAT

Abstract. Magnetohydrodynamics (MHD) studies the dynamics of electrically conducting fluids, involving Navier-Stokes
equations coupled with Maxwell equations via Lorentz force and Ohm’s law. Monolithic methods, which solve fully coupled
MHD systems, are computationally expensive. Partitioned methods, on the other hand, decouple the full system and solve
subproblems in parallel, and thus reduce the computational cost.

In this report we propose and analyzes a second-order in time partitioned method for the MHD system in the Elsdsser
variables. We perform stability analysis, show that the method is stable for the magnetic Prandtl number of order unity,
derive error estimates and present a numerical test supporting the theoretical results.

1. Introduction. Magnetohydrodynamics (MHD) studies the interaction between the electrically
conducting fluids and the electromagnetic fields. Initiated by Alfvén in 1942 [1], MHD is widely exploited
in numerous branches of science including astrophysics and geophysics [17, 26, 12, 9, 8, 3, 5, 11], as well
as engineering. Understanding MHD flows is central to many important applications, e.g., liquid metal
cooling of nuclear reactors [2, 16, 29], process metallurgy [6], MHD propulsion [22, 25].

The MHD flows entail two distinct physical processes: the motion of fluid is governed by hydrodynamics
equations and the magnetic field is governed by Maxwell equations. One approach to solve the coupled
problem is by monolithic methods, or fully coupled implicit algorithms (e.g., [35]). In these methods, the
globally coupled problem is assembled at each time step and then solved iteratively. Thus although robust
and stable, they are quite demanding in computational time and resources.

In contrast, partitioned methods are semi-implicit algorithms that treat subphysics/subdomain prob-
lems implicitly and the coupling terms explicitly. Hence such methods are able to solve subproblems
in parallel and significantly reduce the computational complexity. Partitioned methods are widely used
in ocean-atmosphere models, see e.g., [19]. However, there has been much less work on time-dependent
MHD. To the best of our knowledge, such methods are proposed in [31], [34] and [21]. The first two papers
developed unconditionally stable, first order and second order partitioned methods for full MHD based on
decoupling Elsasser fields respectively, while the last paper presented such methods for reduced MHD.

In this report we propose a two step, second-order partitioned method for MHD in Elsésser fields that
adopts implicit discretization of the subproblem terms and explicit discretization of coupling terms. The
stability analysis shows that the method is unconditionally stable if the magnetic Prandtl number, Pr,,,
satisfies 1/2 < Pry, < 2, and is conditionally stable otherwise. In addition, the algorithm is shown to be
long-time stable in the sense that the energy is bounded uniformly in time. We also perform numerical
tests to verify the theory.

To specify the problem considered, we describe the full MHD equations below. Given a bounded
domain Q C R%, d = 2 or 3, and time T > 0, the fluid velocity field u, the magnetic field B (rescaled to
give it dimensions of a velocity), and the total pressure p (kinetic and magnetic) satisfy [4, 27]

0
£+U'VU—B'VB—VAU+Vp:f, v-u=0, (1.1)
0B
E—&—u-vB—B-vu—ymAB:O, v:'B=0, (1.2)
where v is the kinematic viscosity, v, is the magnetic resistivity, and f is a body force.
An important dimensionless parameter in MHD is the magnetic Prandtl number Pry, = v/v,,. In

practice it may vary considerably depending on the medium, for instance Pr,, = 7 for water, ~ 0.7 for air,
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and ~ 107% in the liquid core of the Earth. In a number of laboratory simulation, however, the magnetic
Prandtl number is taken to be unity, or of order unity, see e.g., [4, 15, 24, 30] and references therein.

The total magnetic field can be split in two parts, B = By + B, where By and B are mean and
fluctuation, respectively. The Elsésser fields [10]

:u+B, z- =u—B,

merging the physical properties of the Navier-Stokes and Maxwell equations. By adding (1.1) and (1.2),
or subtracting (1.2) from (1.1), we obtain the momentum equations in Elsésser fields:

0zF
ot

V+VUpm,

2

V—Um

T (Bo-V)zF + (2T V)2 * — Azt — Azt +Vp=f, (1.3)

V-2t =0,

The interesting property of the Elsasser fields is that there is no self-coupling in the nonlinear term in
(1.3), but only cross-coupling of 2 and z~. This is the basis of the Alfvén effect, which describes a
fundamental interaction process, see [18, 20, 7, 23, 32, 28, 13, 14, 33]. From the point of computational
view, this property may suggest the use of partitioned methods.

The paper is organized as follows. Section 2 introduces notation and necessary preliminaries. We then
describe the partitioned method and perform stability analysis in Section 3. The error estimate is derived
in Section 4, and a numerical test is presented in Section 5. Finally, Section 6 concludes the paper.

2. Notation and preliminaries. Throughout this paper, we denote the L?(2)-norm by || - || and
the corresponding inner product by (-, ), and the norm in H*(2) by || - ||x. For functions v(z,t) defined in
0 x (0,T), we introduce the following norms

1/m

T
[0lloc  := esssup [[o( )|k, and  [|v]lm k= (/ v('i)ll?) ;
0

t€[0,T]
as well as the discrete norms

T/At 1/2

el :=  mas Mol Mollles= | A2 3 foallE ]

where At denotes the time step.
Recall that the G-norm of a function w = (w1, wz)? € (LQ(Q))2 is defined by

[wl[& = (w,Gw),

where G is a 2 X 2, symmetric positive definite matrix. The specific G matrix in our problem is given by

5 _1>
o= (5 1)
-1 %

and consequently, [w]|Z = & ([lw1]|* + [|[2w1 — w2||?). Introducing the central difference operator Davy, 1 =]
Vpg1 — 20y + Vp_1, and letting wy, = (v, v,_1)7, we have the following identity:

1
(3041 — 4vn + Va1, 0n41) = [ Waral[& — [[WallZ + §||D2vn+1||2~
Note that the G-norm is equivalent to norm on (LZ(Q))2 in the sense that

( M) I ||<||W||G<< *”) .
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The spaces of Elsasser fields and pressure are defined by, respectively,
X = (H3()" = {ve (12@)" Voe (22@)™", v=0on o0},
@=13@) = {s e @), [ aaz =0},
and the divergence-free function space is
V={veX:(v-v4q=0,VqgeQ}.
Define the bilinear form a(-,-) : X x X — R,
a(u,v) := (Vu, Vv),

which is continuous and coercive. Due to the divergence-free condition, we write the nonlinear term
(u - Vu,w) in a trilinear form, b(-,,-): X x X x X - R,

b(u,v,w) == = [(u- Vv,w) — (u- yw,v)].

N | =

Note that there exists a generic constant C' = C(§2) such that []
[b(u, v, w)| < Cf|Vul[[[Voll[[Vaw],
b, v, w)| < C[Vull?|u] /2 Vo[[| V], (2.1)
[b(u, v, w)| < C[[Vull[Voll[| Va2 ]w]| 2.

The variational formulation for the continuous problem (1.3) is: find (2%, 27,p) : [0,7] = X x X x Q
satisfying

OzF i F o+
il Fo(Bo,z5,v) +b(zT, 275, v)
+va(zt,v) + v azT,v) — (0,7 -v) = (f,v) Yo € X, (2.2)
(Vzi7Q):0 quQ,
where v* = (v £ 1,,)/2.
Denote X}, and @y, the finite element spaces for X and @ respectively, built on a conforming, edge

to edge triangulation with the maximum triangle parameter denoted by a subscript “h”. Likewise, the
discrete divergence-free space is denoted by

Vi =XnN{vn € Xp : (V 0n,qn) =0, Ygn € Qn}.
We assume that the finite element spaces satisfy the inverse inequality: Yvy, € Xy,
MIVor| < Crnvloal.-

The semi-discrete approximation of (2.2) is to find (sz, 2, ,on) 0 [0,T] = X x Xj, X Q) satisfying
%’u b(Bo, 25, vn) + b(zT, 25, vp)
(‘%’h:F 05 <p s Vh h*h s Vh
+ I/+a(z}ﬂf,vh) +v=a(zf,on) — (pr, 7 o) = (fyon), Yo, € Xy, (2.3)
(V- 2y.an) =0 Yan € Q.



3. The partitioned method. The method we propose and analyze herein is a combination of a two-
step implicit method with the coupling terms treated by an explicit discretization. Due to the symmetry
of the Elsésser fields, we shall use the same time step At in both subproblems. The method is described
as follows: find (z}tnﬂ,z,;nﬂ,pinﬂ) € Xy, x Xy X Qp, n > 2, such that Vv, € Xj and Vg, € Qp,

3Z§ +1 43}? + Zijz[ 1
9 B} 3 — :l: :t
( - QAtn - U | F b(BO7 Zh,n+17 vh) +0 <(2Z’Tm - ZfT,n—l)? Zh,n+17 Wh)

+ V*Q(zim_l,vh) +vTa((2z],, — 2, vn) — (pin_H, V- vn) = (fas1,0n), (3.1)

(V- Z}fn+1’ an) = 0.

Note that the momentum equations in z;n 41 and 2z, ., are decoupled, however, the corresponding mo-
mentum equations of fluid velocity field v and magnetic field B are not: Yv, € X, qn € Qn

(3uh,n+1 - 4uh,n + Uh,n—1

9AL ,vh) +b(2un,n — Uh,n—1, Uhn+1, Un) — B(2Bh n — Bhon—1, Bhnt1, Un)

+ —
_ Phont1 T Phpt1
+ V+a(uh,’n+17 'Uh) +v a(2uh,n - uh,n717 Uh) - <W7 V . 'Uh) = (fn+17 Uh) 9

3Bh,n+1 - 4Bh,n + Bh,n—l
2At

,Uh> +0(2un,n — Unn—1, Bhnt1,0n) — b(2Bhn — Bhon—1, Wh,n+t1, Vh)

+ —
_ Py, — Py,
+ V+a(Bh7n+1, Uh) —V a(2bh7n — bh,n—la Uh) — <n+12n+1’ V- ’Uh) = 0,

(V *Uh,n+1, qh) = 07 (V : bh,n-i—la qh) =0.

3.1. Long-time stability of the partitioned method. The goal of this section is to demonstrate
the stability of the method (3.1). It will be shown that the stability depends on the magnetic Prandtl
number. More specifically, the partitioned method is unconditionally stable for 1/2 < Pr,, < 2; otherwise
it is conditionally stable under the CFL condition (3.13).

LEmMMA 3.1. If 1/2 < Pry, < 2, the solution to the partitioned method (3.1) satisfies the following
energy identity for any N > 1,

N—-1
_ 1 _
w7l + 1w %+ 5 3 (1D25 12+ D227 1) (3.2)
n=1
3y _ 5| _
vt (= ) (19 4 17 12) + 2080 (s = D) (193l 4 19570 2)
N—-2 N—-1
NI DY (||Vz,tn||2 + ||vz,;n|\2) + 3 Puta
n=2 n=1

= w7 %+ iy + 8l I8¢ (192712 + 19254 117) + o718 (V25 0l12 + 1V 270,
N-—-1

+ 2At Z ((fn+17 Z}tn—i—l) + (fn-i-l’ Z}:,n-&-l)) ’

n=1
£ _ gt * T : s
where wi = (2}, . Zh,nfl) and each Pp41 15 a positive term
Prst = 28t~ (1271 + 51900 ) 2, 2 4 2704 + sign(v)zi,2)
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Proof. Note that 1/2 < Pry, < 2 implies vt > 3|v~|. Set v, = szn_H in (3.1), then the coupling
terms vanish due to the skew symmetry of the trilinear form b. Thus we obtain

1 1
sa7 (Wl = Wik 12) + 5 1 D2 (3.3)

+ - + +
T 2P 4 e (e, = ) 2 ) = (st o)
It follows from simple calculation that
— +
voa ((22}:7',:,71 - Zi:f,n—l)7zh,n+1) (34)

_ . _ + + . _
= —v7sign(v™) (V55 |2 + IVl = V2550 + sign(v VI

v, _ + + . _

= Srsign(v7) (V23 I 19250 P = 195350 = sign(v7) V25,1
3|u \ _ V|

= 1923 il = V2 12 = SV 2

- + - _ \V | . _
+ v ||\Vzh7n+1 + sign(v )szanZ + — ||V Zh a1 — sign(v )Vzin_lﬂz.

Combining (3.3) and (3.4) yields
1 1
57 (Wil = W% + 5 1 D252 12 (3.5)

3 ) Il
+ (= B 1 skl - g e - B2

- + , - v~ + , -
+ VIV, g + sign(v )Vz,jan2 + T”V’Zh,nJrl — sign(v )Vz,in71||2.

+
= (,fn+17 Zh,nJrl) .

By adding the Elsdsser fields together and summing up (3.5) fromn =1 to N — 1, and finally multiplying
by 2At, we obtain (3.2) O

THEOREM 3.2. Assume that 1/2 < Pr,, < 2, then we have the following results.
1°. The partitioned method (3.1) is unconditionally stable, i.e., for any N > 1 there holds

1 N-1

w7l + 1w+ 5 3 (1D25 12+ D27 1) (3.6)

n=1

N

AL =) Y (|| Vit alP+ 17 2l

n=2
2 N—
< IIWZ,1||?,~+IIW;,1H%;+ | = Z [ frtall?

38| (|7 22+ 1 2 12+ 17 2500l + 11 9 2500 )

2°. Assuming f € L>(0,T; L?(Q2)), the solution is uniformly bounded for all time: there exist 0 < \; < 1,
0 < Ay < oo such that

2 l? + 2w lI* < A Er + o, (3.7)
5



where

_ At(vt +3|v7)) _
By = llwi 1%+ Iwiy I + === (I v 22+ 17 254 ?)

+ At~ | (+ v 2ol + 17 2l -
3°. In addition, if f =0, then
z,';N =0 and z, 5y —0 (3.8)
in HY(Q) as N — oo.
Proof. 1°. Thanks to the Poincaré inequality and Young’s inequality, the forcing terms in (3.2) are

bounded by
02
(vt 3| -1

Then (3.6) follows from (3.9) and by dropping the positive term Py .
2°. Combining (3.5) and (3.9) gives

20 (fut1s Fongn ) < AT = B0 DIVES 2+ a2 (3.9)

1 _
5 (||wh witl  IWe 1 I13) + A0 (19 2 2+ 1 2 2)
< 5 (Il + w3 ol12) + 2858007 | (19 20 +11 7 21l1)

ALC2
_ + 2 — 2 I
+ AT (I 2 a1 2 2) + =30 ])

Add M (||Vz;fn||2 + ||Vz,:n||2) to both sides of the above inequality, we then obtain

| £l

1 _ At(vt —|v7]) _

5 (I I+ W51 1) + 207 (19 25 a2+ 17 2 12) + == (I35 2+ [V 57,02)
1 At(vt +3|v7) _

< 5 (Wi + i 1) + === (17 2l + 17 220l?)

_ _ AtC?
87| (17 el 41V 7-al) + =3t

||fn+1H2

which is equivalent to

At(vt —=3lv7)) — -
B+ SN (19 2 4 195 12 4 19 + 195 )
AtC2
< Bt 2% P, (310)
(v =3
where
1 _ At(vt +3|v7) -
Bn = 5 (WLl + i) + == (19 1+ 19 2000°)

+ 80| (117 2o |2 4+ 17 20 I2) -
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Applying the Poincaré inequality and the equivalence of G-norm and L?-norm, we have

At(vt = 3|v7)) _ _
S L (95 2 4+ 192 I+ IV 22 + 19274 2)

2
At(vT = 3|~
> MUY (195t 2+ 19+ 19572 + 1927, 02)
AT =30 (e o
W (”Wh,nJrl” Wil ) .
Thus, by setting C; = min { 2AZ(+VIT:;\;L\)> 2&?:;%;25 }, we have from (3.10) that
AtC? )
(1+CLAt)Enyy < B + m”ﬂwl”
which, by induction, implies
FE C2(1+ C1At)
Eoir < b 2.
HETTCA) T Gt ) I
Setting
1 C%(1+ C1At)
N = —— S Ak
Siraar 2T ot s Il

we complete the second part (3.7).
3°. Finally, if f =0, the series in (3.6)

oo

S (17 2l + 17 2al?)

n=2

converges and therefore (3.8) follows. O
LEMMA 3.3. If Pr > 2 or Pr < 1/2, the solution to the partitioned method (3.1) satisfies the following
energy identity for any N > 1,

3A N-1 N-1
Iwi el + w13 + 25 (195 12+ 1V 251 2) + D P (3.11)
TL:]- n=1
N-— N-1
1 _ 2At v~ |? _
+5 Z (1027 all? + 10223040 17) = o= 55 22 (17 D2l 19 Do)
n—=1 n=1
N—-1
= it 2+ w12+ 288 37 (st 5 ed) + st o))
n=1

where each Pn41 is a positive term

75n—i—l = 2Atjv | (HVZ}:nJrl + sign(v™) v Zi-:n+1H2 + Hvzitn+1 + sign(v™) v Z};n+1||2>

Vv V| -

H Vzh 1~ sign(v™) MVDQ,Z,WH
P

Vz —sign(V”) ———

7

+ 2At

+ 2At VDszl 14

T




Proof. If Pr > 2 or Pr < 1/2 there no longer holds v > 3v~. Thus in this case, the term associated
with v~ in (3.3) is equivalent to

- +

v a((QZhn Zhn 1 Zthrl)
— F +
=v (vzhn+17vzhn+1) v (vD2zh,n+17vzh,n+1)

s
= = (19 Fa P+ 1V 2 12) + S IV e + 5ign(v7) ¥ |

— v + v Vv v~
- f” Y Zh,n+1||2 - m” Y D2zin+1||2 Vzh i1 — Sign(v )\/ﬁVDgz ,
Applying the above equality to (3.3) gives
+ 2 - s | SAL. L - + 2 - 2 5
195 a2+ 5 13+ 2200 = ) (195 12 4 19 20 012) + P (312)

1 _ 2Atly~ |2 _
# 5 (12l P 10550) = Gy (19 Dl 419 Do)

= Wi 12+ Wi 1+ 288 (bt 2 g0) + s 241))

vt — v~

Therefore, (3.11) follows by summing (3.12) fromn=1to N — 1. O
THEOREM 3.4. If Pr > 2 or Pr < 1/2 the partitioned method (3.1) is stable under the CFL condition

— 7|

At < iw%ww ; (3.13)
More precisely, for any N > 1 there holds
N—1
w7l + il + At = ™) Y2 (V2 P+ 1V 27 1) (3.14)
7;:1
< ”Wh 1HG+||wh 1||G+ Z sl

If f € L>(0,T; L3(R2)), then the solution is uniformly bounded for all time. In addition, if f =0, then
iy =0 and z, =0 (3.15)

in HY(Q) as N — oo.
Proof. Thanks to the inverse inequality, we have

L e R (3.10)
> eIt P = 2P L o D
~ (s ~ ey ) 19 Pl
The forcing terms are bounded due to the Poincaré inequality and Young’s inequality
280 (o) < 2 Dy e 22 e (317)




Combining (3.12), (3.16), (3.17) and dropping P, yields

17 1+ Wiy I + AT = 107 1) (1957 12+ 125 1 12) (3.18)
h? 2At v |?
_ D + 2
+ (g ~ o ) 1 Dol

B AtC?
< wi 1%+ Iwy 12 + ﬁﬁ”fnﬂ”%

In which the numerical dissipation term is positive under the CFL condition (3.13). By a telescope sum,
we obtain (3.14).

Next, we add M (HVZ,J{HH2 + ||V2;n\|2> to both sides of (3.18) and let

1 _ At(vt —|v7)) _
B =5 (W71 + Iwa a2 ) + == (17 2P + 11 2701
At —|v7]) _
+ S (19 2 P+ 1 2 7)) -
Then (3.12) implies
Atw* —|v7]) oy, At — ) _
Euii+ = (17 2P+ 11 20l17) + = (19 a2+ 19 2 12)
2AtC2

P 2
< Ep+ m”ﬁwl” .

The rest of the proof follows analogously as in Theorem 3.2, i.e., utilizing the Poincaré inequality and the
equivalence of G-norm and L?-norm. O

REMARK 3.1. The time step condition (3.13) is reasonably large for Pr,, is of order unity. To this
end, we write the time step condition as follows,

At min{v, v, }
= < ,
h? = C%yy (Prm, —1)202

m

which implies that

At ~ 0 (1> , for Pry, ~ O(1).

h? Vi

4. Error analysis. In this section, we study the convergence of the method (3.1), where spatial
discretization is effected using finite element methods. Recall that our finite element spaces satisfy the
discrete inf-sup conditions. To establish the optimal error estimates for the approximation, we assume
that the true solutions satisfy regularity conditions

2t e L= (0,75 (H () n H' (0,5 (H ()Y n H? (0, T3 (H*())4),

pe L?(0,T; (HT (). (4.1)
The errors are denoted by eX = 2 — z; . Similar to the stability analysis, the error estimate
depends on the values of magnetic Prandtl number in the sense of time step restriction. Nevertheless, the
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convergence rate is the same with respect to the mesh size and time step in both situations. For the sake
of readability, the proofs are given in the Appendix.
THEOREM 4.1. Assume that the Prandtl number 1/2 < Pr,, < 2, and suppose that (2%, p) satisfies

the weak formulation (2.2) and regularity conditions (4.1). If (z;f,pf) is given by the algorithm (3.1) with
n € {1,2,---,T/At}, we have the following error estimate.

1 _ _ —
5 (e ? + llen I + 125 — el + 12 — ey 1?) (4.2)
n n—1
_ 1
+ At =3 )Y (Ivef P+ ve|? +5Z 1Da2ef i1 |I* + 1 D2eji111%)
=2 j=1

§00{|Zr2}t1||2+”21_Z}Z1||2+||ZJZ}—:0||2+|ZO_Z}ZOHQ

I G = P+ 17 (o1 =2 )P+ 117 (20 = 2 )+ 17 (25 = 20) 1P
nar O | [PPSO
+At4”2ttt”20++At4||zttt”20+At4H V % IIzo+At4|| ¥ zill30 + B 2Pl 510

+ h2[|z h2k|||z_|||2,k+1 + B[]z h2k|||z_”|4,k+1

k k
+ R 2213 k+1}+h2 27113 k+1}

THEOREM 4.2. Assume that the Prandtl number Pr,, < 1/2 or Pr,, > 2. Then under the CFL
condition (3.13), we have the error estimates

1 _ _ _

5 (e 1? + llew 17 + N12e5; = enall* + [12en — eny %) (4.3)
n 1= B

+ AT =Y (IvefIP+llve 12 (ID2e i |I? + | D2y )
Jj=2 j=1

§00{|zf—z;;1||2+||z;—z;1||2+||z5f—z,j0||2+|zg—z,;0||2

HI VG =D+ IV =z )P+ (26 = 5P+ 1V (2 = 2502
+ R 215 s + R 12 e

+ At4||zttt||2,0 + +At4||zttt”2,0 + At 7 2 ||2 o+ At 7 2, ||2 0 h25+2”|p|||§,s+1

+ B2 N1 ke B2

}.

Consequently, for Taylor-Hood elements, i.e., k = 2, s = 1, we have the following result.

COROLLARY 4.3. Suppose that (X", Q") is given by Py-P Taylor-Hood approzimation elements, i.e.,
piecewise quadratic finite elements for z}f and piecewise linear finite elements for pf. Then there is a
positive constant Cy such that

kg

e 111300 + e~ 10 + I 7 €130 + Il 7 e7MMl[3.0 < Co(At* + h%). (4.4)
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5. Numerical tests. In this section we verify the rate of convergence of the method (3.1) on an elec-

trically conducted two-dimensional traveling wave problem [34]. The true solutions (in Elsésser variables)
are

= 3 4 1 cos(2m(z — 1)) sin(2m(y — t))e 87 vt 4 Sy + 1)%erm?
— 1 sin(27(z — t)) cos(2m(y — t))e 87 vt 4 5 (z + 1)%erm? ’

. —87%y v,
- ( 3+ deos(2n(z — 1) sin(an(y — )7 — by + 1) )

— 1 sin(2m(z — t)) cos(2m(y — t))e—8mrt _ 5 (z + 1)%erm?

p= —6—14 (cos(dm(z —t)) + cos(4m(y — t))) e 167 vt

defined on the domain 2 = [0.5,1.5]2. The kinematic viscosity and magnetic resistivity are set to v =
Um = 2.5 x 107% so that Pr,,, = 1. The time interval is 0 < t < 1. We adopt piecewise quadratic finite
elements for z}f and piecewise linear finite elements for pf The initial data and source terms are chosen
to correspond the exact solutions. According to the convergence analysis (4.4), the errors are second
order with respect to the mesh size h and time step At. Therefore we take At = h to easily observe the
convergence.

Table 5.1 presents and confirms the rate of convergence provided by Corollary 4.3, where || - [looc =
I llzoe0,m522(0)) and || - [l2 = || - [ 220,722 ()

Figure 5.1 shows the log-log plot of the error for BEFE, SDC and the algorithm (3.1). Interestingly,
the rate of convergence of the SDC method is slightly less than two (2).

At=h |[zF -zl rate vzt —vzlla rate |27 —z; [l rate [z —vz, |2 rate
1/16 4.047e-2 - 2.978e+-0 - 3.653e-2 - 2.028e+-0 —
1/32 6.701e-3 2.59 8.755e-1 1.77 8.536e-3 2.10 7.035e-1 1.53
1/64 1.360e-3 2.30 1.676e-1 2.38 2.101e-3 2.02 1.812e-1 1.96
1/128 3.359e-4 2.02 2.930e-2 2.51 5.217e-4 2.01 4.497e-2 2.01

Table 5.1: Convergence rate for algorithm (3.1).
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Fig. 5.1: Log-log plot of the error in Elsasser fields as a function of time step At.

6. Conclusion. The evolutionary coupled MHD studies the dynamics of the electrically conducting
fluids and the electromagnetic fields. When solving a fully coupled MHD, it is usually computationally
expensive to use a monolithic method. In contrast, a partitioned method is an attractive approach due to
the decoupling of the subproblems and thus, the ability to solve them in parallel. However, to the best of
our knowledge, there has been less work dedicated to partitioned methods. Perhaps, this is because of the
complex (self- and cross-) couplings of the fluid velocity field and the magnetic field, which may impose a
restrictive stability condition on the partitioned methods compared with monolithic methods. The Elsasser
fields merges the physical properties of the Navier-Stokes and Maxwell equations. An interesting property
of the Elsiisser fields is that it contain only the cross-coupling between 2™ and z~, which may suggest the
use of partitioned methods. In fact, it turns out that a partitioned method in Elsésser fields is no longer
a partitioned method in the fluid velocity field and magnetic field.

In this paper, we propose a such method (3.1) applied on the Elséasser fields, aiming to reduce the
computational complexity. We present a complete analysis on the long-time stability and error estimate.
Depending on the magnetic Prandtl number, the algorithm is may or may not unconditionally stable.
Nevertheless, the convergence of the error coincides in both situations.

Many open problems remain, such as developing more stable partitioned methods for large or small
magnetic Prandtl number, and preserving the divergence-free condition of the magnetic field on the discrete
level.

7. Appendix A. Proof. [Proof of Theorem 4.1]
The true solution (z*,p) at time ¢, satisfies

32, — 42 + 27
< . N = on | Fb(Boy zpyrsvn) + 0 (27410 Zagas vn)

+ Z/+G, (Z:J,-la Uh) +voa (2721:4_1’ Uh) - (pn+17 Y& Uh) = (rrf-i,-h ’Uh) )
(V : Zyzi:+17 Qh) = 07 (71)
where

+ + + +
T Az + 2, Oz

nt1 = 2AL ot
12




+ _ + .
Let €, 11 = 2,41 — .41 denote the error. We decompose it as

+ + s o + " +
ent1 = (g1 — Zng1) + (Gair = Zhinst) = g1 T Shnat

where éffn 41 is the interpolation of szﬂ onto V". For notational simplicity, we denote {hjfn 11 =

Subtract (3.1) from (7.1) and set vy, = fffﬂ, we obtain

1
g (bl + 126k, — €217) = o (16517 + 26 — €k, P)
o IDeEE P+ v 5l

30, —dnE ot
- (S ¢ )t ) + (e 6

+ +
+ N — Mo

where
N ntl T +b (Bovnn+1,§n+1) b (Z1T+1’ Zitﬂ,gfﬂ) +b (22% - Zin—l’ Zr:‘L:Jrl?Ei:Jrl) )
and
/\/lf_|r1 =vTa (nfﬂ,@i_l) +va (z;ﬂ_l,ffH) —va ((QZ,Tn - zinfl),fa_l) )

We bound the first three terms on the right-hand side of (7.2) as follows,

377i+1 - 477i + 77i 1 2 C? s 412
( 2At 7§n+1 <€|| V§n+1|| + 4€At ‘/tn1 ||nt || 9

CgAt?’ tn41 n
(Engi) el v el + S0 [ Ikl

tn—

and

02
+ + +
(Pn+1 —Phnt1s V- §n+1) <e|v fn+1||2 + Tg“pnﬂ - ph,n+1||2'

By adding and subtracting
+ + + +
b(2z] — Z7T—17Zn+17§n+1) and b(QZI:zF,n - Zl:v',:,nfhzn—&-l’gn—&-l)
to the nonlinear term N i1, it follows that

NnJrl ==+b (Bo’nrzi:+17§7:::+1) —b (D2Zi+1vzf+1vff+1)
b (2] —eF 2t €5 ) — b (22,?,” 1 nﬂ,gnﬂ)
= &b (B, Wn+lv§n+1) —b(Dazfyy, n+1’§n+1)
—b (26, 21, Et) + 0 (51 2z Enr)
—b (QZh,m €nt1s 5n+1) +0 (Zh,n—l’ €nt1s 5n+1) :
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Using (2.1), each term above is estimated as

:tb (B0777n+1?£n+1) < CHBOHH V nn+1|||| V £n+l||

<ef v£f+1||2+47||30||2\| V sl (7.6)

b(Dazfins s €npr) S el v &l + *II V 2z P17 Dozl |2

thit
<elvesalt+ S, (At3 [ ﬂ) S

tr

b (26¥ Zvjz:+1a§7ﬂz:+1)
=2b (ﬂna n+17£n+1) +2b (53 Zfﬂ’fiﬂ)
<Clvnillv Zn+1|||| VEELN+CI v EIMIETIM AN 25l v &5

02
< (v ettt + STl v =2ul?) + (v el + S v R 7 =5l
2 2 + 2 2 2 04 2 + 4
< (v el + S v szl vzl )+(a||v5n+1|| +el VEFP + ISP 0 sl

4
+ izl s €T I, (7.8)

CQ
< 2| V&l +el v ETIP + v E

b( 7:'1: 1% r%—i-l’gf—&-l)
—b(ﬁn 1) % n+1’£n+1)+b(£n 15 n+17£n+1)

< O T 5l 7 2zl 7 &l + Cll 7 &1 2 1€ 112 VZTTHIIII V

02
< (s| Vel + ST A7 sl ) + (7 €Eal? + ST € 7 2l
e 2 Cj F o2 + 2 2 ,  C* T o2 + 4
= V§n+1H + Iz |7 - 1707 2 7 ) + 5||V§n+1H +ell v & +64€3”€n71” |V 241l

c? ct
< 2| v & I + el T ELP + S 1= 2o nll 7 i IP + 5 ll= I €T 11 (79
4e 64¢
Using the a priori from the stability analysis, i.e., ||z || < C, we have
b (zzi:r',:,n’ eiﬂv@il) =2b (Zlinvnfﬂaffﬂ)
< vz§n||1/2||zhn||1/2|| V Tl 7 &
+
el vé&al? + *ll V #alllz 7 mia |
+
<e V€n+1|\2+4*5\|VzinHHV%HHQ, (7.10)

and similarly

F + + _ F + +
b (22h,n—17 en+1’§n+1) =2b (Zh,n—17nn+1’§n+1)
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1/2 1/2

< OIY 2 o212 o 121 7 il 7 €
< el V&5l + IV ol 7 (r11)
Next, we add and subtract v~a ((22] — 2_,), éfﬂ) to the linear term /\/l,ijr1 so that
-Mirl =vta (mﬁpffﬂ) tvoa (D2Z;F+1aff+1) t+voa ((265 - 65—1)75311) :
These terms will be estimated as follows.

()’

(nn+1a€n+1) < V+H \V4 77n+1||H V§n+1 | <ellv fn+1||2 + TH \V4 77$+1||2, (7.12)
< 2 | 7|2 2
v (VD2Zn+1v an+1) el §n+1H | v D2Zn+1H
< 2 |V_| AP fa 2 1
el véral® + = | At | v 2| (7.13)
€ tnfl
and
voa((2e] — 67:'1:71)757:111)
=v (v(2nF —n), V€n+1) vT (w26 —&50), anﬂ)

<2l v af Il v &l + v |||v77n 1||||v€n+1||+2|1/ 7 &EXIN 7 &l + v 11w &5l 7 &

w? _|2 w? _l
<2l V&P + v nEl?+ v nl .l

v
ol €T+ |||v£n+1||2 |||v£ e e (T4

Combine (7.3)-(7.14) with € = (v — 3|v™|)/34, then (7.2) becomes

1
o (1651 + 25, @ﬂ\?) ; At (12 + 1262 - €2,17)
b opIDagal+ (v = Bl = e =3 ) 17 a2
1
= (W14 g0 =307 ||vs$2(”2'+34<+3|u|>> €

4
25 50 (€T + 1151 11%)

< —
- 64£3|
02 tnt1 . CQAtB n41 02
dt + th ~ _E 2
b [ P RS [ e S 5

tn—1

C? 2 + 2, C% a0 g [0 2 Czi
1B Tl + Sl (a2 [ 19 212 )+ Il v T

2

C C N c N
+ EHZi”go,lH v niall® + =l vl Ml + =V Al M ll?
v ?

(V+)2 2 4 g [ 2 |_|2 2, ‘_|2 2
U g+ L (2 [T o2 2 e T DR (AT

tn—1

+
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We then sum up (7.15) from n =1 to n = N — 1 and multiply by 2At. Applying the Gronwall inequality
results in

N

N—
Z 1D265 P + At =3~ ) Y I v &I

n=2

(IEXIP + 1268 — Ex—a11?)

N —
l\.’)\»—l

1
< exp(cNAt){Q (€12 + ll268 = &5117) + 2a67% (| v &E°17 + T v &5°11%)

CQ N-1 it,44 n CQA#X tnt
o [ R / EARE
tn_1 1

tn—

C’QAt C2At
SO phnHHM—HBou?Z |7 2
n=1
02 mh c2A
+ 12/ 17 212+ Sl 1Z\|vnff||2
02 At
et Z v E 2+ Z 1 2l 7 I
CA N—-1

N—-1
(v ) At
Z [ Vzhn l Vnn+1||2 % Z | V777%+1||2

v |2Att 2|y~ |2At v [2At I=
L LA Z/ v agie+ 2L Zn i+ LR S o e

tn—1 n=1

SCleXp(CNAt){HZli—Z;f1||2+||20i—Z?fo||2+|lv(z — 2 )P+ 17 (25— 2io) I

+ B2 |12, e + PR R+ AR 2613

+ W23 pogr + A 7 2130 + h2k||zj:|||ik+l}7

where we used the standard interpolation error estimates. As a consequence, there exists a positive constant
Cp such that

1

5 (€I + lEnI” + 126X = &8 17 + 11265 — &5 -al1?) (7.16)
N 1 N-1

+ At =3 ) D (I V&P + 1 vEP) +5 Z (19&7 31117 + 110€,1411%)

n=2 n=1

< CO{HZT - 2;1”2 + 21 — 2;1”2 + ||Z6r - Z}T,o”2 +llzg — Z}?,o”2

I? I?

+ v G = DIP+H IV (of —250)
k k
+ B2 e + PR e
+ Atz )2 0 + F A 2415 0 + A 7 2 |2 + +AE
Zt¢112,0 Zitll2,0 V %t 12,0
+ h%|||z

v (50 =2 )1 + 117 (20 = 2012

+ 222 [pll3 041

k —
(R (||
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+ RS ke + RIS ke

To complete the error estimates, we add both sides of (7.16) with

1 - L
Extraterms = 5 (In{|* + Iy l* + 120§ =01 [* + 1208 =0y 1)
N 1 N-1
# A =3 S (19 I+ 1)+ 5 3 (Dl + 1D )

n=2 n=1

and apply the triangle inequality for the left-hand side. Noticing that the upcoming new terms are already
contained in the right hand side of (7.16), we conclude the proof.
|

Proof. [Proof of Theorem 4.2] In this case we would add and subtract v~ a (zinﬂ, §ff+1) to the linear

term M= 1, Which becomes

+ o+ + + - + - +
Mn+1 =v.a (nn+17£n+1) +voa (611:+17£n+1) tvoa (D2Zf:1:,n+17£n+1) .

The last terms is bounded by

voa (DQZ}fn_t,_lag:.:—&-l)

=v=a(Dazly, — Dantyy — Doty §7jf+1)

< Wl (IV D2z IV EE A + IV D IV I + IV Do€ T 1965 )

[l
4e

v
4e

< 3el|VeE 12 + 2 (IV DTl + IV DanT 12 + 19 D2€T 1)

v 2C3
< 86V I+ - (IV D2 |2 + 9 Danfy 12) + 2 I VDT, 12,

4eh?

where we used the inverse inequality at the last step. Treating all the other terms analogously as in the
previous proof, we obtain (4.3). O
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