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A SECOND-ORDER IN TIME APPROXIMATION OF
FLUID-STRUCTURE INTERACTION PROBLEM∗

OYEKOLA OYEKOLE† , CATALIN TRENCHEA‡ , AND MARTINA BUKAČ§

Abstract. We propose and analyze a novel, second-order in time, partitioned method for the
interaction between an incompressible, viscous fluid and a thin, elastic structure. The proposed
numerical method is based on the Crank–Nicolson discretization scheme, which is used to decouple
the system into a fluid subproblem and a structure subproblem. The scheme is loosely coupled, and
therefore at every time step, each subproblem is solved only once. Energy and error estimates for
a fully discretized scheme using finite element spatial discretization are derived. We prove that the
scheme is stable under a CFL condition, second-order convergent in time, and optimally conver-
gent in space. Numerical examples support the theoretically obtained results and demonstrate the
applicability of the method to realistic simulations of blood flow.
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1. Introduction. Fluid-structure interaction (FSI) problems arise in many ap-
plications, such as aerodynamics, geomechanics, and biomedical engineering. They
are characterized by highly nonlinear coupling between two different physical phe-
nomena. As a result, the development of robust numerical algorithms is a subject of
intensive research. Because coupled FSI problems give rise to large and ill-conditioned
systems of algebraic equations, partitioned methods have often been used to split the
coupled problem into smaller and better conditioned subproblems. However, in ap-
plications where the density of the structure is comparable to the density of the fluid,
such as the interaction between blood and arterial walls, classical partitioned schemes
suffer from instabilities known as the added mass effect [12]. In that case, the de-
velopment of stable, noniterative numerical schemes for FSI problems is challenging
even for first-order accurate solution techniques.

The stability of partitioned methods for FSI problems is highly sensitive to the
way the interface coupling conditions are treated at the discrete level. A membrane
model is used to describe the structure elastodynamics in [17, 23] and was embedded
into the fluid problem as a generalized Robin boundary condition. A novel combina-
tion of coupling conditions was introduced in [2, 1], which gave rise to fluid and struc-
ture subproblems with Robin boundary conditions. Karniadakis and others [3, 26]
proposed fictitious-pressure and fictitious-mass algorithms, in which the added mass
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effect is accounted for by incorporating additional terms into governing equations.
However, algorithms proposed in [2, 1, 23, 3, 26] require subiterations between the
fluid and the structure subproblems in order to achieve stability. A partitioned scheme
based on the Nitsche’s penalty method was proposed in [10, 11]. In order to obtain
stability, a stabilization term was added to control the pressure variations at the inter-
face. The splitting error, however, lowers the temporal accuracy of the scheme, which
was then corrected by proposing a few defect-correction subiterations to achieve an
optimal, first-order convergence rate.

Noniterative, partitioned numerical schemes based on the Lie operator splitting
were proposed in [15, 9, 8]. The “incremental displacement–correction scheme” intro-
duced in [15] is obtained by adding and subtracting the elastic operator applied to the
displacement from the previous time step, while the “kinematically coupled β scheme”
introduced in [9, 8] is obtained by adding and subtracting the fluid pressure from the
previous time step, resulting in a fluid subproblem solved with a Robin boundary con-
dition which takes into account the mass of the structure at the fluid-structure inter-
face. The incremental displacement–correction scheme and the kinematically coupled
β scheme for β = 1 have been shown to be first-order convergent in time [15, 8].

Due to the difficulties in deriving and analyzing second-order partitioned schemes
for FSI problems, few methods are available in the literature. A second-order split-
ting approach based on the Strang splitting was proposed in [21, 20] to study the
FSI involving non-Newtonian fluids. That method involves a solution of the structure
subproblem, the fluid subproblem, and the structure subproblem once more, solving
three subproblems within each time step. However, the order of convergence was only
investigated in numerical experiments. Partitioned algorithms based on predictor-
corrector method are proposed in [5, 4]. Following the predictor-corrector approach,
they require a solution of the fluid subproblem and the structure sub-problem twice
within one time step. The number of subproblems could be reduced since the correc-
tor step is optional. However, the corrector step is recommended for accuracy reasons
and to increase the region of stability. Using the von Neumann stability analysis, the
authors showed that the algorithm proposed in [4] is stable under a condition on the
time step which depends on the structure parameters, while the algorithm proposed
in [5] is weakly stable under a Courant–Friedrichs–Lewy (CFL) condition. Although
the numerical results indicate second-order convergence in time, the convergence rates
are not analytically derived.

In this paper, we propose a novel, partitioned algorithm for FSI between an in-
compressible viscous fluid and a thin elastic structure. As oppose to the existing
methods [21, 20, 5, 4], the fluid and solid subproblems are solved only once within
each time step. We assume that the fluid is modeled using the Stokes equations
and that the structure displacement is infinitesimal. The fluid and structure sub-
problems are discretized in time using the Crank–Nicolson method, and the decou-
pling of the two subproblems is based on the kinematically coupled β scheme [8]. In
order to achieve stability, the fluid problem is solved with a Robin boundary condi-
tion containing structure inertia at the fluid-structure interface. Since the splitting
of the two subproblems often gives rise to suboptimal time convergence rates, fluid
stress at time tn−

1
2 was added and subtracted to ensure second-order convergence

in time. The stability and convergence of the fully discretized scheme is analyzed,
where the discretization in space is performed using the finite element method. En-
ergy estimates yield stability under a CFL condition. Based on the a priori error
estimates, the scheme is second-order convergent in time and optimally convergent
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in space. Two numerical examples are presented to support the analytical results.
The first example numerically confirms the second-order convergence in time on a
benchmark problem commonly used to verify FSI solvers with applications to hemo-
dynamics. In this example, fluid is modeled using the Stokes equations and the
structure is modeled using a generalized string model. The second numerical example
consists of a study of blood flow in a common carotid artery. To model blood flow,
we used the Navier–Stokes equations, while a linear membrane model was used to
describe the structure displacement. Under realistic parameter values, our simulation
results demonstrate that the proposed scheme is applicable to problems related to
blood flow modeling, with the accuracy comparable to that obtained by an implicit
scheme.

This paper is organized as follows. The linear FSI problem is presented in sec-
tion 2, and the proposed numerical scheme is presented in section 3. Stability analysis
is performed in section 4 and error analysis is performed in section 5. Numerical ex-
amples are presented in section 6. Conclusions are drawn in section 7.

2. Description of the problem. We consider an FSI problem in a low Reynolds
number regime and assume that the structure undergoes infinitesimal displacements.
Let Ω ⊂ Rd, d = 2, 3, be an open, smooth set and ∂Ω = Γ ∪ Γin ∪ Γout, where Γ
represents elastic part of the boundary while Γin and Γout represent artificial inflow
and outflow sections; see Figure 1. We assume that the fluid is incompressible, viscous,
and Newtonian. Furthermore, we assume that the structure is described by some
lower dimensional, linearly elastic model (for example, string, membrane, shell, etc).
These assumptions give rise to a linear problem, which is commonly considered in the
literature [15, 8]. For nonlinear, moving boundary FSI problems, even the existence
of a solution is a challenging question [22].

We model the fluid using the time-dependent Stokes equations in a fixed do-
main Ω,

ρf∂tu = ∇ · σ(u, p), ∇ · u = 0 in Ω× (0, T ),(2.1)

σ(u, p)n = pin(t)n on Γin × (0, T ),(2.2)

σ(u, p)n = pout(t)n on Γout × (0, T ),(2.3)

u(., 0) = u0 in Ω,(2.4)

where u = (ui)i=1,...,d is the fluid velocity, σ(u, p) = −pI + 2µD(u) is the fluid
stress tensor, D(u) = 1

2 (∇u + (∇u)T ) is the strain rate tensor, p is the fluid pres-
sure, µ is the fluid viscosity, ρf is the fluid density, n is the outward normal to
the fluid boundary, and pin and pout are prescribed inflow and outflow forcing
terms.

Fig. 1. Fluid domain Ω. The lateral boundary Γ represents elastic structure.
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The structure elastodynamics are described using a linearly elastic model, given by

ρsh∂ttη + Leη = f on Γ× (0, T ),(2.5)

η = 0 on ∂Γ× (0, T ),(2.6)

η(., 0) = η0, ∂tη(., 0) = η0
v on Γ,(2.7)

where η = (ηi)i=1,...,d denotes the structure displacement, f is a vector of surface
density of the force applied to the thin structure, ρs denotes the structure density, h
denotes the structure thickness, and the operator Le describes the elastic behavior of
the structure. Examples of such operators are the ones associated with the linearly
elastic cylindrical Koiter shell used in [9] and the generalized string model used in [8].
Equation (2.6) accounts for clamped boundary conditions.

To couple the fluid and structure, we prescribe the following kinematic and dy-
namic interface conditions:

The continuity of velocity (kinematic condition): ∂tη = u on Γ× (0, T ),
(2.8)

The balance of contact forces (dynamic condition): f = −σ(u, p)n on Γ× (0, T ).
(2.9)

Taking into account the conditions (2.8)–(2.9), the coupled FSI problem can be written
as

ρf∂tu = ∇ · σ (u, p) in Ω× (0, T ),(2.10)

∇ · u = 0 in Ω× (0, T ),(2.11)

ρsh∂tu+ Leη = −σ (u, p)n on Γ× (0, T ),(2.12)

∂tη = u on Γ× (0, T )(2.13)

with boundary conditions (2.2), (2.3), and (2.6).

2.1. Preliminaries and monolithic weak formulation. We consider the
usual Sobolev spaces Hk(S) with k ≥ 0. We also use the closed subspace H1

0 (S),
consisting of functions in H1(S) with zero trace on ∂S. We introduce the following
functional spaces:

V f = (H1(Ω))d, Q=L2(Ω), V s = (H1
0 (Γ))d, V fsi = {(ϕ, ζ) ∈ V f × V s|ϕ|Γ = ζ}.

We define the following bilinear forms associated with the fluid problem:

af (u,ϕ) = 2µ

∫
Ω

D(u) : D(ϕ)dx, b(p,ϕ) =

∫
Ω

p∇ ·ϕdx.(2.14)

We denote by ae(·, ·) the bilinear form associated with the structure operator Le,
given by

ae(η, ζ) =

∫
Γ

Leη · ζdS.(2.15)

We assume that ae is an inner-product into the space of admissible displacements (a
subset of (H1

0 (Γ))d) and set

(2.16) ‖η‖2E = ae(η,η).
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Similar to [15] and [8], we assume that the ‖ · ‖2E is equivalent to the H1(Γ)-norm and
there exists β > 0 such that the following continuity estimate holds:

‖η‖2E ≤ β‖η‖2H1(Γ) ∀η ∈ V s.(2.17)

The variational formulation of the monolithic FSI problem now reads as follows:
given t ∈ (0, T ) find (u,η, p) ∈ V f × V s × Q with u = ∂tη on Γ such that for all
(ϕ, ζ, q) ∈ V fsi ×Q we have

ρf

∫
Ω

∂tu ·ϕdx+ af (u,ϕ)− b(p,ϕ) + b(q,u) + ρsh

∫
Γ

∂ttη · ζdx+ ae(η, ζ)

=

∫
Γin

pinϕ · ndS +

∫
Γout

poutϕ · ndS.(2.18)

To derive an energy equality of the monolithic problem, let (ϕ, ζ, q) = (u, ∂tη, p).
Integrating from 0 to T , for T > 0, we have

ρf
2
‖u(T )‖2L2(Ω) +

ρsh

2
‖∂tη(T )‖2L2(Γ)︸ ︷︷ ︸

kinetic energy

+
1

2
‖η(T )‖2E︸ ︷︷ ︸

elastic energy

+ 2µ

∫ T

0

‖D(u)‖2L2(Ω)dt︸ ︷︷ ︸
viscous dissipation rate

=
ρf
2
‖u(0)‖2L2(Ω) +

ρsh

2
‖∂tη(0)‖2L2(Γ)

+
1

2
‖η(0)‖2E +

∫ T

0

∫
Γin

pinϕ · ndSdt+

∫ T

0

∫
Γout

poutϕ · ndSdt.(2.19)

3. Crank–Nicolson FSI numerical scheme. Let tn = n∆t for n = 1, . . . , N ,
where T = N∆t is the final time. We introduce the following notation:

ϕn+ 1
2 =

ϕn+1 +ϕn

2
and dtϕ

n+1 =
ϕn+1 −ϕn

∆t
.(3.1)

We start by rewriting the structure equation (2.5) by taking into account the
coupling conditions (2.8)–(2.9) as follows:

ρsh∂tu+ Leη = −σ(u, p)n.(3.2)

We introduce the structure velocity v = ∂tη and discretize (3.2) using the Crank–
Nicolson method (CNFSI). Similar to [8], we add and subtract the fluid normal stress

at time tn−
1
2 and split (3.2) using operator splitting into the following two equations:

ρsh
vn+1 − un

∆t
+ Leηn+ 1

2 = −σ
(
un−

1
2 , pn−

1
2

)
n,(3.3)

ρsh
un+1 − vn+1

∆t
= −σ

(
un+ 1

2 , pn+ 1
2

)
n+ σ

(
un−

1
2 , pn−

1
2

)
n.(3.4)

The rest of the FSI problem (2.1)–(2.9) is discretized using the Crank–Nicolson
method. Equation (3.3) is used to describe structure elastodynamics in the structure
sub-problem and (3.4) is used as a Robin boundary condition in the fluid sub-problem
as follows.

CNFSI Step 1 (solid subproblem). Given tn+1 ∈ (0, T ], n = 0, . . . , N − 1, find
ηn+1 and vn+1 such that

dtη
n+1 − v

n+1 + un

2
= 0 on Γ,(3.5)
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ρsh
vn+1 − un

∆t
+ Leηn+ 1

2 = −σ
(
un−

1
2 , pn−

1
2

)
n on Γ,(3.6)

ηn+1 = 0 on ∂Γ.(3.7)

CNFSI Step 2 (fluid subproblem). Find un+1 and pn+1 such that

ρfdtu
n+1 = ∇ · σ

(
un+ 1

2 , pn+ 1
2

)
in Ω,(3.8)

∇ · un+1 = 0 in Ω,(3.9)

ρsh
un+1 − vn+1

∆t
= −σ

(
un+ 1

2 , pn+ 1
2

)
n+ σ

(
un−

1
2 , pn−

1
2

)
n on Γ,(3.10)

σ(un+ 1
2 , pn+ 1

2 )n = p
n+ 1

2
in n on Γin,(3.11)

σ(un+ 1
2 , pn+ 1

2 )n = p
n+ 1

2
out n on Γout.(3.12)

In order to prescribe the additional initial conditions needed at the first time step, we
define u−

1
2 = 0, p−

1
2 = 0.

Remark 3.1. We note that the no-slip condition u = v on Γ is not exactly satisfied
but is approximated to the second order of accuracy. In particular, from (3.10) we
have

un+1 − vn+1 =
∆t

ρsh

(
−σ

(
un+ 1

2 , pn+ 1
2

)
n+ σ

(
un−

1
2 , pn−

1
2

)
n
)
.(3.13)

Because−σ
(
un+ 1

2 , pn+ 1
2

)
n+σ

(
un−

1
2 , pn−

1
2

)
n = − 1

2σ
(
un+1−un−1, pn+1− pn−1

)
n,

we have

un+1 = vn+1 +O(∆t2).(3.14)

To discretize the problem in space, we use the finite element method based on
a conforming finite element triangulation with maximum triangle diameter ∆x. We
introduce the finite element spaces V fh ⊂ V f , Qh ⊂ Q, and V sh ⊂ V s. The variational
formulation of the fully discrete numerical scheme is given as follows.

CNFSI Step 1 (solid subproblem). Given tn+1 ∈ (0, T ], n = 0, . . . , N − 1, and

u
n− 1

2

h and p
n− 1

2

h , find vn+1
h ∈ V sh and ηn+1

h ∈ V sh such that for all ζh ∈ V sh and
χh ∈ V sh we have

ρsh

∫
Γ

vn+1
h − unh

∆t
· ζhdS + ae

(
η
n+ 1

2

h , ζh

)
+

∫
Γ

dtη
n+1
h · χhdS −

∫
Γ

vn+1
h + unh

2
· χhdS

=−
∫

Γ

σ
(
u
n− 1

2

h , p
n− 1

2

h

)
n · ζhdS.

(3.15)

CNFSI Step 2 (fluid subproblem). Given vn+1
h computed in Step 1, find un+1

h ∈
V fh and pn+1

h ∈ Qh such that for all ϕh ∈ V fh and qh ∈ Qh we have

ρf

∫
Ω

dtu
n+1
h ·ϕhdx+ af

(
u
n+ 1

2

h ,ϕh

)
− b

(
p
n+ 1

2

h ,ϕh

)
+ b(qh,u

n+1
h ) + ρsh

∫
Γ

un+1
h − vn+1

h

∆t
·ϕhdS

=

∫
Γ

σ
(
u
n− 1

2

h , p
n− 1

2

h

)
n ·ϕhdS +

∫
Γin

p
n+ 1

2
in ϕh · ndS +

∫
Γout

p
n+ 1

2
out ϕh · ndS.(3.16)
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4. Stability analysis. In this section we analyze the stability of the fully dis-
crete CNFSI scheme (3.15)–(3.16). We first recall a version of the discrete Gronwall
lemma [19] that is used in the analysis.

Lemma 4.1 (a discrete Gronwall inequality [19]). Let ∆t, B, aN , bN , cN , and
γN (for integers N ≥ 1) be nonnegative numbers such that

aN + ∆t

N∑
n=1

bn ≤ ∆t

N∑
n=1

γnan + ∆t

N∑
n=1

cn +B for N ≥ 1.

Suppose that ∆tγn < 1 for all n ≥ 1. Then, the following holds:

aN + ∆t

N∑
n=1

bn ≤ exp

(
∆t

N∑
n=1

γn
1−∆tγn

)(
∆t

N∑
n=1

cn +B

)
for N ≥ 1.

Furthermore, we assume that the solid operator Le satisfies the following standard
properties.

Lemma 4.2. For all ηh ∈ V sh , we have [15]

‖ηh‖E ≤
β

1
2Cinv
∆x

‖ηh‖L2(Γ),(4.1)

‖Leηh‖L2(Γ) ≤
β

1
2Cinv
∆x

‖ηh‖E ,(4.2)

where Cinv > 0 is the constant of an inverse estimate.

The stability of the CNFSI scheme is presented in the following theorem.

Theorem 4.3. Assume that the system is isolated, i.e., pin = pout = 0. Let
(vnh ,η

n
h ,u

n
h, p

n
h) be the solution of (3.15)–(3.16). Assume that

∆t <

√
ρsh

β
1
2Cinv

∆x.(4.3)

Then, the following a priori energy estimate holds:

EN +DN +NN ≤ exp

(
TβC2

inv∆t

ρsh∆x2 − βC2
inv∆t

2

)(
E0 +

µ∆t

2

∥∥D(u0
h)
∥∥2

L2(Ω)

)
,(4.4)

where EN is the sum of the kinetic energy of the fluid, kinetic energy of the structure
and elastic energy of the structure

EN =
ρf
2
‖uNh ‖2L2(Ω) +

ρsh

2
‖uNh ‖2L2(Γ) +

1

2
‖ηNh ‖2E ,

DN is the fluid viscous dissipation rate

DN = 2µ∆t

N−1∑
n=0

∥∥∥D(u
n+ 1

2

h )
∥∥∥2

L2(Ω)
,

and NN denotes terms due to numerical dissipation

NN =
µ∆t

2

∥∥D(uNh )
∥∥2

L2(Ω)
+

∆t2

2ρsh

∥∥∥σ (uN− 1
2

h , p
N− 1

2

h

)
n
∥∥∥2

L2(Γ)

+
ρf
2

N−1∑
n=0

∥∥un+1
h − unh

∥∥2

L2(Ω)
+
ρsh

3

N−1∑
n=0

∥∥vn+1
h − unh

∥∥2

L2(Γ)

+
∆tδ

8

N−1∑
n=0

∥∥ηn+1
h − ηnh

∥∥2

E
+

∆t

2

N−1∑
n=0

∥∥∥∥√δηn+ 1
2

h − 1√
δ

vn+1 − un

2

∥∥∥∥2

E

.
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Proof. We test (3.15) with
(
ζh,χh

)
= (vn+1

h ,Leη
n+ 1

2

h ), test (3.16) with (ϕh, qh) =

(un+1
h , p

n+ 1
2

h ), multiply by ∆t, and add the equations together. Using the identity
a(a− b) = 1

2a
2 − 1

2b
2 + 1

2 (a− b)2, we obtain

ρsh

2

(∥∥vn+1
h

∥∥2

L2(Γ)
− ‖unh‖

2
L2(Γ) +

∥∥vn+1
h − unh

∥∥2

L2(Γ)

)
+

1

2

(∥∥ηn+1
h

∥∥2

E
− ‖ηnh‖

2
E

)
+
ρf
2

(∥∥un+1
h

∥∥2

L2(Ω)
− ‖unh‖

2
L2(Ω)

)
+
ρf
2

∥∥un+1
h − unh

∥∥2

L2(Ω)

+
µ∆t

2

(∥∥D(un+1
h )

∥∥2

L2(Ω)
− ‖D(unh)‖2L2(Ω) +

∥∥D(un+1
h + unh)

∥∥2

L2(Ω)

)
+
ρsh

2

(∥∥un+1
h

∥∥2

L2(Γ)
−
∥∥vn+1

h

∥∥2

L2(Γ)
+
∥∥un+1

h − vn+1
h

∥∥2

L2(Γ)

)
= ∆t

∫
Γ

σ
(
u
n− 1

2

h , p
n− 1

2

h

)
n ·
(
un+1
h − vn+1

h

)
dS︸ ︷︷ ︸

I1

+ ∆tae

(
η
n+ 1

2

h ,vn+1
)
−∆tae

(
η
n+ 1

2

h ,
vn+1 + un

2

)
︸ ︷︷ ︸

I2

.

(4.5)

Using (3.13), integral I1 becomes

I1 =
∆t2

ρsh

∫
Γ

σ
(
u
n− 1

2

h , p
n− 1

2

h

)
n ·
(
σ
(
u
n− 1

2

h , p
n− 1

2

h

)
n− σ

(
u
n+ 1

2

h , p
n+ 1

2

h

)
n
)
dS

=
∆t2

2ρsh

(∥∥∥σ (un− 1
2

h , p
n− 1

2

h

)
n
∥∥∥2

L2(Γ)
−
∥∥∥σ (un+ 1

2

h , p
n+ 1

2

h

)
n
∥∥∥2

L2(Γ)

)
+

∆t2

2ρsh

∥∥∥σ (un− 1
2

h , p
n− 1

2

h

)
n− σ

(
u
n+ 1

2

h , p
n+ 1

2

h

)
n
∥∥∥2

L2(Γ)
.

Using (3.13) again, we have

I1 =
∆t2

2ρsh

(∥∥∥σ (un− 1
2

h , p
n− 1

2

h

)
n
∥∥∥2

L2(Γ)
−
∥∥∥σ (un+ 1

2

h , p
n+ 1

2

h

)
n
∥∥∥2

L2(Γ)

)
(4.6)

+
ρsh

2

∥∥un+1
h − vn+1

h

∥∥2

L2(Γ)
.

To estimate integral I2, note that the following equality holds for δ > 0:

I2 = ∆tae

(
η
n+ 1

2

h ,
vn+1
h − unh

2

)
=

∆tδ

2

∥∥∥ηn+ 1
2

h

∥∥∥2

E
+

∆t

2δ

∥∥∥∥vn+1
h − unh

2

∥∥∥∥2

E

− ∆t

2

∥∥∥∥√δηn+ 1
2

h − 1√
δ

vn+1
h − unh

2

∥∥∥∥2

E

.

Using identity (a+ b)2 = 2(a2 + b2)− (a− b)2, we can write

∆tδ

2

∥∥∥ηn+ 1
2

h

∥∥∥2

E
=

∆tδ

8

∥∥ηn+1
h +ηnh

∥∥2

E
=

∆tδ

4

(∥∥ηn+1
h

∥∥2

E
+ ‖ηnh‖

2
E

)
−∆tδ

8

∥∥ηn+1
h −ηnh

∥∥2

E
.

(4.7)

Taking into account (4.7), I2 becomes
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I2 =
∆tδ

4

(∥∥ηn+1
h

∥∥2

E
+ ‖ηnh‖

2
E

)
− ∆tδ

8

∥∥ηn+1
h − ηnh

∥∥2

E
+

∆t

2δ

∥∥∥∥vn+1
h − unh

2

∥∥∥∥2

E

− ∆t

2

∥∥∥∥√δηn+ 1
2

h − 1√
δ

vn+1
h − unh

2

∥∥∥∥2

E

.(4.8)

Combining (4.6) and (4.8) with (4.5) and summing from n = 0 to N − 1 we obtain

ρf
2
‖uNh ‖2L2(Ω) +

ρsh

2
‖uNh ‖2L2(Γ) +

1

2
‖ηNh ‖2E +

µ∆t

2

∥∥D(uNh )
∥∥2

L2(Ω)

+
∆t2

2ρsh

∥∥∥σ (uN− 1
2

h , p
N− 1

2

h

)
n
∥∥∥2

L2(Γ)
+
ρf
2

N−1∑
n=0

∥∥un+1
h − unh

∥∥2

L2(Ω)

+ 2µ∆t

N−1∑
n=0

∥∥∥D(u
n+ 1

2

h )
∥∥∥2

L2(Ω)
+
ρsh

2

N−1∑
n=0

∥∥vn+1
h − unh

∥∥2

L2(Γ)

+
∆tδ

8

N−1∑
n=0

∥∥ηn+1
h − ηnh

∥∥2

E
+

∆t

2

N−1∑
n=0

∥∥∥∥√δηn+ 1
2

h − 1√
δ

vn+1
h − unh

2

∥∥∥∥2

E

=
ρf
2
‖u0

h‖2L2(Ω) +
ρsh

2
‖u0

h‖2L2(Γ) +
1

2
‖η0

h‖2E +
µ∆t

2

∥∥D(u0
h)
∥∥2

L2(Ω)

+
δ∆t

2

N∑
n=0

‖ηnh‖
2
E +

∆t

8δ

N−1∑
n=0

∥∥vn+1
h − unh

∥∥2

E
.

Let δ =
βC2

inv∆t
ρsh∆x2 . Using (4.1) and Lemma 4.1 with γn = δ, we have

ρf
2
‖uNh ‖2L2(Ω) +

ρsh

2
‖uNh ‖2L2(Γ) +

1

2
‖ηNh ‖2E +

µ∆t

2

∥∥D(uNh )
∥∥2

L2(Ω)

+
∆t2

2ρsh

∥∥∥σ (uN− 1
2

h , p
N− 1

2

h

)
n
∥∥∥2

L2(Γ)
+
ρf
2

N−1∑
n=0

∥∥un+1
h − unh

∥∥2

L2(Ω)

+ 2µ∆t

N−1∑
n=0

∥∥∥D(u
n+ 1

2

h )
∥∥∥2

L2(Ω)
+

3ρsh

8

N−1∑
n=0

∥∥vn+1
h −unh

∥∥2

L2(Γ)
+

∆tδ

8

N−1∑
n=0

∥∥ηn+1
h −ηnh

∥∥2

E

+
∆t

2

N−1∑
n=0

∥∥∥∥√δηn+ 1
2

h − 1√
δ

vn+1
h − unh

2

∥∥∥∥2

E

≤ exp

(
TβC2

inv∆t

ρsh∆x2 − βC2
inv∆t

2

)
(
ρf
2
‖u0

h‖2L2(Ω) +
ρsh

2
‖u0

h‖2L2(Γ) +
1

2
‖η0

h‖2E +
µ∆t

2

∥∥D(u0
h)
∥∥2

L2(Ω)

)
.

Remark 4.1. The stability result in Theorem 4.3 is achieved using Lemma 4.1,
introducing the exponential function in the energy estimate. The reason that the
Gronwall lemma is used is related to the second-order approximation of the fluid and
structure subproblems, as well as the choice of test functions that allowed us the use
of (3.13). Although theoretically this result may not be indicative of long-time stabil-
ity, our numerical results show that the CNFSI scheme is stable and accurate when
applied to realistic blood flow modeling. Similar estimates involving the Gronwall
lemma are also obtained in the analysis of second-order splitting in [15].

5. Error analysis. To approximate the problem in space, we apply the La-
grangian finite elements of polynomial degree k for all the variables, except for the
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fluid pressure, for which we use elements of degree s < k. We assume that our
finite element spaces satisfy the usual approximation properties and that the fluid
velocity-pressure spaces satisfy the discrete inf-sup condition.

Let a . (&)b denote that there exists a positive constant C, independent of the
mesh size ∆x and the time step size ∆t, such that a ≤ (≥)Cb. We introduce the
following time discrete norms:

(5.1) ‖ϕ‖L2(0,T ;X) =

(
∆t

N−1∑
n=0

∥∥ϕn+1
∥∥2

X

) 1
2

, ‖ϕ‖L∞(0,T ;X) = max
0≤n≤N

‖ϕn‖X ,

where X ∈ {Hk(Ω), Hk(Γ), E}. Note that they are equivalent to the continuous
norms since we use piecewise constant approximations in time. Furthermore, the
following inequality holds:

(5.2) ∆t

N−1∑
n=1

‖dtϕ‖2X . ‖∂tϕ‖2L2(0,T ;X) .

Let Ih be the Lagrangian interpolation operator onto V sh . As in [8, 15], we in-

troduce a Stokes-like projection operator (Sh, Ph) : V f → V fh × Qh, defined for all
u ∈ V f by

(Shu, Phu) ∈ V fh ×Qh,(5.3)

(Shu)|Γ = Ih(u|Γ),(5.4)

af (Shu,ϕh)− b(Phu,ϕh) = af (u,ϕh) ∀ϕh ∈ V fh such that ϕh|Γ = 0,(5.5)

b(q, Shu) = 0 ∀q ∈ Qh.(5.6)

Projection operators Sh and Ih satisfy the following approximation properties (see [15,
Theorem B.5] and [13]):

‖D(u− Shu)‖L2(Ω) . ∆xk ‖u‖Hk+1(Ω) ∀u ∈ V f ,

‖v − Ihv‖L2(Γ) + ∆x ‖v − Ihv‖H1(Γ) . ∆xk+1 ‖v‖Hk+1(Γ) ∀v ∈ V s.

Let Rh be the Ritz projector onto V sh such that for all η ∈ V s

(5.7) ae(η −Rhη, ζh) = 0 ∀ζh ∈ V sh .

Then, the finite element theory for Ritz projections [13] gives

‖η −Rhη‖E . ∆xk ‖η‖Hk+1(Γ) ∀η ∈ V s.

Let Πh be a projection operator onto Qfh such that

‖p−Πhp‖L2(Ω) . ∆xs+1 ‖p‖Hs+1(Ω) ∀p ∈ Qf .

The following two lemmas will be used in the convergence analysis.

Lemma 5.1 (interpolation errors). The following inequalities hold:

∆t

N−1∑
n=0

∥∥∥σ(un+ 1
2 − Shun+ 1

2 , pn+ 1
2 −Πhp

n+ 1
2 )n

∥∥∥2

L2(Γ)

. ∆x2s+2 ‖p‖2L2(0,T ;Hs+1(Γ)) + ∆x2kµ ‖u‖2L2(0,T ;Hk+1(Γ)) ,
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∆t

N−1∑
n=0

∥∥∥σ(un+ 1
2 − Shun+ 1

2 , pn+ 1
2 −Πhp

n+ 1
2 )n

−σ(un−
1
2 − Shun+ 1

2 , pn−
1
2 −Πhp

n+ 1
2 )
∥∥∥2

E

. βC2
inv

(
∆x2s ‖p‖2L2(0,T ;Hs+1(Γ)) + ∆x2k−2 ‖u‖2L2(0,T ;Hk+1(Γ))

)
.

Lemma 5.2 (consistency errors). The following inequalities hold for X ∈ {L2(Ω),
L2(Γ), E}:

∆t

N−1∑
n=1

∥∥∥ϕn+ 1
2 −ϕn− 1

2

∥∥∥2

X
. ∆t2 ‖∂tϕ‖2L2(0,T ;X) ,

∆t

N−1∑
n=1

∥∥∥∂tϕn+ 1
2 − dtϕn+1

∥∥∥2

X
. ∆t4 ‖∂tttϕ‖2L2(0,T ;X) ,

∆t

N−1∑
n=1

∥∥∥σ(un+ 1
2 , pn+ 1

2

)
n− σ

(
un−

1
2 , pn−

1
2

)
n
∥∥∥2

E
. ∆t2 ‖∂tσn‖2L2(0,T ;H1(Γ)) .

In order to study convergence, we rewrite the CNFSI scheme (3.5)–(3.12) by
using (3.10) to express vh in terms of uh, resulting in the following problem:

ρfdtu
n+1
h = ∇ · σ

(
u
n+ 1

2

h , p
n+ 1

2

h

)
in Ω,

(5.8)

∇ · un+1
h = 0 in Ω,

(5.9)

ρshdtu
n+1
h + Leη

n+ 1
2

h = −σ
(
u
n+ 1

2

h , p
n+ 1

2

h

)
n on Γ,

(5.10)

dtη
n+1
h − un+ 1

2

h − ∆t

2ρsh

(
σ
(
u
n+ 1

2

h , p
n+ 1

2

h

)
n− σ

(
u
n− 1

2

h , p
n− 1

2

h

)
n
)

= 0 on Γ,

(5.11)

with boundary conditions (3.7), (3.11), and (3.12). Subtracting (5.8)–(5.11) from

(2.10)–(2.13) evaluated at t = tn+ 1
2 and defining u−

1
2 = 0, p−

1
2 = 0, we obtain the

following error equations:

ρf

(
dtu

n+ 1
2−dtun+1

h

)
=∇·σ

(
un+ 1

2−un+ 1
2

h , pn+ 1
2−pn+ 1

2

h

)(5.12)

+ ρf

(
dtu

n+ 1
2−∂tun+ 1

2

)
in Ω,

∇ · (un+ 1
2 − un+1

h ) = 0 in Ω,

(5.13)

ρsh
(
dtu

n+ 1
2−dtun+1

h

)
+Le

(
ηn+ 1

2−ηn+ 1
2

h

)(5.14)

= −σ
(
un+ 1

2−un+ 1
2

h , pn+ 1
2−pn+ 1

2

h

)
n+ ρsh

(
dtu

n+ 1
2 − ∂tun+ 1

2

)
on Γ,
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dtη
n+ 1

2 − dtηn+1
h −

(
un+ 1

2 − un+ 1
2

h

)(5.15)

+
∆t

2ρsh

(
σ
(
un+ 1

2−un+ 1
2

h , pn+ 1
2−pn+ 1

2

h

)
n−σ

(
un−

1
2−un−

1
2

h , pn−
1
2−pn−

1
2

h

)
n
)

= dtη
n+ 1

2 − ∂tηn+ 1
2 +

∆t

2ρsh

(
σ
(
un+ 1

2 , pn+ 1
2

)
n− σ

(
un−

1
2 , pn−

1
2

)
n
)

on Γ,

with homogeneous Neumann conditions on Γin and Γout.
We assume that the continuous solution satisfies the following assumptions:

u ∈ H1(0, T ;Hk+1(Ω))∩H3(0, T ;L2(Ω)), u|Γ ∈ H1(0, T ;Hk+1(Γ))∩H3(0, T ;L2(Γ)),

p ∈ L2(0, T ;Hs+1(Ω)), p|Γ ∈ L2(0, T ;Hs+1(Γ)) ∩H1(0, T ;H1(Γ)),

η ∈ H1(0, T ;Hk+1(Γ)) ∩H3(0, T ;H1(Γ)).

Furthermore, we define the functional spaces V m = {ϕ ∈ V f | ϕ|Γ ∈ V s} and V mh =

{ϕ ∈ V fh | ϕ|Γ ∈ V sh } and assume that the discrete fluid velocity belongs to V mh and
the continuous fluid velocity lives in the space V d = {u ∈ V m| ∇ · u = 0}. The main
result of this section is stated in the following theorem.

Theorem 5.3. Consider the finite element solution (uh, ph,ηh) of (5.8)–(5.11)
with initial data (u0

h, p
0
h,η

0
h) = (Shu

0,Πhp
0, Rhη

0). Assume that the CFL condi-
tion (4.3) holds and that

∆t+
βC2

inv∆t
2

ρsh∆x2
<

1

2
.

Then, the following estimate holds:

ρf
2

∥∥uN − uNh ∥∥2

L2(Ω)
+
ρsh

2

∥∥uN − uNh ∥∥2

L2(Γ)
+

1

2

∥∥ηN − ηNh ∥∥2

E

(5.16)

+
µ∆t

2

∥∥D(uN − uNh )
∥∥2

L2(Ω)
+

∆t2

4ρsh

∥∥∥σ(uN−
1
2 − uN−

1
2

h , pN−
1
2 − pN−

1
2

h )n
∥∥∥2

L2(Γ)

+ 2µ∆t

N−1∑
n=0

‖D(un+ 1
2 − un+ 1

2

h )‖2L2(Ω) . exp

 T max{ 1
2∆t , 2

(
1 +

βC2
inv∆t

ρsh∆x2

)
}

1−∆tmax{ 1
2∆t , 2

(
1 +

βC2
inv∆t

ρsh∆x2

)
}


(
∆x2kA1 + ∆x2k+1A2 + ∆x2k+2A3 + ∆x2k+3A4 + ∆x2s+2A5 + ∆x2s+4A6

+ ∆t4A7 + ∆t5A8

)
,

where

A1 = ρf ‖u‖2L∞(0,T ;Hk+1(Ω)) + ρf ‖∂tu‖2L2(0,T ;Hk+1(Ω) + µ ‖u‖2L2(0,T ;Hk+1(Ω))

+ ‖η‖2L∞(0,T ;Hk+1(Γ)) + ‖η‖2L2(0,T ;Hk+1(Γ))

+ ‖∂tη‖2L2(0,T ;Hk+1(Γ)) +

(
1 +

βC2
invµ

ρ2
sh

2

)
‖u‖2L2(0,T ;Hk+1(Γ)) ,

A2 = µ ‖u‖2L∞(0,T ;Hk+1(Ω)) ,
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A3 = (ρsh+µ) ‖u‖2L∞(0,T ;Hk+1(Γ)) +ρsh ‖∂tu‖2L2(0,T ;Hk+1(Γ)) +
µ

ρsh
‖u‖2L2(0,T ;Hk+1(Γ)) ,

A4 = ρsh ‖∂tu‖2L2(0,T ;Hk+1(Γ)) ,

A5 =
C2
kd

µ
‖p‖2L2(0,T ;Hs+1(Ω)) +

βC2
inv

ρ2
sh

2
‖p‖2L2(0,T ;Hs+1(Γ)) ,

A6 =
1

ρsh
‖p‖2L2(0,T ;Hs+1(Γ)) + ‖p‖2L∞(0,T ;Hs+1(Γ)) ,

A7 = ρf ‖∂tttu‖2L2(0,T ;L2(Ω)) + ρsh ‖∂tttu‖2L2(0,T ;L2(Γ)) + ‖∂tttη‖2L2(0,T ;H1(Γ))

+
1

ρ2
sh

2
‖∂tσ (u, p)n‖2L2(0,T ;H1(Γ)) ,

A8 = ρsh ‖∂tttu‖2L2(0,T ;L2(Γ)) .

Proof. We split the error of the method as a sum of the approximation error θn+1
r

and the truncation error δn+1
r for r ∈ {f, p, η} as follows:

en+1
f = un+1 − un+1

h = (un+1 − Shun+1) + (Shu
n+1 − un+1

h ) = θn+1
f + δn+1

f ,

(5.17)

en+1
p = pn+1 − pn+1

h = (pn+1 −Πhp
n+1) + (Πhp

n+1 − pn+1
h ) = θn+1

p + δn+1
p ,

(5.18)

en+1
s = ηn+1 − ηn+1

h = (ηn+1 −Rhηn+1) + (Rhη
n+1 − ηn+1

h ) = θn+1
η + δn+1

η .

(5.19)

We substitute (5.17)–(5.19) into (5.12)–(5.15) and multiply (5.12) by ∆tδn+1
f , (5.13)

by ∆tδ
n+ 1

2
p , and (5.15) by ∆tLe(ηn+ 1

2 −ηn+ 1
2

h ). Adding the equations, integrating by
parts, and using (5.14) as a Robin boundary condition in (5.12), we get

ρf

2

(
‖δn+1
f ‖2

L2(Ω)
− ‖δnf ‖

2
L2(Ω)

+ ‖δn+1
f − δnf ‖

2
L2(Ω)

)(5.20)

+
µ∆t

2

(
‖D(δn+1

f )‖2
L2(Ω)

− ‖D(δnf )‖2
L2(Ω)

+ 4‖D(δ
n+ 1

2
f )‖2

L2(Ω)

)
+
ρsh

2

(
‖δn+1
f ‖2

L2(Γ)
− ‖δnf ‖

2
L2(Γ)

+ ‖δn+1
f − δnf ‖

2
L2(Γ)

)
+ ae

(
θ
n+ 1

2
η , δn+1

f

)
−∆tb

(
δ
n+ 1

2
p , δn+1

f

)
−∆tb

(
δ
n+ 1

2
p ,un+1

h

)
= −∆tae

(
δ
n+ 1

2
η , δn+1

f

)
−∆t

∫
Γ
dtδ

n+1
η · Le(ηn+ 1

2−ηn+ 1
2

h )dS+∆t

∫
Γ
δ
n+ 1

2
f ·Le(ηn+ 1

2 − ηn+ 1
2

h )dS︸ ︷︷ ︸
T1

+
∆t2

2ρsh

∫
Γ

(
σ

(
δ
n+ 1

2
f , δ

n+ 1
2

p

)
n− σ

(
δ
n− 1

2
f , δ

n− 1
2

p

)
n

)
· Le(ηn+ 1

2 − ηn+ 1
2

h )dS︸ ︷︷ ︸
T2

− ρf∆t

∫
Ω
dtθ

n+1
f · δn+1

f dx−∆taf (θ
n+ 1

2
f , δn+1

f )+∆tb(θ
n+ 1

2
p , δn+1

f )−∆tρsh

∫
Γ
dtθ

n+1
f · δn+1

f dS

−∆t

∫
Γ
dtθ

n+1
η · Le(ηn+ 1

2 − ηn+ 1
2

h )dS + ∆t

∫
Γ
θ
n+ 1

2
f · Le(ηn+ 1

2 − ηn+ 1
2

h )dS

+
∆t2

2ρsh

∫
Γ

(
σ

(
θ
n+ 1

2
f , θ

n+ 1
2

p

)
n−σ

(
θ
n− 1

2
f , θ

n− 1
2

p

)
n

)
·Le(ηn+ 1

2−ηn+ 1
2

h )dS+∆t
(
Rf+Re

)
,
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where

Rf = ρf

∫
Ω

(
dtu

n+1 − ∂tun+ 1
2

)
· δn+1
f dx+ ρsh

∫
Γ

(dtu
n+1 − ∂tun+ 1

2 ) · δn+1
f dS,

Re =

∫
Γ

(
dtη

n+1 − ∂tηn+ 1
2

)
· Le(ηn+ 1

2 − ηn+ 1
2

h )dS

− ∆t

2ρsh

∫
Γ

(
σ
(
un+ 1

2 , pn+ 1
2

)
n− σ

(
un−

1
2 , pn−

1
2

)
n
)
· Le(ηn+ 1

2 − ηn+ 1
2

h )dS.

Since δ
n+ 1

2

f |Γ ∈ V sh , by the Ritz projection operator property (5.7) we have ae(θ
n+ 1

2
η ,

δ
n+ 1

2

f ) = 0. Furthermore, using the Stokes projection property (5.6), the pressure
terms on the left-hand side vanish

−∆tb(δ
n+ 1

2
p , δn+1

f )−∆tb(δ
n+ 1

2
p ,un+1

h ) = −∆tb(δ
n+ 1

2
p , Shu

n+1) = 0.

Applying (2.15), adding and subtracting Rhη
n+ 1

2 , and using the Ritz projection op-
erator property (5.7), term T1 simplifies as follows:

T1 =−∆tae

(
δ
n+ 1

2
η , δn+1

f

)
−∆tae

(
ηn+ 1

2−Rhηn+ 1
2 +Rhη

n+ 1
2−ηn+ 1

2

h , dtδ
n+1
η −δn+ 1

2

f

)
=−∆tae

(
δ
n+ 1

2
η , δn+1

f

)
−∆tae

(
δ
n+ 1

2
η , dtδ

n+1
η − δn+ 1

2

f

)
=− 1

2

∥∥δn+1
η

∥∥2

E
+

1

2

∥∥δnη ∥∥2

E
−∆tae

(
δ
n+ 1

2
η ,

δn+1
f − δnf

2

)
.

Using the Cauchy–Schwarz inequality, Young’s inequality with δ > 0, and (4.1), we
have

∆tae

(
δ
n+ 1

2
η ,

δn+1
f − δnf

2

)
≤ δ∆t

2

∥∥∥δn+ 1
2

η

∥∥∥2

E
+

∆t

2δ

∥∥∥∥∥δ
n+1
f − δnf

2

∥∥∥∥∥
2

E

≤ δ∆t

2

∥∥∥δn+ 1
2

η

∥∥∥2

E
+
βC2

inv∆t

8δ∆x2

∥∥∥δn+1
f − δnf

∥∥∥2

L2(Γ)
.

Let δ =
3βC2

inv∆t

4ρsh∆x2
. Thus,

T1 ≤ −
1

2

∥∥δn+1
η

∥∥2

E
+

1

2

∥∥δnη ∥∥2

E
+

3βC2
inv∆t

2

16ρsh∆x2

∥∥δn+1
η

∥∥2

E

+
3βC2

inv∆t
2

16ρsh∆x2

∥∥δnη ∥∥2

E
+
ρsh

6

∥∥∥δn+1
f − δnf

∥∥∥2

L2(Γ)
.(5.21)

To estimate integral T2, we first note that using (5.17)–(5.18) in (5.14) gives

Le(ηn+ 1
2 − ηn+ 1

2

h ) = −σ
(
θ
n+ 1

2

f + δ
n+ 1

2

f , θ
n+ 1

2
p + δ

n+ 1
2

p

)
n

− ρsh
(
dtθ

n+1
f + dtδ

n+1
f + ∂tu

n+ 1
2 − dtun+1

)
.(5.22)
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Using (5.22), term T2 now becomes

T2 =− ∆t2

4ρsh

(∥∥∥σ (δn+ 1
2

f , δ
n+ 1

2
p

)
n
∥∥∥2

L2(Γ)
−
∥∥∥σ (δn− 1

2

f , δ
n− 1

2
p

)
n
∥∥∥2

L2(Γ)

)
− ∆t2

4ρsh

∥∥∥σ (δn+ 1
2

f , δ
n+ 1

2
p

)
n− σ

(
δ
n− 1

2

f , δ
n− 1

2
p

)
n
∥∥∥2

L2(Γ)

− ∆t2

2ρsh

∫
Γ

(
σ
(
δ
n+ 1

2

f , δ
n+ 1

2
p

)
n− σ

(
δ
n− 1

2

f , δ
n− 1

2
p

)
n
)
· σ
(
θ
n+ 1

2

f , θ
n+ 1

2
p

)
ndS

− ∆t2

2

∫
Γ

(
σ
(
δ
n+ 1

2

f , δ
n+ 1

2
p

)
n− σ

(
δ
n− 1

2

f , δ
n− 1

2
p

)
n
)

·
(
dtθ

n+1
f + dtδ

n+1
f + ∂tu

n+ 1
2 − dtun+1

)
dS.

Applying Cauchy–Schwarz and Young’s inequalities, we have

T2 ≤−
∆t2

4ρsh

(∥∥∥σ (δn+ 1
2

f , δ
n+ 1

2
p

)
n
∥∥∥2

L2(Γ)
−
∥∥∥σ (δn− 1

2

f , δ
n− 1

2
p

)
n
∥∥∥2

L2(Γ)

)(5.23)

− ∆t2

64ρsh

∥∥∥σ (δn+ 1
2

f , δ
n+ 1

2
p

)
n−σ

(
δ
n− 1

2

f , δ
n− 1

2
p

)
n
∥∥∥2

L2(Γ)
+

2ρsh

7

∥∥∥δn+1
f −δnf

∥∥∥2

L2(Γ)

+
12∆t2

ρsh

∥∥∥σ(θn+ 1
2

f , θ
n+ 1

2
p

)
n
∥∥∥2

L2(Γ)
+ 12∆t2ρsh

∥∥∥dtθn+1
f

∥∥∥2

L2(Γ)

+ 12∆t2ρsh
∥∥∥∂tun+ 1

2 − dtun+1
∥∥∥2

L2(Γ)
.

Substituting (5.21) and (5.23) into (5.20), summing from 0 ≤ n ≤ N − 1, and
taking into account assumptions on the initial data, we get

ρf

2

∥∥∥δNf ∥∥∥2

L2(Ω)
+
ρsh

2

∥∥∥δNf ∥∥∥2

L2(Γ)
+

1

2

∥∥∥δNη ∥∥∥2

E
+
µ∆t

2

∥∥∥D(δ
N
f )
∥∥∥2

L2(Ω)
+

∆t2

4ρsh

∥∥∥∥σ(δN− 1
2

f , δ
N− 1

2
p

)
n

∥∥∥∥2

L2(Γ)

(5.24)

+
ρf

2

N−1∑
n=0

∥∥∥δn+1
f − δnf

∥∥∥2

L2(Ω)
+
ρsh

21

N−1∑
n=0

∥∥∥δn+1
f − δnf

∥∥∥2

L2(Γ)
+ 2µ∆t

N−1∑
n=0

‖D(δ
n+ 1

2
f )‖2

L2(Ω)

+
∆t2

64ρsh

N−1∑
n=0

∥∥∥∥σ(δn+ 1
2

f , δ
n+ 1

2
p

)
n− σ

(
δ
n− 1

2
f , δ

n− 1
2

p

)
n

∥∥∥∥2

L2(Γ)

. −∆t

N−1∑
n=0

(∫
Ω

ρfdtθ
n+1
f · δn+1

f dx+ af

(
θ
n+ 1

2
f , δ

n+1
f

)
− b

(
θ
n+ 1

2
p , δ

n+1
f

)
+ ρsh

∫
Γ

dtθ
n+1
f · δn+1

f dS

)
︸ ︷︷ ︸

T3

−∆t

N−1∑
n=0

(∫
Γ

dtθ
n+1
η · Le

(
η
n+ 1

2 − η
n+ 1

2
h

)
dS −

∫
Γ

θ
n+ 1

2
f · Le

(
η
n+ 1

2 − η
n+ 1

2
h

)
dS

)
︸ ︷︷ ︸

T4

+
∆t2

2ρsh

N−1∑
n=0

∫
Γ

(
σ

(
θ
n+ 1

2
f , θ

n+ 1
2

p

)
n− σ

(
θ
n− 1

2
f , θ

n− 1
2

p

)
n

)
· Le

(
η
n+ 1

2 − η
n+ 1

2
h

)
dS

︸ ︷︷ ︸
T5

+
∆t2

ρsh

N−1∑
n=0

∥∥∥∥σ(θn+ 1
2

f , θ
n+ 1

2
p

)
n

∥∥∥∥2

L2(Γ)

+∆t
2
N−1∑
n=0

ρsh
∥∥∥dtθn+1

f

∥∥∥2

L2(Γ)

+ ∆t
2
ρsh

N−1∑
n=0

∥∥∥∂tun+ 1
2−dtun+1

∥∥∥2

L2(Γ)
+ ∆t

N−1∑
n=0

(
Rf +Re

)
+

N∑
n=0

βC2
inv∆t2

ρsh∆x2

∥∥∥δnη ∥∥∥2

E
.
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To estimate T3, we employ the Cauchy–Schwarz, Young’s, and Korn’s inequalities, as
well as ‖∇ · δn+1

f ‖ ≤
√
d‖∇δn+1

f ‖, as follows:

T3 ≤ ∆t

N−1∑
n=1

(
ρf

∥∥∥dtθn+1
f

∥∥∥2

L2(Ω)
+
ρf
4

∥∥∥δn+1
f

∥∥∥2

L2(Ω)

(5.25)

+ρsh
∥∥∥dtθn+1

f

∥∥∥2

L2(Γ)
+
ρsh

4

∥∥∥δn+1
f

∥∥∥2

L2(Γ)

)
+ ∆t

N−1∑
n=1

(
8µ
∥∥∥D(θ

n+ 1
2

f )
∥∥∥2

L2(Ω)
+

2C2
kd

µ

∥∥∥θn+ 1
2

p

∥∥∥2

L2(Ω)
+
µ

4

∥∥∥D(δn+1
f )

∥∥∥2

L2(Ω)

)
.

Using (2.15) and (5.19), term T4 can be written as follows:

T4 =−∆t

N−1∑
n=1

(
ae

(
δ
n+ 1

2
η + θ

n+ 1
2

η , dtθ
n+1
η

)
− ae

(
δ
n+ 1

2
η + θ

n+ 1
2

η ,θ
n+ 1

2

f

))
.

Using the Ritz projection property (5.7) and Cauchy–Schwarz and Young’s inequali-
ties, we have

T4 =−∆t

N−1∑
n=1

(
ae

(
θ
n+ 1

2
η , dtθ

n+1
η

)
− ae

(
δ
n+ 1

2
η ,θ

n+ 1
2

f

)
− ae

(
θ
n+ 1

2
η ,θ

n+ 1
2

f

))
≤ ∆t

N−1∑
n=1

(∥∥∥θn+ 1
2

η

∥∥∥2

E
+

1

2

∥∥dtθn+1
η

∥∥2

E
+

1

4

∥∥∥δn+ 1
2

η

∥∥∥2

E
+

3

2

∥∥∥θn+ 1
2

f

∥∥∥2

E

)
.(5.26)

In a similar way, we estimate term T5:

T5 =
∆t2

2ρsh

N−1∑
n=1

ae

(
δ
n+ 1

2
η + θ

n+ 1
2

η ,σ
(
θ
n+ 1

2

f , θ
n+ 1

2
p

)
n− σ

(
θ
n− 1

2

f , θ
n− 1

2
p

)
n
)
dS

≤ ∆t

N−1∑
n=1

(
1

4

∥∥∥δn+ 1
2

η

∥∥∥2

E
+

1

4

∥∥∥θn+ 1
2

η

∥∥∥2

E
+

∆t2

2ρ2
sh

2∥∥∥σ(θn+ 1
2

f , θ
n+ 1

2
p

)
n− σ

(
θ
n− 1

2

f , θ
n− 1

2
p

)
n
∥∥∥2

E

)
.(5.27)

Finally, we estimate the consistency error terms as follows. Applying the Cauchy–
Schwarz and Young’s inequalities, we have

∆t

N−1∑
n=1

Rf ≤∆t

N−1∑
n=1

(
ρf

∥∥∥dtun+1 − ∂tun+ 1
2

∥∥∥2

L2(Ω)
+
ρf
4

∥∥∥δn+1
f

∥∥∥2

L2(Ω)

)

+ ∆t

N−1∑
n=1

(
ρsh

∥∥∥dtun+1 − ∂tun+ 1
2

∥∥∥2

L2(Γ)
+
ρsh

4

∥∥∥δn+1
f

∥∥∥2

L2(Γ)

)
.(5.28)

Using (2.15) and (5.19), then applying the Cauchy–Schwarz and Young’s inequalities,
we have
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∆t

N−1∑
n=1

Re = ∆t

N−1∑
n=1

ae

(
θ
n+ 1

2
η + δ

n+ 1
2

η , dtη
n+1 − ∂tηn+ 1

2

)
− ∆t2

2ρsh

N−1∑
n=1

ae

(
θ
n+ 1

2
η +δ

n+ 1
2

η ,
(
σ
(
un+ 1

2 , pn+ 1
2

)
n−σ

(
un−

1
2 , pn−

1
2

)
n
))

≤ ∆t

N−1∑
n=1

(
1

2

∥∥∥θn+ 1
2

η

∥∥∥2

E
+

1

2

∥∥∥δn+ 1
2

η

∥∥∥2

E
+ 2

∥∥∥dtηn+1 − ∂tηn+ 1
2

∥∥∥2

E

)

+
∆t3

2ρ2
sh

2

N−1∑
n=1

∥∥∥(σ (un+ 1
2 , pn+ 1

2

)
n− σ

(
un−

1
2 , pn−

1
2

))
n
∥∥∥2

E
.(5.29)

Substituting (5.25)–(5.29) into the error equation (5.24), we obtain

ρf
2

∥∥δNf ∥∥2

L2(Ω)
+
ρsh

2

∥∥δNf ∥∥2

L2(Γ)
+

1

2

∥∥δNη ∥∥2

E
+
µ∆t

2

∥∥D(δNf )
∥∥2

L2(Ω)

+
∆t2

4ρsh

∥∥∥σ(δN− 1
2

f , δ
N− 1

2
p

)
n
∥∥∥2

L2(Γ)
+
ρf
2

N−1∑
n=0

∥∥∥δn+1
f − δnf

∥∥∥2

L2(Ω)

+
ρsh

21

N−1∑
n=0

∥∥∥δn+1
f − δnf

∥∥∥2

L2(Γ)
+ 2µ∆t

N−1∑
n=0

‖D(δ
n+ 1

2

f )‖2L2(Ω)

+
∆t2

64ρsh

N−1∑
n=0

∥∥∥σ(δn+ 1
2

f , δ
n+ 1

2
p

)
n− σ

(
δ
n− 1

2

f , δ
n− 1

2
p

)
n
∥∥∥2

L2(Γ)

. ∆t

N−1∑
n=0

(
ρf

∥∥∥dtθn+1
f

∥∥∥2

L2(Ω)
+ ρsh(1 + ∆t)

∥∥∥dtθn+1
f

∥∥∥2

L2(Γ)
+ µ

∥∥∥D(θ
n+ 1

2

f )
∥∥∥2

L2(Ω)

+
C2
kd

µ

∥∥∥θn+ 1
2

p

∥∥∥2

L2(Ω)
+
∥∥∥θn+ 1

2
η

∥∥∥2

E
+
∥∥dtθn+1

η

∥∥2

E
+
∥∥∥θn+ 1

2

f

∥∥∥2

E

+
∆t2

ρ2
sh

2

∥∥∥σ(θn+ 1
2

f , θ
n+ 1

2
p

)
n−σ

(
θ
n− 1

2

f , θ
n− 1

2
p

)
n
∥∥∥2

E
+

∆t2

ρsh

∥∥∥σ(θn+ 1
2

f , θ
n+ 1

2
p

)
n
∥∥∥2

L2(Γ)

)
+ ∆t

N−1∑
n=0

(
ρf

∥∥∥dtun+1 − ∂tun+ 1
2

∥∥∥2

L2(Ω)
+ ρsh (1 + ∆t)

∥∥∥dtun+1 − ∂tun+ 1
2

∥∥∥2

L2(Γ)

+
∥∥∥dtηn+1 − ∂tηn+ 1

2

∥∥∥2

E
+

∆t2

ρ2
sh

2

∥∥∥(σ (un+ 1
2 , pn+ 1

2

)
n− σ

(
un−

1
2 , pn−

1
2

))
n
∥∥∥2

E

)
+ ∆t

N∑
n=0

(
ρf
2

∥∥δnf ∥∥2

L2(Ω)
+
ρsh

2

∥∥δnf ∥∥2

L2(Γ)
+
µ

4

∥∥D(δnf )
∥∥2

L2(Ω)
+

(
1+

βC2
inv∆t

ρsh∆x2

)∥∥δnη ∥∥2

E

)
.

Using (5.2), estimates in Lemmas 5.1 and 5.2 and taking into account the CFL
condition (4.3) we have

ρf
2

∥∥δNf ∥∥2

L2(Ω)
+
ρsh

2

∥∥δNf ∥∥2

L2(Γ)
+

1

2

∥∥δNη ∥∥2

E
+
µ∆t

2

∥∥D(δNf )
∥∥2

L2(Ω)

+
∆t2

4ρsh

∥∥∥σ(δN− 1
2

f , δ
N− 1

2
p

)
n
∥∥∥2

L2(Γ)
+ 2µ∆t

N−1∑
n=0

‖D(δ
n+ 1

2

f )‖2L2(Ω)

. ∆x2k

(
ρf ‖∂tu‖2L2(0,T ;Hk+1(Ω) + ρsh∆x2 (1 + ∆x) ‖∂tu‖2L2(0,T ;Hk+1(Γ)
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+ µ ‖u‖2L2(0,T ;Hk+1(Ω)) +

(
µ∆x2

ρsh
+ 1 +

βC2
invµ

ρ2
sh

2

)
‖u‖2L2(0,T ;Hk+1(Γ))

+ ‖∂tη‖2L2(0,T ;Hk+1(Γ)) + ‖η‖2L2(0,T ;Hk+1(Γ))

)
+ ∆x2s+2

(
C2
kd

µ
‖p‖2L2(0,T ;Hs+1(Ω)) +

(
βC2

inv

ρ2
sh

2
+

∆x2

ρsh

)
‖p‖2L2(0,T ;Hs+1(Γ))

)
+ ∆t4

(
ρf ‖∂tttu‖2L2(0,T ;L2(Ω)) + ρsh (1 + ∆t) ‖∂tttu‖2L2(0,T ;L2(Γ)) + ‖∂tttη‖2L2(0,T ;E)

+
1

ρ2
sh

2
‖∂tσ (u, p)n‖2L2(0,T ;H1(Γ))

)
+ ∆t

N∑
n=0

(
ρf
2

∥∥δnf ∥∥2

L2(Ω)
+
ρsh

2

∥∥δnf ∥∥2

L2(Γ)

+
µ

4

∥∥D(δnf )
∥∥2

L2(Ω)
+

(
1+

βC2
inv∆t

ρsh∆x2

)∥∥δnη ∥∥2

E

)
.

The final estimate follows by applying the triangle inequality and Lemma 4.1 with

γn = max

{
1

2∆t
, 2

(
1 +

βC2
inv∆t

ρsh∆x2

)}
.

6. Numerical examples. In this section we test the accuracy and stability of
the CNFSI numerical scheme on two examples. First we consider a classical bench-
mark problem used to test FSI solvers [18, 9, 1, 6, 10, 8]. Using this example, we
study the convergence of scheme (3.5)–(3.12) in two spatial dimensions in Example 1.
Then, to demonstrate applicability of the CNFSI scheme to realistic blood flow sim-
ulations on a three-dimensional example, we model blood flow in a common carotid
artery under physiological conditions in Example 2.

6.1. Example 1: Benchmark problem for FSI with elastic structure. To
verify the convergence rates, we consider the benchmark problem used to verify FSI
solvers in [10, 8, 15]. In this example, we assume that the fluid domain is a rectangle
Ω = [0, 5] × [0, 0.5]. The top boundary corresponds to the fluid-structure interface,
while symmetry conditions are prescribed at the bottom boundary. The flow is driven
by the time-dependent pressure data

pin(t) =

{
pmax

2

(
1− cos

(
2πt
tmax

))
it t ≤ tmax,

0 it t > tmax,
pout(t) = 0 ∀t ∈ (0, T ),

where pmax = 1.3333 ·104 dyne/cm2 and tmax = 3 ms. The problem is solved over the
time interval [0, 14] ms. To discretize the problem in space, we use the P1 bubble–P1

elements for the velocity and pressure and P1 elements for displacement. The values
of the parameters used in this example are given in Table 1.

To model the fluid flow, we used the Stokes equations. For the structure displace-
ment, we consider a thin, elastic structure described by a generalized string model
with the assumption of zero axial displacement:

η = (0, ηy)T , LSη = (0, C0ηy − C1∂xxηy)T

with C0 =
Eh

R2(1− σ2)
and C1 =

Eh

2(1 + σ)
,(6.1)

where E is the Young’s modulus and σ is Poisson’s ratio. In this case, parameter β
that appears in (2.17) can be estimated as β = 4 ·105. Using a uniform computational



608 O. OYEKOLE, C. TRENCHEA, AND M. BUKAČ

Table 1
Geometry, fluid, and structure parameters used in Example 1.

Parameter Value Parameter Value

Radius R (cm) 0.5 Wall thickness h (cm) 0.1
Length L (cm) 5 Poisson’s ratio σ 0.5

Fluid viscosity µ (g/(cm s)) 0.035 Young’s mod. E(dyne/cm2) 0.75 · 106

Fluid density ρf (g/cm3) 1 Wall density ρs(g/cm3) 1.1

0 0.05 0.1 0.15

 x

0

0.5

1

1.5

2

2.5

 t

10
-4

Fig. 2. Relation between ∆x and ∆t which gave rise to a stable solution. Proportionality
constant is 1.9 · 10−3.

mesh and the results from [24], we can estimate that Cinv = 16.7. Hence, in this test
example the stability condition (4.3) gives

(6.2) ∆t ≤ 3.14 · 10−5∆x.

The sharpness of this condition was investigated numerically. Figure 2 shows the
relation between ∆x and ∆t which gave rise to a stable solution. The proportionality
constant in this case is 1.9 · 10−3, which is less restrictive than the prediction (6.2)
obtained from theory.

In order to verify the time convergence estimates from Theorem 5.3, we gener-
ate a reference solution using a monolithic scheme (2.18) with high grid resolution
(∆t = 10−6,∆x = 0.0063). To test the partitioned scheme, we refine in space and
time at the same rate. In particular, we use

(∆t,∆x) ∈
{(

10−4

2k
,

6.25 · 10−1

2k

)}3

k=0

.

Due to the short simulation time (T = 0.016 s), the largest time step typically used
in this benchmark problem is O(5 · 10−4) s. We note that due to the stability condi-
tion (4.3), the largest time step we could use to obtain stable results is ∆t = 10−4.
Figure 3 shows relative error for the fluid velocity in L2-norm (left) and for the struc-
ture displacement in ‖ · ‖E norm (right) obtained at T = 8 ms. Indeed, the error
estimates (5.16) yield the observed time-convergence rates.

6.2. Example 2: Blood flow in common carotid artery. The carotid arter-
ies are major blood vessels in the neck that supply blood to the brain, neck, and face.
To demonstrate performance of our scheme in realistic applications, we simulate blood
flow in a common carotid artery under physiological conditions in a three-dimensional
case. We also compare our results to the ones obtained using a monolithic scheme.
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Fig. 3. Time convergence obtained at t = 8 ms. Left: Relative error for fluid velocity in the
L2-norm. Right: Relative error for the structure displacement in the ‖ · ‖E norm.

Fig. 4. Computational three-dimensional domain used in Example 2.

We model the common carotid artery as a straight cylinder of length 4 cm and
radius 0.3 cm; see Figure 4. Similarly as in [25], at the fluid inlet section we prescribe
a fully developed time-dependent axial velocity, while a pressure waveform is imposed
at the outlet. In particular, we impose the following conditions:

u =

(
0, 0, uD(t)

R2 − r
R2

)
on Γfin and σn = −pout(t)n on Γfout,(6.3)

where r is the radial distance from the origin and uD(t) and pout(t) are shown in
Figure 5.

The blood is modeled using the Navier–Stokes equation for a viscous, incom-
pressible fluid. The thin structure model used in this example is a linear membrane
model [17, 16, 14], given in the weak form as

ρsh

∫
Γ

∂2η

∂t2
· ζdS+

∫
Γ

D1η · ζdS+

∫
Γ

D2
∂η

∂t
· ζdS+h

∫
Γ

Πγ(η) : ∇γζdS︸ ︷︷ ︸
ae(η,ζ)

=

∫
Γs
f · ζdS,

(6.4)

where η = (ηx, ηy, ηz) denotes the structure displacement. For a linearly elastic,
isotropic structure

Πγ(η) =
E

1 + σ2

∇γη +∇Tγ η
2

+
Eσ

1− σ2
∇γ · η,(6.5)

where ∇γ(·) denotes the surface gradient, which can be computed as [14, 7]

∇γ(η) = ∇η(I − n⊗ n),
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Fig. 5. Boundary conditions for the fluid domain. Left: inlet velocity. Right: outlet pressure.

Table 2
Geometry, fluid, and structure parameters used in Example 2.

Parameter Value Parameter Value

Radius R (cm) 0.3 Wall thickness h (cm) 0.06
Length L (cm) 4 Poisson’s ratio σ 0.5

Fluid viscosity µ (g/(cm s)) 0.04 Young’s mod. E(dyne/cm2) 2.6 · 106

Fluid density ρf (g/cm3) 1 Coefficient D1(dyne/cm3) 6 · 105

Wall density ρs(g/cm3) 1.1 Coefficient D2(dyne s/cm3) 2 · 105

where the symbol ⊗ denotes the tensor product and I is the identity operator. The co-
efficients E and σ are the Young’s modulus and the Poisson’s ratio for the membrane,
respectively. Terms multiplied by D1 and D2 in (6.4) take into account the constrain-
ing effects of the external tissue. Values of the parameters used in this example are
given in Table 2.

The fluid mesh used in this example consists of 8181 vertices and 41280 tetrahe-
dral elements, while the structure mesh consists of 2268 vertices and 4480 triangles.
We used P1 bubble –P1 elements for the velocity and pressure and P1 elements for
displacement. All initial conditions are set to zero. Even though the results are stable
for a larger time step, ∆t = 10−4 is used in numerical simulations because that is the
value needed to establish time step independence. The numerical simulations were
performed for final time T = 4 s. The periodic regime was obtained after three car-
diac cycles. To demonstrate that the periodic regime was established, the structure
displacement over four cycles at the midpoint of the structure domain is shown in
Figure 6. We note that the solution is axially symmetric, and the midpoint is chosen
to be (0.3, 0, 2), shown in Figure 4. Similar results are obtained for the fluid velocity
and pressure, i.e., the periodic regime is established after three cycles.

Using the same parameter setting, we performed numerical simulations using a
monolithic scheme. Time step independence was established using ∆t = 5 · 10−4.
As with using the partitioned approach, periodic solutions are obtained after three
cycles. Figure 7 shows a comparison of the results obtained using a monolithic scheme
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Fig. 7. Comparison of the results obtained using the CNFSI scheme and a monolithic scheme.
Left: structure displacement. Right: fluid velocity.

and our scheme after the periodic regime was obtained. The left panel shows a
comparison of the structure displacement at the midpoint of the structure domain
(0.5, 0, 2) and the right panel shows a comparison of the fluid velocity at the center
of domain (0,0,2). In both cases, the relative error between the solution obtained
with a monolithic scheme and the CNFSI scheme is smaller than 1%. Although
the partitioned scheme required a smaller time step than the monolithic scheme, the
subproblems in the partitioned scheme are better conditioned than the monolithic
scheme. More precisely, the stiffness matrices associated with the fluid and structure
subproblems in the CNFSI scheme have a condition number of the order O(105), while
the condition number of the stiffness matrix in the monolithic scheme is O(1010).

7. Conclusions. We present a partitioned, loosely coupled scheme for the in-
teraction between a viscous, incompressible fluid and a thin, elastic structure. The
time discretization is based on the Crank–Nicolson discretization method, and the
discretization in space is performed using the finite element method. Using energy
estimates, we show that the presented scheme is stable under a CFL condition. How-
ever, this condition is independent of the ratio between fluid and structure densities
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and hence the scheme is not affected by the instabilities related to the added mass
effect. Using a priori error analysis, we show that the scheme is second-order accurate
in time and optimally accurate in space.

The energy of the system in the stability estimates is bounded by an exponential
function due to the use of the Gronwall lemma. However, long time stability is
demonstrated in the numerical results. The numerical examples include a benchmark
problem used to verify the rates of convergence and a realistic study of blood flow
in a common carotid artery. Our scheme is shown to be stable under physiological
conditions related to blood flow and comparable in accuracy to a monolithic scheme.
As expected, to achieve the same accuracy as the monolithic scheme, a smaller time
step was needed. However, the proposed partitioned scheme requires the solution of
smaller subproblems, without the use of preconditioners. Possible extensions of this
work include nonlinear solids and thick structure models.
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