Linear Algebra Preliminary Exam

September 5 2020

Problem 1 Let A, B be complex square matrices with minimal polynomials $m_A(s)$, $m_B(s)$ and characteristic polynomials $p_A(s)$, $p_B(s)$. Show that if

$$m_A(s) = p_B(s)$$
 and $m_B(s) = p_A(s)$,

then A and B are similar.

Problem 2 Let A_n be a $2^n \times 2^n$ real matrix defined recursively by

$$A_{1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},$$

$$A_{n} = \begin{pmatrix} A_{n-1} & I_{2^{n-1}} \\ I_{2^{n-1}} & -A_{n-1} \end{pmatrix} \text{ for } n \ge 2.$$

Find det A_n and justify your answer. (Hint: Calculate A_n^2 .)

Problem 3 Let A be a real $n \times n$ matrix. Suppose that the symmetric matrix $A + A^T$ has eigenvalues $\mu_1 \leq \mu_2 \leq \cdots \leq \mu_n$. Show that any eigenvalue λ of A satisfies

$$\frac{\mu_1}{2} \le \operatorname{Re} \lambda \le \frac{\mu_n}{2}.$$

Problem 4 Let M_3 be the collection of all 3×3 complex matrices with the natural linear structure. Let $T: M_3 \to M_3$ be the linear map

$$T\left(\begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array}\right) = \left(\begin{array}{ccc} a_{21} + a_{12} & a_{13} & 0 \\ a_{31} & 0 & a_{13} \\ 0 & a_{31} & a_{32} + a_{23} \end{array}\right).$$

- (a) Show that T is Nilpotent, i.e., $T^k = 0$ for some $k \ge 1$.
- (b) Find the Jordan Canonical Form of T. (Hint: The JCF should be a 9×9 matrix.)

Problem 5 Let A be an anti-selfadjoint map on a finite-dimensional complex Euclidean space. Show that

- (a) A I is invertible.
- (b) If $U = (A + I)(A I)^{-1}$, then U is unitary and U I is invertible.

Problem 6 (a) Let $x = (x_1, \dots, x_n)^T$, $y = (y_1, \dots, y_n)^T$ be two column vectors in \mathbb{R}^n , $n \geq 2$, such that |x| = |y| = 1 and $x \perp y$. Show that

$$x_1^2 + y_1^2 \le 1.$$

(b) Let A be a real $n \times n$ symmetric matrix with n eigenvalues $|\lambda_1| \ge |\lambda_2| \ge \cdots \ge |\lambda_n|$. Show that for any $x, y \in \mathbb{R}^n$ such that |x| = |y| = 1 and $x \perp y$,

$$|(x, Ax) + (y, Ay)| \le |\lambda_1| + |\lambda_2|$$
.