Linear Algebra Preliminary Exam

May 11, 2021

- 1. Let A be an $n \times n$ matrix with complex entries. Prove that A is the sum of two non-singular matrices.
- 2. Let $n \in \mathbb{N} \cup \{0\}$ and V be the vector space of all polynomials in x with real coefficients and degree at most n. Let $P(x) \in V$ such that $\deg(P) = n$. Prove that

$$P(x), \frac{dP(x)}{dx}, \dots, \frac{d^n P(x)}{dx^n}$$

form a basis for V.

- 3. Let V be an n-dimensional vector space. Suppose that $T \in L(V, V)$ has a cyclic vector, i.e., there is a vector $x \in V$ such that $x, Tx, \dots, T^{n-1}x$ form a basis of V. Show that if $U \in L(V, V)$ and UT = TU, then U is a polynomial in T.
- 4. Let $n \geq 2$ and A be a complex $n \times n$ matrix. Suppose that A has a dominant eigenvalue λ in the sense that λ is a simple eigenvalue of A and any other eigenvalue μ of A satisfies $|\mu| < |\lambda|$. Show that

$$\lim_{k \to \infty} \frac{1}{\lambda^k} A^k$$

exists and the limit is a rank one matrix.

5. Let X be an $n \times n$ complex Euclidean space and P_1, P_2 be two orthogonal projections such that

$$P_1 + P_2 \le I$$
.

Show that $P_1P_2 = P_2P_1 = 0$.

6. Let A, B be two $n \times n$ complex matrices such that $A \ge 0$ and AB + BA = 0. Show that AB = BA = 0.