Linear Algebra Preliminary Exam August 25, 2021

1. Let A, B be two $n \times n$ matrices over \mathbb{C} . Suppose that B is nilpotent and AB = BA. Prove that

$$\det(A+B) = \det(A).$$

- 2. Let A be an $n \times n$ matrix over \mathbb{R} . Suppose that $A^2 = AA^T$. Prove that A is symmetric. Note: A is not assumed to be invertible. No points will be awarded if your argument relies on assuming the invertibility of A or something equivalent.
- 3. Suppose that an $n \times n$ complex matrix $A = (a_{ij})_{n \times n}$ satisfies

$$\sum_{j=1}^{n} a_{ij} = \sum_{j=1}^{n} a_{ji} = 0$$

for $1 \leq i \leq n$. Prove that all n^2 cofactors of A are equal.

- 4. Let P_1, P_2 be two projections of a vector space X over \mathbb{C} into itself. If $\frac{P_1+P_2}{2}$ is also a projection, show that rank $P_1 = \operatorname{rank} P_2$.
- 5. Let $n \ge 1$, $P = (p_{ij})_{n \times n}$ be a positive definite real symmetric matrix and $Q = P^{-1}$. Show that for any nonzero real column vector $x \in \mathbb{R}^n$,

$$\frac{\left(\sum_{i=1}^{n} x_i\right)^2}{x^T Q x} \le \sum_{i,j=1}^{n} p_{ij}.$$

6. Let A, B be two square matrices over \mathbb{C} . Show that rank (AB - BA) = 1 implies A and B have at least one common eigenvector.