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Abstract. The leapfrog time-differencing scheme is widely used in numerical models of the atmosphere and ocean. Its
accuracy can be improved by replacing the stabilizing Robert–Asselin filter with the Robert–Asselin–Williams (RAW) filter
and also by using a composite tendency, which is constructed as a linear combination of the filtered and unfiltered tendencies.
This paper conducts a detailed, rigorous analysis of the RAW-filtered composite-tendency leapfrog scheme. To facilitate
the analysis, the scheme is first reduced to an equivalent partitioned multistep method. Taylor expansions show that the
overall truncation error can be of order 1, 2, 3, or 4, depending on the parameter values. Root locus curves are used to
derive the stability domain analytically. Numerical tests show that the analytic stability limits are sharp. Numerical tests
also demonstrate the importance of proper initialization of the provisional (unfiltered and once-filtered) values, if the high
accuracy is not to be degraded.

1. Introduction. The second-order, centred time-differencing scheme is known in the atmospheric
and oceanic sciences as the leapfrog scheme. This scheme is used in many current numerical models (e.g.,
[4, 6, 7, 9, 14]). In order to damp the computational mode of the leapfrog scheme, it is usual to apply a
Robert–Asselin filter [1]. Unfortunately, this filter damps the physical mode as well as the computational
mode, and it reduces the accuracy of the scheme to first-order. Williams [13, 15] proposed a modification
to the Robert–Asselin filter, in order to eliminate the first-order truncation errors. The modified filter has
subsequently been adopted as the default scheme in various models (e.g., [12, 17]). As examples of its
impacts, the modification has been found to improve the skill of medium-range weather forecasts [2] and
to improve the simulation of major oceanic current systems including the Gulf Stream [18]. The modified
filter has become known as the Robert–Asselin–Williams (RAW) filter.

More recently, Williams [16] proposed two methods for further improving the RAW-filtered leapfrog
scheme. In both methods, the improvements are to the order of the amplitude errors of oscillatory modes;
the order of the phase errors is unaffected. The first improvement is that leapfrogging over a particular
linear combination of the filtered and unfiltered tendencies can eliminate the leading third-order ampli-
tude errors and produce fifth-order amplitude accuracy. The second improvement is that the use of a
(1,−4, 6,−4, 1) filter instead of a (1,−2, 1) filter can eliminate the leading fifth-order amplitude errors and
produce seventh-order amplitude accuracy. In other related work, the proposed use of a linear combination
of tendencies has been analysed in semi-implicit integrations [3] and a higher-order Robert–Asselin-type
time filter has been proposed and analyzed [11].

In the present paper, we focus on the first of the above two improvements, namely the composite-
tendency scheme. We investigate the accuracy and the stability properties of this scheme, more rigorously
and in more detail than has been done before. The key step in our analysis is to derive the equivalent
partitioned multistep method. Using this result, we obtain the consistency order and stability domain of
the scheme. This knowledge allows us to gain new insights into the relationships between the consistency
order and the filter parameters. In addition, the equivalent partitioned multistep method yields a new
relationship that must be satisfied by the initial condition, if the accuracy is not to be degraded by the
initialization.

The paper is organized as follows. The proposed scheme is analyzed in Section 2, where the equivalent
partitioned multistep method, the order of convergence, and the stability domain are derived. Section
3 presents simple numerical tests to verify the consistency order and the stability. The summary and
discussion appear in Section 4.
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2. Linear analysis. This section presents a linear analysis of the RAW-filtered composite-tendency
leapfrog scheme. In Section 2.1, the defining equations for the numerical scheme are stated. The equivalent
partitioned method is derived in Theorem 2.1. Sections 2.2 and 2.3, respectively, derive the consistency
order and the stability domain.

2.1. The numerical scheme. Applied to the complex oscillation equation,

du

dt
= iωu, ω ∈ R, (2.1)

the RAW-filtered composite-tendency leapfrog scheme ((5)–(7) in [16]) is given by

wn+1 =un−1 + 2iω∆t(γvn + (1− γ)wn), (2.2)

un = vn +
να

2
(wn+1 − 2vn + un−1), (2.3)

vn+1 =wn+1 +
ν(α− 1)

2
(wn+1 − 2vn + un−1), (2.4)

where ∆t denotes the time step. The three dimensionless parameters in the scheme are ν, α, and γ, where
ν corresponds to the classical Robert–Asselin filter parameter, α partitions the RAW filter displacements
between the n’th and (n + 1)’th time levels, and γ specifies the weighting coefficients for the composite
tendency. Although previous work [16] has assumed 0 ≤ γ ≤ 1, which may be a natural choice on some
grounds, here we allow γ to vary outside this range. The variables wn, vn, and un denote, respectively, the
unfiltered, once-filtered, and twice-filtered values at time tn = n∆t. The scheme recovers to the original
RAW-filtered leapfrog scheme [13] when γ = 1, and recovers to the classical Robert–Asselin-filtered leapfrog
scheme [1] when α = 1.∗

The key step to be achieved before performing the consistency and stability analysis is to derive the
equivalent partitioned method. This step is achieved in Theorem 2.1.

Theorem 2.1. The system (2.2)-(2.4) is equivalent to the following partitioned multistep method:

un+1 − νun − (1− ν)un−1

=iω∆t
(

(2 + νγ(α− 1))un + ν(2γ + α− 2− 2αγ)un−1 + ν(1− α)(1− γ)un−2
)
, (2.5)

or, equivalently,

un+1 − νun − (1− ν)un−1 =iω∆t
(

[2 + ν(α− 1)]un − ναun−1
)

+ iω∆tν(1− α)(1− γ)
(
un − 2un−1 + un−2

)
.

Proof. The proof involves expresssing wn+1 and vn in terms of values of u, and then substituting them
into (2.3) to obtain a single equation in u.
Step 1. Eliminating wn+1 from (2.2) and (2.3) gives

un = ναun−1 +
(
iω∆tναγ + (1− να)

)
vn + iω∆tνα(1− γ)wn,

from which it follows that

wn = p1u
n − p2un−1 − p3vn, (2.6)

∗Note that γ = 1 is not required for the scheme to recover to the classical Robert–Asselin-filtered leapfrog scheme, since
vn = wn in (2.4) if α = 1.
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where

p = iω∆tνα(1− γ),

p1 = 1/p,

p2 = να/p,

p3 =
(
iω∆tναγ + (1− να)

)
/p.

Equivalently, we have

wn+1 = p1u
n+1 − p2un − p3vn+1. (2.7)

Step 2. Eliminating vn from (2.3) and (2.4) gives

− (1− ν(α+ 1)/2)wn+1 + ν(α− 1)un + (1− να)vn+1 =
ν(α− 1)

2
un−1. (2.8)

By substituting (2.6) into (2.8), we have

− (1− ν(α+ 1)/2) (p1u
n+1 − p2un − p3vn+1) + ν(α− 1)un + (1− να)vn+1 =

ν(α− 1)

2
un−1.

Then vn+1 is found to be

vn+1 = q1u
n+1 − q2un + q3u

n−1, (2.9)

where

q = (1− ν(α+ 1)/2) p3 + (1− να),

q1 = (1− ν(α+ 1)/2) p1/q,

q2 = ((1− ν(α+ 1)/2) p2 + ν(α− 1)) /q,

q3 = ν(α− 1)/(2q).

Equivalently, we have

vn = q1u
n − q2un−1 + q3u

n−2. (2.10)

Step 3. Substitution of vn+1 into (2.7) gives

wn+1 =p1u
n+1 − p2un − p3vn+1

=p1u
n+1 − p2un − p3(q1u

n+1 − q2un + q3u
n−1)

=(p1 − p3q1)un+1 + (p3q2 − p2)un − p3q3un−1. (2.11)

Finally, substitution of (2.10) and (2.11) into (2.3) completes the proof.

Having concluded the proof, we can now use the theorem to derive the consistency order and stability
domain.

2.2. The consistency order. By Taylor expansions of u(tn+1), u(tn−1), and u(tn−2) at time tn, the
truncation error of (2.5) is found to be

τn(∆t) =
1

∆t
(u(tn+1)− νu(tn)− (1− ν)u(tn−1))
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− iω
(
(2 + νγ(α− 1))u(tn) + ν(2γ + α− 2− 2αγ)u(tn−1) + ν(1− α)(1− γ)u(tn−2)

)
=

(
1

2
− α

)
ν(iω∆t)u′(tn) +

1

6
(2− ν(7− 9α) + 6νγ(1− α)) (iω∆t)2u′(tn)

+
ν

24
(25− 28α− 24γ + 24αγ)(iω∆t)3u′(tn) +O(∆t4).

We observe that the scheme is generally first order if ν 6= 0.† The scheme becomes second order if α = 1/2,
as noted by Williams [16]. A new result here is that the scheme becomes third order if α = 1/2 and
γ = (5ν − 4)/(6ν). This third-order scheme would require γ < 0 if ν < 4/5, but there is no reason to
forbid negative values of γ. Finally, the scheme becomes fourth order if α = 1/2, ν = −8, and γ = 11/12,
but this case is not of practical interest because the negative value of ν means the computational mode is
amplified by the filter.

Durran [5] proves a general proposition relating the order of the overall truncation error of a time-
stepping scheme to the order of the phase and amplitude errors. The above findings are consistent with
this proposition. In particular, the proposition shows that schemes of order 2 have phase errors of exactly
second order, but that schemes of order 4 have phase errors of exactly fourth order. Williams [16] reported
fourth-order phase errors for the case α = 1/2, ν = −8, γ = (3− ν)/(4− ν) = 11/12, which is consistent
with fourth-order accuracy according to the above results.

2.3. The stability region. The root locus curve of a multistep method is the oriented boundary of
its stability region. Thus, one can find the stability region by determining the root locus curve, and such a
method is called the root locus curve method (see e.g. [8] for more details). In this section, we determine
the stability of the proposed schemes using the root locus curve method. We focus on the case α = 1/2,
which is the composite-tendency RAW-filtered leapfrog scheme that is at least second order. We note that
the stability of the case α = 1 has been determined in [10] as

ω∆t ≤
√

2− ν
2 + ν

.

When α = 1/2, the characteristic equation of (2.5) is

ζ3 − νζ2 − (1− ν)ζ − z
(
(2− νγ/2)ζ2 + ν(γ − 3/2)ζ + ν(1− γ)/2

)
= 0,

where ζ denotes all points on the unit circle, i.e., ζ = eiθ for θ ∈ [0, 2π], and z ∈ C. The curve of z is the
root locus curve. In (2.5), z = iω∆t lies on the imaginary axis, and hence θ satisfies

cos θ = 1 or cos θ =
1− (2− ν)(1− γ)

2(1− γ)
,

provided γ ≤ (3− ν)/(4− ν) to ensure | cos θ| ≤ 1. Therefore,

z = 0 or z = ±i 2

(1− γ)(4− ν)

√
(3− ν)− (4− ν)γ

1 + ν(1− γ)
.

These values indicate the intersections of the root locus curve with the imaginary axis in the complex
plane. Thus, we learn that the scheme has a stable range of time steps provided that:

ω∆t ≤ 2

(1− γ)(4− ν)

√
(3− ν)− (4− ν)γ

1 + ν(1− γ)
, γ ≤ (3− ν)/(4− ν). (2.12)

†If ν = 0, the scheme is generally second order, but then the filter is inactive and the computational mode is uncontrolled.
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We note that the third-order scheme identified in Section 2.2 has a stable range for the small, positive
values of ν that are used in practical applications.

The root locus curves for ν = 0.1 and several combinations of α and γ are plotted in Figure 2.1. The
stability region of the third-order scheme with γ = (5ν−4)/(6ν) is enclosed by the imaginary axis and the
root locus curve on the left half of the plane, and the stability condition is ω∆t ≤ 0.2929. The stability
regions of the rest of the schemes are enclosed by their root locus curves. When α = 1/2, the root locus
curves for γ = (5ν − 4)/(6ν), γ = 0, and γ = 1/2 intersect with the imaginary axis at the three points
derived above. In contrast, the root locus curves for γ = (3 − ν)/(4 − ν) and γ = 1 intersect with the
imaginary axis only at the origin, indicating that these schemes are unstable. As γ decreases starting
from γ = (3 − ν)/(4 − ν), i.e. as more of the unfiltered tendency is mixed into the composite tendency,
the scheme becomes more stable in the sense that the finite stable range increases. In some cases (e.g.,
α = 0.5, γ = 0.5) the scheme has a slightly greater finite stable range than the original Robert–Asselin
scheme (α = 1).
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Fig. 2.1: Root locus curves for the scheme (2.2)-(2.4) are plotted for the case ν = 0.1, for various combinations of α and γ.
Note that α = 1 corresponds to the original Robert–Asselin filter.

3. Numerical tests. This section presents some numerical tests on the composite-tendency RAW-
filtered leapfrog scheme. Section 3.1 analyzes the consistency order and Section 3.2 analyzes the stability.

3.1. Numerical tests for the consistency order. Consider the oscillation equation (2.1). For
simplicity, we take ω = 1 and the initial condition u(0) = 1, for which the exact solution is u(t) = eit.
To test the impacts of initialization on the numerical errors, we now numerically integrate this oscillation
equation using the scheme (2.2)–(2.4) over the time interval [0, 10]. The errors stated below are calculated
as the absolute difference between the exact solution and the numerical solution at the final time, t = 10.
We take ν = 0.1, α = 1/2, and γ = (5ν − 4)/(6ν). For these parameters, the errors are expected to be
O(∆t3), as shown in Section 2.2.

For the first numerical experiment, the initialization method is as follows. Given u1 = u(0), the
fourth-order Runge–Kutta (RK4) method is used to calculate u2. We then take w2 = v2 = u2 and start
the integration loop from n = 2. The errors for various time steps are shown in Table 3.1, together with
the inferred rates of convergence. We observe that the rate of convergence is somewhere between 2 and 3,
which is not exactly the O(∆t3) convergence suggested by Section 2.2.
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∆t Error Rate
1/10 1.8960e-03 2.90
1/20 2.5461e-04 2.82
1/40 3.5998e-05 2.70
1/80 5.5301e-06 2.54
1/160 9.4822e-07 2.38
1/320 1.8275e-07 -

Table 3.1: The rate of convergence for the scheme (2.2)-(2.4) applied to the oscillation equation (2.1) for
ω = 1 and u(0) = 1. The parameters are α = 1/2, ν = 0.1, and γ = (5ν − 4)/(6ν) ≈ −5.8. Given
u1 = u(0), the RK4 method is used to calculate u2, and then we take w2 = v2 = u2, i.e., the initialization
of w and v violates (2.6) and (2.10).

The reason for the apparent discrepancy is an improper initialization of the provisional values, v and
w. We initialized w2 and v2 as w2 = v2 = u2 and started the loop from n = 2. However, in order to
recover strict third-order accuracy, wn and vn should depend on the un’s following the relationships in
(2.6) and (2.10). We now repeat the numerical experiment using an initialization method that satisfies
these relationships, as follows. Given u1 = u(0), we use the RK4 method‡ to calculate u2 and u3. We then
calculate w3 and v3 according to (2.6) and (2.10) and start the integration loop from n = 3, i.e. the first
loop computes w4, u3, and v4. The results are shown in Table 3.2. We observe that the rate of convergence
is now much closer to the O(∆t3) convergence suggested by Section 2.2.

∆t Error Rate
1/10 1.7489e-03 2.99
1/20 2.2035e-04 2.99
1/40 2.7650e-05 3.00
1/80 3.4628e-06 3.00
1/160 4.3326e-07 3.00
1/320 5.4183e-08 -

Table 3.2: The rate of convergence for the scheme (2.2)-(2.4) applied to the oscillation equation (2.1) for
ω = 1 and u(0) = 1. The parameters are α = 1/2, ν = 0.1, and γ = (5ν − 4)/(6ν) ≈ −5.8. Given
u1 = u(0), the RK4 method is used to calculate u2 and u3, and then we calculate w3 and v3 according to
(2.6) and (2.10).

3.2. Numerical tests for the stability. To test the analytic stability limits, we again consider the
oscillation equation (2.1) with ω = 1 and initial condition u(0) = 1. We numerically integrate this system
using the scheme (2.2)-(2.4) with α = 1/2, ν = 0.1, and γ = 0.5. The initialization procedure used here
is the same as that described in the caption to Table 3.2. According to (2.12), the maximum stable time
step with which the oscillation equation can be integrated with these numerical parameters is δt = 0.9756.
The energy of the numerical solution with time steps ∆t = 0.99δt and ∆t = 1.01δt over the time interval
[0, 200] are plotted in Figure 3.1. We observe that the maximum ω∆t derived in Section 2.3 is sharp, i.e.
it cannot be made more restrictive.

‡Any method of at least third-order accuracy could be used.
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Fig. 3.1: Energy for the numerical solution of the scheme (2.2)-(2.4) with ∆t = 0.99δt (left) and ∆t = 1.01δt (right), where
δt is the theoretical maximum stable time step derived in Section 2.3 for α = 1/2, ν = 0.1, and γ = 0.5.

4. Summary and discussion. In this paper, we have analyzed one of the schemes proposed by
Williams in [16]. We have shown that the scheme applied to the complex oscillation equation is formally
equivalent to a partitioned multistep method. We then used this result to derive analytically the consistency
order (using Taylor expansions) and stability domain (using the root locus curve method). In general, when
α = 1/2, the scheme has O(∆t2) truncation error. The truncation error increases to O(∆t3) if, in addition
to α = 1/2, we also have γ = (5ν − 4)/(6ν). We also numerically verified the order of convergence
and stability. We have shown that care must be taken to avoid improper initialization of the unfiltered
provisional value, w, and once-filtered provisional value, v, because increased truncation errors may result.

An important new result in this paper is the identification of the third-order scheme with α = 1/2
and γ = (5ν − 4)/(6ν). The identification of this scheme was facilitated by the partitioned multistep
method. The scheme has a finite stable range of time steps and matches the accuracy of, for example, the
third-order Adams–Bashforth method. Therefore, the scheme may be of practical interest in atmospheric
and oceanic models. For values of ν in the practical range, γ will be negative. The form of (2.2) lends
itself to an interpretation of γ as a parameter specifying the weighting coefficients of the unfiltered and
singly filtered tendencies, and hence satisfying 0 ≤ γ ≤ 1. However, re-writing (2.2) as

wn+1 = un−1 + 2iω∆t(wn + γ(vn − wn)) (4.1)

shows that γ need not be restricted to this range, if the tendency is interpreted as the unfiltered tendency
(w) modified by a term proportional to the difference between the singly filtered and unfiltered tendencies
(v and w). Therefore, we see no problem in using a negative value of γ in order to obtain third-order
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accuracy.
The reduction of numerical schemes to partitioned multistep methods is a powerful analysis tool which,

when combined with Taylor expansions and the root locus curve method, can yield useful insights into the
order of accuracy and stability domain. Such analysis methods could also be applied to the (1,−4, 6,−4, 1)
filter proposed by Williams [16], which achieves up to seventh-order amplitude accuracy. We leave this
analysis for future work.
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