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Abstract. In this work we study a novel adaptive nonlinear filtering applied to the Leray-α model.
Unlike its classical counterpart, the new filtering requires the solution of a linear elliptic problem, with
constant coefficients, at each time step. The action of the adaptive nonlinear filter throughout the integration
time is refactorized as the solution of a linear system, with the same matrix and multiple right hand-sides.
We discuss the theoretical properties of the new filtering approach applied to the BDF2 approximation of
the Leray-α model. Numerical tests demonstrate that the filtering damps the high wave number modes
of the solution and has similar level of accuracy with the classical filter. Some benchmark results are also
presented.

1. Introduction. Many large eddy simulation (LES) turbulent models [1, 2, 3, 4, 5]
seek to approximate suitable local averages of flow variables. The spatial averaging of a
variable φ(x, t) is usually performed via a filtering procedure, with the paradigm being the
convolution with the Gaussian kernel:

φ(x, t) :=

∫
Rd

c

αd
exp

(
−|x− y|

2

α2

)
φ(y, t) dy, (1.1)

where 0 < α� 1 is the filtering radius, c is a normalization constant, x, y ∈ Rd, and d = 2, 3
is the space dimension. For bounded domains Ω ⊂ Rd, the differential filter of Germano
[6] (also called the Helmholtz filter) is often viewed as a correct extension of the Gaussian
filter:

−α2∆u+ u+∇λ = u in Ω,

∇ · u = 0 in Ω,

u = u on ∂Ω.

(1.2)

In any turbulence model, the purpose of filtering, such as in (1.1) or (1.2), is to truncate
the high-frequency modes of the flow velocity u, both in physical and spectral spaces, which
is a highly nonlinear process. However, the linear filtering (1.2) truncates scales uniformly
in space, thereby over-regularizing the laminar parts of the solution and often removing
critical flow structures [7, 8, 9]. This shortcoming was recognized in [10], where a nonlinear,
adaptive spatial filter was proposed:

−α2∇ · (a(u, p, f)∇u) + u+∇λ = u,

∇ · u = 0,
(1.3)

where a(·) satisfies, for β some small constant that enforces positivity,

0 < β ≤ a(·) ≤ 1 for any (x, t),

a(·) ' 0 selects regions requiring no local filtering, (1.4)

a(·) ' 1 selects regions requiring O(α) local filtering.

The nonlinear adaptive filtering was synthesized with the evolve-filter-relax based sta-
bilization in [10, 11] and with the Leray-α model in [12, 13]. It was mostly tested with
academic problems, with the notable exception being the FDA Nozzle benchmark of [14].

Even though (1.3) is a linear system of equations, it requires a matrix to be assembled at
each time step, and the solution of a mixed problem. It is often the case that the flow solvers
are based on projection-type schemes, where one avoids a solution of the mixed problem via
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relaxing the incompressibility constraint. Thus, the development of such filtering systems
that share this property deserves attention.

Such filtering schemes were considered in [15, 16], where first and second order artificial
compressibility based nonlinear filtering were proposed and studied. Specifically, the filtering
in [16] was demonstrated to be overall second order, but only as a part of evolve-filter-relax
based stabilization scheme. Its second order extension to other models, such as Leray-α
[17, 18], the approximate-deconvolution model [19] or the Bardina scale similarity model
[20], is not obvious without increased computational complexity.

These observations have led us to consider in Section 2.3 a new formulation of the
nonlinear spatial filter (1.3). The filter is based on ideas from [15, 16], the innovation being
that it uses the same matrix for the solution of the linear elliptic equation, at every step
during the time integration.

For clarity of exposition, we will develop our adaptive nonlinear filtering algorithm for
the Leray-α model [18]:

ut + u · ∇u+∇p− ν∆u = f,

∇ · u = 0,

where now u solves the new filtering equation.
We have opted for the Leray model solely for the simplicity of its implementation.

As it is well-known, it directly regularizes the convective term by reducing its degrees of
freedom and satisfies the same energy equation as the Navier-Stokes equation (NSE). The
initial simulations of a mixing layer [7, 8] were reported to be very promising; however the
tests on wall-bounded flows in [21] produced unsatisfactory results. It was advocated in
[22] to blend the Leray-α model with an eddy-viscosity model to obtain results that match
the experimental data well. It should be noted that all the preceding references in this
paragraph are performed with the classical Helmholtz filter (1.2).

The paper is organized as follows. In Section 2 we introduce the notation, the choice
of an indicator function, present our numerical algorithm and state the desired properties
of the new adaptive filtering step. In Section 3 we prove that our algorithm satisfies the
required properties. Namely, we establish the stability of the filtering step, prove its second-
order accuracy (for a filtering radius of the order of the time-step), and provide estimates for
the error between the solution of the NSE and the solution to our algorithm. We dedicate
Section 4 to numerical tests, and draw some conclusions in the last Section.

2. Preliminaries.

2.1. Notations. We denote by Ω ⊂ Rd an open, simply connected domain with piece-
wise smooth boundary Γ. The L2(Ω) norm and inner product will be denoted by ‖·‖ and
(·, ·). For simplicity of presentation, we assume a no-slip boundary condition. In this setting,
the appropriate velocity and pressure spaces are defined as

X := (H1
0 (Ω))d, Q := L2

0(Ω).

We use as the norm on X , ‖v‖X := ‖∇v‖L2(Ω). The space of divergence-free (solenoidal)
functions, and the weighted Hγ,div space are given by

V := {v ∈ X : (∇ · v, q) = 0 ∀q ∈ Q}

Hγ,div :=
{
v ∈ L2 (Ω)

d
: ‖v‖Hα,div :=

√
‖v‖2 + γ‖∇ · v‖2 <∞

}
,

respectively, where γ > 0 is an arbitrary constant.
We will study flow problems in the space-time Ω × [0, T ] cylinder domain. For a fixed

timestep τ , we set N = [T/τ ]. For a given sequence of functions {φn}Nn=1 ⊂ X, an indicator
function 0 ≤ a(·) ≤ 1, and for any w ∈ X we define the following quantities

‖∇w‖an := ‖
√
a(φn)∇w‖, ‖∆anw‖∗ := sup

v∈X

(a(φn)∇w,∇v)

‖v‖
, 1 ≤ n ≤ N,
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and

H∗N (Ω) := {w ∈ X : ‖∆anw‖∗ <∞} , 1 ≤ n ≤ N.

We also define the discrete Lp-norms with p = 2 or ∞

‖w‖L2(0,T,H∗) =
(
τ

N∑
n=1

‖∆anw
n‖2∗
)1/2

, ‖w‖L2(0,T,Hγ,div) =
(
τ

N∑
n=1

‖wn‖2Hγ,div
)1/2

,

‖w‖L∞(0,T,X) = max
1≤n≤N

‖wn‖X ,

where w = (w1, w2, · · · , wN ). For τ = 1 the discrete norms correspond to the `p-norms on
(H∗)N ,HN

γ,div, X
N .

2.2. Indicator functions. For theoretical and computational reasons, the indicator
function a(u, p, f) must be constructed so that it satisfies (1.4). Several indicator functions
have been proposed in the literature. A number of phenomenology-based indicator functions
were listed in [10], while in [15] an energy residual (entropy) based indicator function inspired
by [23, 24] was considered. Another family of indicator functions based on approximate
deconvolution operators was studied in [13], which we adopt in this paper:

a(u) =
|u− uH |

max
(
‖u− uH‖L∞(Ω), 1

) ,
where u is the Helmholtz filter of u without the enforcement of mass conservation:

−α2∆uH + uH = u in Ω,

uH = u on ∂Ω.
(2.1)

2.3. Numerical algorithm. The two key properties [3, pg. 14] of any reasonable
spatial filter are:

(1) w → w in some reasonable norm as δ → 0;
(2) norm of w is uniformly controlled by the norm of w.

We also want the filtering to have the following properties:
(3) time-independent matrix;
(4) avoid solving a mixed problem;
(5) be second-order (consistent) accurate in time.

The filter considered in [15, 16]

−δ2∆
(
wn+1 − wn

)
+ wn+1 +∇λn+1 − δ2∇ · (a(wn+1)∇wn) = wn+1,

λn+1 − λn +∇ · wn+1 = 0,
(2.2)

meets all the criteria except the last one: the divergence is only first order accurate. While
higher order extensions of the artificial compressibility scheme have been proposed [25, 26],
they all have increased computational complexity. On the other hand, a non-solenoidal
advecting velocity field is known to produce a non-physical result. E.g., as shown in [21], it
can give rise to spurious production of turbulent kinetic energy very close to the wall, which
degrades the performance of the Leray-α model.

Herein we opted to enforce (approximate) incompressibility via bootstrapping:
Algorithm 2.1. Given a forcing f ∈ L∞(0, T ;H−1(Ω)), an initial velocity u0, a

timestep τ > 0, filter radius δ, endtime T , wn+1 := 2un − un−1, γ ≥ χ > 0 and integer N
satisfying T = Nτ , find (un+1, pn+1) such that

Filter: − δ2∆
(
wn+1 − wn

)
+ wn+1 − γ∇∇ · wn+1 − δ2∇ · (a(wn+1)∇wn)

= wn+1 − χ∇∇ · wn+1, (2.3)
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Evolve:
3un+1 − 4un + un−1

2τ
+
(
wn+1 · ∇

)
un+1 +∇pn+1 − ν∆un+1 = f(tn+1), (2.4)

∇ · un+1 = 0. (2.5)

Remark 2.2. The grad-div operator −γ∇∇· frequently occurs in numerical schemes
for incompressible flows. For larger values of γ, the linear system arising from (2.3) is
more accurate and ill-conditioned at the same time. However, due to the adapted right
hand side −χ∇∇·, cf. [27, 28], the conditioning of the linear system could have a favorable
dependence on γ. Namely, when γ > χ � 1 and a(·) ' 0, we show in Section 3 that the
condition number is dominated by O(γ/χ) on shape-regular family of meshes. The numerical
tests in Section 4 also demonstrate the O(γ/χ) dependence even when a(·) 6= 0. On the other
hand, even a slight increase in the value of γ/χ was observed to significantly improve the
mass conservation.

3. Theoretical results. We start by examining the ‘filter’ step (2.3) separately from
the time-stepping procedure described in the ‘evolve’ step (2.4)-(2.5). In order to do this,
let us consider two given arbitrary sequences

(φ1, . . . , φN ) ∈ XN , (w0,w1, . . . ,w
N

) ∈ XN+1, (3.1)

and a function w : [0, T ] × Ω → Rd, such that for all t ∈ [0, T ],w(t, ·) ∈ X, which also
interpolates the sequence {wn}Nn=0, i.e.,

w(tn, ·) = wn, ∀ n = 0, 1, · · · , N. (3.2)

We now denote by (w1, . . . ,wN ) the sequence generated by the general ‘filter’ step in Algo-
rithm 2.1, with indicator functions a(φn+1) instead of a(wn+1), namely

− δ2∆
(

wn+1 − wn
)

+ wn+1 − γ∇∇ · wn+1 − δ2∇ · (a(φn+1)∇wn) (3.3)

= wn+1 − χ∇∇ · wn+1.

First we note that (3.3) can be written as

wn+1 − δ2∇ · (a(φn+1)∇wn+1)− δ2∇ ·
((

1− a(φn+1)
)
∇(wn+1 − wn)

)
− γ∇∇ · wn+1

= w(tn+1)− χ∇∇ · w(tn+1), (3.4)

where in the right hand side we have used (3.2).
To better understand the behavior of the filter step (3.3), we borrow an interpretation
from backward error analysis and geometric integration, based on the notion of modified
equations (see e.g. [29, 30, 31, 32, 33, 34] and the references therein). Let us consider now
two smooth functions w : Ω× [0, T ] and w : Ω× [0, T ] which satisfy the following equations

w − δ2∇ ·
(
a(w)∇w

)
− γ∇∇ ·w = w − χ∇∇ · w, (3.5)

and respectively

w − δ2∇ ·
(
a(w)∇w

)
− γ∇∇ · w − δ2τ∇ ·

((
1− a(w)

)
∇wt

)
= w − χ∇∇ · w. (3.6)

We remark that (3.5) is similar to the nonlinear adaptive filter equation (1.3), while (3.6)
is an O(τ) perturbation of (3.5), called a modified equation to (3.5). From (3.4) it follows
that the (3.3) filtered values {wn}Nn=1 are closer to the manifold w(t) than to w(t):

wn −w(tn) = O(τ), wn − w(tn) = O(τ2).
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This observation allows us to interpret the actions of the Helmholtz filter (1.3) and the new
filter (3.3) on the given sequence {wn}Nn=0 by examining the energy balance for the manifolds
w(t) and w(t). Namely, while (1.3), (3.5) generate O(δ2)-dissipation in the rough regions
a(·) ≈ 1, the new filter (3.3), (3.6) also creates an O(δ2τ) term related to time-changes in
the enstrophy in the smooth regions a(·) ≈ 0:

‖w‖2 + 2δ2‖
√
a(w)∇w‖2 + (2γ − χ)‖∇ · w‖2 + δ2τ

∫
Ω

(
1− a(w)

) ∂
∂t

∣∣∇w
∣∣2dx

= ‖w‖2 + χ‖∇ · w‖2 − ‖w − w‖2 − χ‖∇ · (w − w)‖2.

We point out that (3.3) can be written as(
I − δ2∆− γ∇∇ ·

)
wn+1

=
(
I − δ2∆− β∇∇ ·

)
wn+1 + δ2∆(wn+1 − wn) + δ2∇ ·

(
a(φn+1)∇wn

)
,

which shows that the new filtering requires only one time independent matrix assembly,
i.e., it satisfies the key property (3). This enables the refactorization of the nonlinear filter
(2.3), throughout the whole numerical integration, as the resolution of a linear system with
multiple right hand-sides.
Moreover, we can view the error between the filtered and non-filtered values as

wn+1 − wn+1

=
(
I − δ2∆− γ∇∇ ·

)−1
(

(γ − χ)∇∇ · wn+1 + δ2∆(wn+1 − wn) + δ2∇ ·
(
a(wn+1)∇wn

))
,

where Jδ2 :=
(
I − δ2∆− γ∇∇·

)−1
is the resolvent [35, page 182] of the maximal monotone

operator −
(
∆ +

γ

δ2
∇∇ ·

)
.

3.1. Properties of the filter. We first prove that the modified nonlinear filter (3.3)
satisfies property (2), i.e., the filtered values {wn} are bounded above by the non-filtered
values {wn}.

Lemma 3.1. The filtered values {wn} satisfy

{wn} ∈ `∞(0, T,X) ∩ `2(0, T,Hγ,div)

and the following estimate holds

δ2
∥∥∇wN

∥∥2
+

N−1∑
n=0

‖wn+1‖2Hγ,div
(3.7)

+ (γ − χ)

N−1∑
n=0

‖∇ · wn+1‖2 +

N−1∑
n=0

‖wn+1 − wn+1‖2Hχ,div

+ δ2
N−1∑
n=0

∥∥√1− a(φn+1)∇(wn+1 − wn)
∥∥2

+ δ2
N−1∑
n=0

(∥∥∥∇wn+1
∥∥∥2

an+1
+
∥∥∥∇wn

∥∥∥2

an+1

)
= δ2

∥∥∇w0
∥∥2

+

N−1∑
n=0

‖wn+1‖2Hχ,div .

Moreover, if w0 = 0 then

‖w‖`2(0,T,Hγ,div) ≤ ‖w‖`2(0,T,Hχ,div) (3.8)

(w,w)`2(0,T,Hχ,div) ≥ 0 (3.9)
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and

(w − w,w)`2(0,T,Hχ,div) ≥ 0. (3.10)

Proof. We begin by testing (3.3) with wn+1, which gives

δ2

2

(∥∥∇wn+1
∥∥2 −

∥∥∇wn
∥∥2

+
∥∥∇(wn+1 − wn)

∥∥2
)

+ δ2
(
a(φn+1)∇wn+1,∇wn

)
+ ‖wn+1‖2Hγ,div

=
(

wn+1,wn+1
)

Hχ,div
. (3.11)

Applying the polarized identity

(a, b) =
a2 + b2 − (a− b)2

2

to the filtering term in (3.11) yields

(
a(φn+1)∇wn+1,∇wn

)
=

∥∥∇wn+1
∥∥2

an+1 +
∥∥∇wn

∥∥2

an+1

2
−
∥∥∇(wn+1 − wn)

∥∥2

an+1

2
. (3.12)

Then relation (3.12) allows us to rewrite (3.11) as

δ2

2

(∥∥∇wn+1
∥∥2 −

∥∥∇wn
∥∥2
)

+ δ2

∥∥√1− a(φn+1)∇(wn+1 − wn)
∥∥2

2

+
δ2

2

(∥∥∥∇wn+1
∥∥∥2

an+1
+
∥∥∥∇wn

∥∥∥2

an+1

)
+ ‖wn+1‖2Hγ,div

=
(

wn+1,wn+1
)

Hχ,div

(3.13)

=
1

2
‖wn+1‖2Hχ,div

+
1

2
‖wn+1‖2Hχ,div −

1

2
‖wn+1 − wn+1‖2Hχ,div .

Summation over n from 0 to N − 1 gives (3.7), and as a particular case, (3.8).
The inequality (3.9) is also immediately obtained by summation in (3.13). In order to

derive the inequality (3.10), we can rewrite the equation (3.13) by moving ‖wn+1‖2Hγ,div to
the right hand side.

δ2

2

(∥∥∇wn+1
∥∥2 −

∥∥∇wn
∥∥2
)

+ δ2

∥∥√1− a(φn+1)∇(wn+1 − wn)
∥∥2

2

+
δ2

2

(∥∥∥∇wn+1
∥∥∥2

an+1
+
∥∥∥∇wn

∥∥∥2

an+1

)
=
(
wn+1 − wn+1,wn+1

)
Hχ,div

− (γ − χ)‖∇ · wn+1‖2.

Summation over the time steps yields the remaining inequality.
Next we quantify the error

εn := wn − wn

in the proposed nonlinear filtering step. This corresponds to Theorem 2.5 from [10]. Assume

that φ1, . . . φN and w0,w1, . . . ,w
N

satisfy (3.1), and moreover

{w0,w1, . . . ,w
N} ∈ `2(H2(Ω)) ∩ `2(H∗N (Ω)). (3.14)

We will prove that the errors made by the filtering procedure are second-order accurate.
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Lemma 3.2. Under the assumptions (3.1) and (3.14), and if w0 = w0, the errors
{εn}Nn=1 in the filtered values {wn}Nn=1 defined by (3.3) satisfy {εn}Nn=1 ∈ `∞(X)∩`2(Hγ,div),
and the following estimates hold

δ2
∥∥∇εN∥∥2

+

N∑
n=1

‖εn‖2Hγ,div
(3.15)

≤ 2δ4τ‖wt‖2L2(0,T ;H2(Ω)) + 2
δ4

τ
‖w‖2L2(0,T ;H∗(Ω)) +

(γ − χ)2

γτ
‖∇ · w‖2L2(0,T ;L2(Ω)),

and

‖ε‖L2(0,T ;Hγ,div) ≤ C(δ2τ + δ2) +
γ − χ
√
γ
‖∇ · w‖L2(0,T ;L2(Ω)). (3.16)

In particular, for δ = O(τ) and ∇ · w = O(τ2), (3.16) shows that the filter (3.3) satisfies
property (5), i.e., is second-order accurate.

Proof. Multiplying (3.3) by a test function v ∈ X, and subtracting both sides from

δ2
(
∇
(
wn+1 − wn

)
,∇v

)
+ δ2

(
a(φn+1)∇wn,∇v

)
+
(
wn+1, v

)
Hγ,div

,

gives

δ2〈∇
(
εn+1 − εn

)
,∇v〉+

(
εn+1, v

)
Hγ,div

+ δ2〈a(φn+1)∇εn,∇v〉

= δ2
(
∇
(
wn+1 − wn

)
,∇v

)
+ δ2

(
a(φn+1)∇wn,∇v

)
+ (γ − χ)〈∇ · wn+1,∇ · v〉.

Then picking v = εn+1 we arrive at the following estimate

δ2

2

(∥∥∇εn+1
∥∥2 −

∥∥∇εn∥∥2
)

+ δ2

∥∥√1− a(φn+1)∇(εn+1 − εn)
∥∥2

2
(3.17)

+
δ2

2

(∥∥∇εn+1
∥∥2

an+1 +
∥∥∇εn∥∥2

an+1

)
+ ‖εn+1‖2Hγ,div

= δ2
(
∇
(
wn+1 − wn

)
,∇εn+1

)
+ δ2

(
a(φn+1)∇wn,∇εn+1

)
+ (γ − χ)〈∇ · wn+1,∇ · εn+1〉

≤ 1

2
‖εn+1‖2Hγ,div

+ δ4
(
‖∆(wn+1 − wn)‖2 + ‖∆an+1wn‖2∗

)
+

(γ − χ)2

2γ
‖∇ · wn+1‖2.

In the derivation of (3.17), we made use of a similar argument to one employed in (3.13).
Summing over the time steps and using ε0 = 0 and (3.2) completes the proof.

3.2. Stability and error estimates. Using the G-stability of the BDF2 approxima-
tion [36, 37, 38], from (2.4)-(2.5) we obtain the following energy type equality

1

2
‖uN‖2 +

1

2
‖2uN − uN−1‖2 +

1

2

N−1∑
n=1

‖un+1 + 2un − un−1‖2 + ντ

N−1∑
n=1

‖∇un+1‖2

=
1

2
‖u1‖2 +

1

2
‖2u1 − u0‖2 +

1

2
τ

N−1∑
n=1

∫
Ω

∇ · wn+1|un+1|2.

We now denote by

en(x) = u(tn, x)− un(x)

the error between the solution of the Navier-Stokes equations and the solution of Algorithm
2.1. Subtracting from the Navier-Stokes equations evaluated at tn+1 the equations (2.4)-
(2.5) we obtain

3en+1 − 4en + en−1

2τ
+ u(tn+1)·∇u(tn+1)−

(
wn+1 ·∇

)
un+1 +∇

(
p(tn+1)− pn+1

)
− ν∆en+1
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=
3u(tn+1)− 4u(tn) + u(tn−1)

2τ
− ut(tn+1),

∇ ·
(
u(tn+1)− un+1

)
= 0.

Using the definition of the filtering error εn and the choice of wn+1 = 2un − un−1 in
Algorithm 2.1, the convection terms can be expressed equivalently by(

u(tn+1) · ∇
)
u(tn+1)− (wn+1 · ∇)un+1

=
(
en+1 · ∇

)
u(tn+1) +

(
(un+1 − 2un + un−1) · ∇

)
u(tn+1)

+ (εn+1 · ∇)u(tn+1) +
(
wn+1 · ∇

)
en+1.

Therefore the error equation becomes

3en+1 − 4en + en−1

2τ
+ (en+1 · ∇)u(tn+1) +

(
(un+1 − 2un + un−1) · ∇

)
u(tn+1)

+ (εn+1 · ∇)u(tn+1) + (wn+1 · ∇)en+1 +∇
(
p(tn+1)− pn+1

)
− ν∆en+1

= τ

∫ tn+1

tn−1

K1(t)
∂3

∂t3
u(t) dt,

∇ · en+1 = 0,

(3.18)

where K1(t) is bounded by a constant independent of τ and u.
Theorem 3.3. Assume that the solution to the Navier-Stokes equations is smooth

u ∈ L∞(0, T ;W 1,∞(Ω)) ∩W 3,2(0, T ;L2(Ω)). Then the errors in Algorithm 2.1 satisfy

1

2
‖eN‖2 +

1

2
‖2eN − eN−1‖2 +

(1

2
− τ
)N−1∑
n=1

‖en+1 − 2en + en−1‖2 + ντ

N−1∑
n=1

‖∇en+1‖2

≤ exp
(
τ

N∑
n=2

1 + CΩ‖u‖2L∞(0,T ;W 1,∞(Ω))

1− τ
(
1 + CΩ‖u‖2L∞(0,T ;W 1,∞(Ω))

))×
× C

(
‖e1‖2 + ‖2e1 − e0‖2 + δ4τ2 + δ4 + τ4

(
‖utt‖2L2(0,T ;L2(Ω)) + ‖uttt‖2L2(0,T ;L2(Ω))

))
.

Proof. Taking the inner product of the momentum-error equation in (3.18) with τen+1

followed by summation from n = 1 to N − 1 gives

1

2
‖eN‖2 +

1

2
‖2eN − eN−1‖2 +

1

2

N−1∑
n=1

‖en+1 − 2en + en−1‖2 + ντ

N−1∑
n=1

‖∇en+1‖2

=
1

2
‖e1‖2 +

1

2
‖2e1 − e0‖2 − τ

N−1∑
n=1

(
(en+1 · ∇)u(tn+1), en+1

)
− τ

N−1∑
n=1

(
(un+1 − 2un + un−1) · ∇)u(tn+1), en+1

)
− τ

N−1∑
n=1

(
(εn+1 · ∇)u(tn+1), en+1

)
+ τ2

N−1∑
n=1

( ∫ tn+1

tn−1

K1(t)
∂3

∂t3
u(t) dt, en+1

)
.

The trilinear forms are bounded above using Young’s inequality, the Sobolev embeddings
and the assumption of the regularity of the exact solution to the NSE equation, to obtain

−
(
(en+1 · ∇)u(tn+1), en+1

)
−
(
(un+1 − 2un + un−1) · ∇)u(tn+1), en+1

)
−
(
(εn+1 · ∇)u(tn+1), en+1

)
≤ ‖∇u(tn+1)‖L∞(Ω)‖en+1‖2 + ‖∇u(tn+1)‖L∞(Ω)‖en+1‖‖un+1 − 2un + un−1‖
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+ ‖∇u(tn+1)‖L∞(Ω)‖en+1‖‖εn+1‖

≤ CΩ‖u‖2L∞(0,T ;W 1,∞(Ω))‖e
n+1‖2 +

1

2
‖un+1 − 2un + un−1‖2 +

1

2
‖εn+1‖2.

Therefore the above energy estimate for the errors writes

1

2
‖eN‖2 +

1

2
‖2eN − eN−1‖2 +

1

2

N−1∑
n=1

‖en+1 − 2en + en−1‖2 + ντ

N−1∑
n=1

‖∇en+1‖2

≤ 1

2
‖e1‖2 +

1

2
‖2e1 − e0‖2 + τ

N−1∑
n=1

CΩ‖u‖2L∞(0,T ;W 1,∞(Ω))‖e
n+1‖2 + τ

N−1∑
n=1

1

2
‖εn+1‖2

+ τ

N−1∑
n=1

1

2
‖un+1 − 2un + un−1‖2 + τ

N−1∑
n=1

‖en+1
∥∥2

+ Cτ4

∫ tN

t0
‖uttt‖2dt.

Using now the second-order central finite difference approximation we have that the first
term on the last line above can be bounded as

τ

2

N−1∑
n=1

‖un+1 − 2un + un−1‖2 ≤ τ
N−1∑
n=1

‖en+1 − 2en + en−1‖2 + τ4‖utt‖2L2(0,T ;L2(Ω)),

and therefore

1

2
‖eN‖2 +

1

2
‖2eN − eN−1‖2 +

(1

2
− τ
)N−1∑
n=1

‖en+1 − 2en + en−1‖2 + ντ

N−1∑
n=1

‖∇en+1‖2

≤ 1

2
‖e1‖2 +

1

2
‖2e1 − e0‖2 + τ4C

(
‖utt‖2L2(0,T ;L2(Ω)) + ‖uttt‖2L2(0,T ;L2(Ω))

)
+ τ

N−1∑
n=1

1

2
‖εn+1‖2 +

(
1 + CΩ‖u‖2L∞(0,T ;W 1,∞(Ω))

)
τ

N−1∑
n=1

‖en+1‖2.

We apply now Lemma 3.2 with φn+1 ≡ wn+1 = 2un − un−1. Note that in this case, the
incompressibility condition (2.5) implies that the divergence terms in both (3.15) -(3.16) are
nullified. Then the estimates (3.15) -(3.16) of the errors between the filtered and non-filtered
values εn = wn − wn yield

1

2
‖eN‖2 +

1

2
‖2eN − eN−1‖2 +

(1

2
− τ
)N−1∑
n=1

‖en+1 − 2en + en−1‖2 + ντ

N−1∑
n=1

‖∇en+1‖2

≤ 1

2
‖e1‖2 +

1

2
‖2e1 − e0‖2 + τ4C

(
‖utt‖2L2(0,T ;L2(Ω)) + ‖uttt‖2L2(0,T ;L2(Ω))

)
+ C

(
δ4τ2 + δ4

)
+
(
1 + CΩ‖u‖2L∞(0,T ;W 1,∞(Ω))

)
τ

N−1∑
n=1

‖en+1‖2.

The discrete Grönwall inequality [39, Lemma 5.1] completes the argument.

3.3. Conditioning study. In this subsection, we will study the conditioning of the
linear system arising from the spatial discretization of (2.3). To this end, we first recall
a result from [27, Thm 1.1] about the solution of a linear system arising from solving an
augmented Lagrangian system.

Theorem 3.4. Let A ∈ Rn×n be an SPD matrix, B ∈ Rm×n of rank(B) = m, f ∈ Rn,
and U ∈ Rn solve (

A+
1

ε
BTB

)
U = −1

ε
BTBf.
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If ε < 1
‖S−1‖ , where S = −BA−1BT is the Schur complement matrix, then

U = (C0 + εC1) f, C0 = A−1BTS−1B,C1 = A−1BTS−1 (S − εI)−1
B,

where C1 is uniformly bounded with respect to ε.
Remark 3.5. In the case of Stokes problem, the “pressure” operator S is a coercive,

self-adjoint isomorphism of order zero.
Now we state and prove the consequence of Theorem 3.4 on the condition number of

our proposed filter (2.3) for the simplified case a(·) = 0. The general case a(·) 6= 0 is tested
in the numerical experiments of Section 4.3.

Corollary 3.6. Let A ∈ Rn×n, SPD matrix, B ∈ Rm×n, rank(B) = m, f ∈ Rn, and
U ∈ Rn solve (

A+ γBTB
)
U =

(
A+ χBTB

)
f. (3.19)

If γ > ‖S−1‖, where S = −BA−1BT is the Schur complement matrix, then

U = f − γ − χ
γ

(
C0 +

C1

α

)
f, C0 = A−1BTS−1B,C1 = A−1BTS−1

(
S − I

γ

)−1

B.

Proof. The conclusion directly follows from Theorem 3.4. Indeed, we rewrite (3.19) as(
A+ γBTB

)
U =

(
A+ γBTB − (γ − χ)BTB

)
f,

which immediately implies

U = f − γ − χ
γ

(
A+ γBTB

)−1
γBTBf = f − γ − χ

γ

(
C0 +

C1

γ

)
f.

Thus, when γ � 1, the computational effort in solving (3.19) amounts to approximating

the matrix I + C0 −
χ

γ
C0.

4. Numerical Experiments. In this section we present several numerical experi-
ments that test the features of our filtering scheme (2.3), and compare its performance
against the “classical” adaptive filter (1.3). We used the P2 − P1 Taylor-Hood element pair
[40] for the space approximations and direct solvers for solving the linear systems. All the
tests below are performed using the FreeFem++ package [41].

4.1. Numerical testing of the filter (2.3). The goal in this subsection is to test the
mass conservation accuracy and the damping of the high frequency modes of the solution.
For simplicity, herein we consider the case of a(·) = 1.

Test of accuracy: ∇ · w = 0 case. The purpose of the first test is to verify the
convergence rate of the proposed filter (2.3) when the source term is exactly div-free: ∇·w =
0. We consider

w1 = sin(πx) cos(πy), w2 = cos(πx) sin(πy)

in the unit square domain. The errors and the convergence rates of (2.3) are listed in Tables
4.1-4.2 for different values of γ and χ, all performed on uniform triangulations of the domain.
It can be noted that the L2 norm of divergence achieves a super-convergence of order 3, and
a larger value of γ − χ improves its accuracy.

Test of accuracy: ∇ · w ' 0 case. Next we report the filtering errors for the case of
a weakly divergence-free source function w. Specifically, we compute the error when w is
obtained by solving the Stokes equation on a unit square with the homogeneous Dirichlet
boundary conditions.

The results reported in Table 4.3 confirm the predicted second order accuracy of the
filter in both norms, although the L2 norm achieves the second order accuracy only on finer
meshes. The reason for this behavior is not clear, but we got very similar L2 errors and
rates with the filter (1.3) as well.
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Table 4.1: Filtering errors when divw = 0, γ = χ = 1 for (2.3), e = w − w

h ‖e‖ rate ‖dive‖ rate

0.14142 0.166626 1.2655 0.00646797 2.9583
0.07071 0.0693071 1.6985 0.00083217 3.0842
0.03536 0.0213541 1.8823 9.81177e-5 3.0839
0.01778 0.00579233 1.9511 1.15714e-5 3.0511
0.00884 0.00149801 1.9782 1.39609e-6 3.0274
0.00442 0.000380199 1.71233e-7

Table 4.2: Filtering errors when divw = 0, γ − 1 = χ = 1 for (2.3), e = w − w

h ‖e‖ rate ‖dive‖ rate

0.14142 0.166537 1.2649 0.00334046 2.9894
0.07071 0.0693019 1.6984 0.000420649 3.0902
0.03536 0.0213539 1.8823 4.93935e-5 3.0859
0.01778 0.00579233 1.9511 5.81734e-6 3.0519
0.00884 0.00149802 1.9782 7.01471e-7 3.0277
0.00442 0.00038021 8.60146e-8

Table 4.3: Filtering errors when divw = O(h2), γ − 1 = χ = 1, e = w − w

h ‖e‖ rate ‖dive‖ rate

0.14142 0.00127381 1.0448 0.0140668 1.9071
0.07071 0.000617447 1.3857 0.00375058 1.9393
0.03536 0.000236297 1.7065 0.000977965 2.0042
0.01778 7.24025e-5 1.8631 0.000243783 2.008
0.00884 1.99028e-5 1.9348 6.06088e-5 2.001
0.00442 5.20588e-6 1.51469e-5

Test of scale damping. Here we test how well the proposed filter (2.3) damps a high
wavenumber source function on an underresolved mesh. Specifically, we let

w1 =
sin(40πx) cos(40πy)

40π
, w2 =

cos(40πx) sin(40πy)

40π
,

which is exactly div-free. Two different uniform meshes are considered with two different
finite element spaces, as reported in the Table 4.4: Mesh 1 is the “Union Jack” type uniform
mesh, while Mesh 2 is the default uniform mesh on FreeFem++. In the Table 4.4, m is the
number of triangle edges on each side of the square. As can be observed, on a coarse mesh,
the solution is completely filtered out.

4.2. Convergence Study. Next we present the convergence results with the manu-
factured solution

u1 = sin(2πx) sin(2π(y + t)), u2 = cos(2πx) cos(2π(y + t)),

p = cos(2πx) sin(2π(y + t)), f = ut + u · ∇u− ν∆u+∇p.

The domain is again taken to be a unit square and the final time is T = 1. We refine both
the mesh size and the timestep τ , starting with τ = 0.01. For simplicity, we take ν = 1 and
a(u) = 1.
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Table 4.4: ‖w‖∞ on different meshes and with different polynomial spaces

m (P2, P1) on Mesh 1 (P2, P1) on Mesh 2 Mini on Mesh 1 Mini on Mesh 2

10 7.31768e-17 7.97775e-17 5.87776e-17 8.03952e-17
20 1.80959e-16 1.01371e-16 2.77609e-16 3.82805e-16
21 0.0079355 0.0079355 0.0079355 0.0079355

We compare the accuracy of the Leray-α model of the classical nonlinear filter. The
Table 4.5 and the Figure 4.1 confirm the expected convergence rates. Moreover, the levels
of accuracy are comparable. It should be noted that, when testing the filter (1.3), we
additionally included the grad-div stabilization term, as is usually done. This also increases
the accuracy of the simulations.

Table 4.5: Errors in various norms with (2.3)

dt ‖eN‖ ‖∇e‖l2([0,T ];L2(Ω)) ‖∇ · eN‖ ‖∇ · wN‖

0.01 3.598101e-3 2.439480e-1 1.639737e-1 1.155800e-1
0.005 7.970590e-4 6.318691e-2 4.364989e-2 3.062503e-2
0.0025 2.150938e-4 1.718084e-2 1.111512e-2 7.886571e-3
0.00125 5.455494e-5 5.432974e-3 2.792415e-3 1.990771e-3

4e-06

9e-05

2e-03

6e-02

1e-03 3e-03 5e-03 1e-02

	E
rro

r	

	dt	

L2(u)
l2(H1)(u)
L2(div(u))

L2(div(wbar))
slope	2

Fig. 4.1: Errors in logscale with the filter (2.3)

Table 4.6: Velocity errors in various norms with (1.3)

dt ‖eN‖ ‖∇e‖l2([0,T ];L2(Ω)) ‖∇ · eN‖ ‖∇ · wN‖

0.01 3.579735e-3 2.439955e-1 1.639683e-1 8.413938e-2
0.005 7.942565e-4 6.320913e-2 4.364966e-2 2.216186e-2
0.0025 2.154669e-4 1.718655e-2 1.111511e-2 5.812658e-3
0.00125 5.481368e-5 5.434031e-3 2.792414e-3 1.484879e-3

12



4.3. Condition number study. We study the dependence on the parameters γ and
χ of the condition number κ of the linear system arising from the space discretization of
(2.3), for various meshes and domains. Suppose that

Xh := span {φ1, ..., φn} ⊂ C0 (Ω) ∩H1
0 (Ω)

is the standard finite element space of degree 2. Letting

Mγ,ij :=δ2 (∇φi,∇φj) + (φi, φj)Hγ,div
, 1 ≤ i, j ≤ n

Mχ,ij :=δ2 ((1− a)∇φi,∇φj) + (φi, φj)Hχ,div
, 1 ≤ i, j ≤ n

M :=M−1
γ Mχ,

we explicitly compute the condition number κ(M) of the matrix M . The indicator function
a(·) is taken to be a P1 finite element function that assigns random values between 0 and 1
at each degree of freedom.

First we evaluate κ (M) on the unit square domain with a uniform triangulation. As
can be seen from Tables 4.7-4.9, for fixed γ and χ, κ (M) exhibits negligible changes with
respect to the meshsize h. On the other hand, a fixed mesh size and “smaller” values of γ/χ
give an almost uniform condition number. However, already at γ/χ ' 10, the condition
number is effectively given by γ/χ, suggesting that the result of Theorem 3.6 is true even
for the a(·) 6= 0 case.

We also compute κ (M) on the complex domain around the NACA0012 airfoil, shown in
Figure 4.2, on a family of non-uniform meshes. The results, not as extensive as the square
domain case, are given in Table 4.10. As in the previous case, a very weak dependence on
the meshsize h and the estimate κ(M) ' γ/χ can be observed.

h
γ, χ γ = 2, χ = 1 γ = 20, χ = 10 γ = 200, χ = 100 γ = 2000, χ = 1000

1
10 4.29082 3.77587 3.64373 3.62588
1
20 5.53434 5.19076 5.14633 5.14132
1
40 6.09946 5.90711 5.86958 5.86379
1
60 7.88369 7.83545 7.8297 7.8291
1
80 8.00806 7.97113 7.96622 7.96563

Table 4.7: Condition numbers: Uniform mesh on square domain, γ/χ = 2

h
γ, χ γ = 5, χ = 1 γ = 50, χ = 10 γ = 500, χ = 100 γ = 5000, χ = 1000

1
10 5.09409 5.01164 5.00119 5.00012
1
20 6.1747 5.45287 5.21366 5.00695
1
40 6.38406 5.98769 5.88614 5.01838
1
60 7.93104 7.84178 7.83041 7.82917
1
80 8.04244 7.97593 7.96685 7.9657

Table 4.8: Condition numbers: Uniform mesh on square domain, γ/χ = 5
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h
γ, χ γ = 10, χ = 1 γ = 100, χ = 10 γ = 1000, χ = 100 γ = 10000, χ = 1000

1
10 9.99981 9.99981 9.99981 9.99981
1
20 10.001 10 10 10
1
40 10 10 10 10
1
60 10 10 10 10
1
80 10 10 10.0001 10.0001

Table 4.9: Condition numbers: Uniform mesh on square domain, γ/χ = 10

Fig. 4.2: NACA0012 airfoild domain mesh (left) and a random a(·) field (right)

h
γ, χ γ = 2, χ = 1 γ = 2000, χ = 1000 γ = 5, χ = 1 γ = 5000, χ = 1000

[0.017, 0.22] 6.39783 6.39125 6.411 5.00102
[0.012, 0.157] 9.62535 9.59801 9.64161 5.00141
[0.008, 0.112] 7.92431 7.91915 7.92952 5.00136
[0.0064, 0.09] 8.8414 8.75797 8.8971 5.00072

Table 4.10: Condition numbers: NACA0012 airfoil domain

4.4. 2D Kelvin-Helmholtz instability. In this subsection we compare the perfor-
mance of the Leray-α model with both filters (2.3) and (1.3), on the two dimensional mixing
layer problem from [42] (https://ngsolve.org/showcases/kh-benchmark). Better known as
the Kelvin-Helmholtz instability problem, it has been used as a test problem by many au-
thors, e.g. [43, 44, 45, 46]. The problem’s physical domain is taken to be the unit square

Ω = (0, 1)
2
. The boundary conditions are
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At x-boundary: Periodic

u(0, y) = u(1, y)

At y-boundary: No penetration and free-slip

u · n = 0,

(−ν∇u · n)× n = 0.

For the filtering step (2.3), the boundary conditions at the x boundaries are periodic

wn+1(0, y) = wn+1(1, y),

while at the y-boundary, we impose

wn+1 · n = 0,[
− δ2∇

(
wn+1 −

(
1− a(wn+1)

)
wn
)
· n−∇ · (wn+1 − wn+1)n

]
× n = 0. (4.1)

The above boundary condition (4.1) sets the tangential component of the “filter stress”
tensor equal to zero. A similar “free-slip” condition is used for the (1.3) filter. In (4.1), the
indicator function from (2.1) is used.

The initial condition is given by

u0 =

[
u∞ tanh ((2y − 1)/δ0)

0

]
+ 10−3

[
∂yψ(x, y)
−∂xψ(x, y)

]
,

ψ(x, y) = exp
(
− (y − 0.5)

2

δ2
0

)
[cos(8πx) + cos(20πx)] .

(4.2)

We consider the case with the initial vorticity thickness δ0 = 1/28, the reference velocity
u∞ = 1, and the Reynolds number Re = u∞δ0/ν = 104. The results are reported at non-
dimensional time units t = δ0/u∞.

We tested the schemes on various meshes and with different time steps. Herein, we
report the results for τ = 1e−3 and a 48×48 uniform triangular mesh. The simulations are
run until t ≤ 400. In Figures 4.3-4.6 we refer to the results of our Algorithm 2.1 as “Leray
1”, while the results obtained with the filter (1.3) are labelled as “Leray 2”.

The expected behavior of the flow is as follows. Through the action of the nonlinear
term, the perturbations in the initial condition (4.2) are amplified and four vortices develop
around y = 0.5 line. Later on, the first vortex merges with the second one, while the
third vortex merges with the fourth. After a while, those two merge into a single vortex
around the origin. The accurate prediction of the pairing time of the last two vortices
is known to be very challenging, and vastly different merging times have been reported
in the literature (a different merging pattern has been reported in [47]). The underlying
reason for this discrepancy is the extreme sensitivity of the Kelvin-Helmholtz problem to
various perturbations, as has been thoroughly tested and documented in [42]. Besides
being sensitive to inevitable discretization errors, it has been shown to be sensitive to the
mesh types (triangular versus quadrilateral, structured vs. unstructured), linear solvers and
quadrature rules and even compiler settings. As a result, the mesh convergence has been
obtained only for t < 200, even on a 256× 256 grid with H(div) conforming 8-th degree DG
scheme, and a timestep of τ = 3.6 × 10−5. Thus, even though we report our findings for
t ≤ 400, it makes sense to compare them only for t < 200. We shall refer to the results of
[42] as DNS in the following discussion.

Kinetic energy. The evolution of the kinetic energy
‖u‖2

2
is plotted in Figure 4.3. The

energy is expected to decrease monotonically with time, both for the Navier-Stokes system
and the Leray model, regardless of the filtering used. This is clearly observed in both cases,
and moreover, the kinetic energies are almost identical.
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Fig. 4.3: Kinetic energy

Enstrophy. The evolution of the enstrophy
‖∇ × u‖2

2
is plotted in Figure 4.4. En-

strophy is also a monotonically decreasing quantity for the Navier-Stokes system. However,
that is not necessarily true for the Leray model. In fact, according to [48], for the case of a
fully periodic domain with linear Helmholtz filter (1.2), a modified enstrophy

‖∇ × u‖2

2
+ δ2 ‖∆u‖2

2

is a decreasing quantity. This is most probably not true for any of the nonlinear filters.

Comparing the graphs of both cases, we see that they agree up to the time t ' 240,
after which there seems to be a phase difference for some time. Again, this difference at
around t ' 250 could be attributed to many factors, such as the problem itself being very
sensitivity to any perturbations, and/or due to the time relaxation [49] introduced by the
Voigt regularization term in (2.3).

Fig. 4.4: Enstrophy
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Fig. 4.5: Palinstrophy

Palinstrophy. The evolution of palinstrophy
‖∇ (∇× u) ‖2

2
is plotted in Figure 4.5.

For the velocity-pressure formulation of the Navier-Stokes equation, palinstrophy is the most
challenging quantity to predict, as there is no control over its accuracy. Overall, we see that
the results follow the trend of the DNS solution, and a difference at around t ' 250 is again
observed. The spontaneous increases in palinstrophy usually correspond to merging of the
vortices. Looking at the Figure 4.5, the outburst in both graphs occur at around t ' 250,
which is close to the predictions of the DNS study [42]. Most reported results predict much
earlier pairing time for the last two vortices.

Fig. 4.6: Relative vorticity thickness

Vorticity thickness. The evolution of the relative vorticity thickness

δ(t) =
2u∞

sup
y∈[0,1]

|< χ > (t, y)|
, < χ > (t, y) =

1∫
0

χ(t, x, y)dx

is plotted in Figure 4.5. The oscillatory behavior of δ(t) indicates that the vortices are
ellipsoidal, while its smoothness means they are of circular shape. A very similar trend to
the earlier graphs is again observed.

Finally, the qualitative results in terms of vorticity contours are reported in Figures 4.7
and 4.8. The plots look similar up to t < 200, and some differences can be observed at later
times.
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Fig. 4.7: Vorticity contours at various times: New filter (left) and old filter (right)

5. Conclusions. We propose a nonlinear filtering operator, which adapts both in space
and in time to the flow patterns. The novelty consists in its reduced computational cost: the
new filter requires a single matrix assembly throughout the numerical integration, and the
solution of a constant coefficient elliptic problem at each time step. We proved the filter’s
stability and second-order accuracy. Then we discussed its synthesis with the Leray-α model,
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Fig. 4.8: Vorticity contours at various times: New filter (left) and old filter (right)

and established its analytical foundations. While the numerical tests demonstrate that the
new filter (2.3) and old filter (1.3) have the same level of accuracy, the computational gains
from using (2.3) could be significant.
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