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Abstract. We propose a new, optimally accurate numerical regularization/stabilization for (a
family of) second order timestepping methods for the Navier-Stokes equations (NSE). The method
combines a linear treatment of the advection term, together with a stabilization terms that are
proportional to discrete curvature of the solutions in both velocity and pressure. We rigorously
prove that the entire new family of methods are unconditionally stable and O(∆t2) accurate. The
idea of ‘curvature stabilization’ is new to CFD and is intended as an improvement over the commonly
used ‘speed stabilization’, which is only first order accurate in time and can have an adverse affect
on important flow quantities such as drag coefficients. Numerical examples verify the predicted
convergence rate and show the stabilization term clearly improves the stability and accuracy of the
tested flows.
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1. Introduction. We consider optimally accurate stabilizations for second order
time-stepping methods for the Navier-Stokes equations (NSE) on a bounded domain
Ω ⊆ Rd, d=2 or 3:

ut + u · ∇u− ν4u+∇p = f, for x ∈ Ω, 0 < t ≤ T, (1.1)

∇ · u = 0, for x ∈ Ω, 0 < t ≤ T,
u = 0, on ∂Ω, for 0 < t ≤ T,

u(x, 0) = u0(x), for x ∈ Ω,

with the pressure satisfying the usual zero-mean normalization.
Developing efficient, accurate, and robust numerical methods for solving the NSE

remains a great challenge in Computational Fluid Dynamics (CFD). For time-stepping
methods, common approaches combine linearizations at each timestep with stabiliza-
tions/regularizations that damp oscillations and unstable modes. An important lin-
earization method is CNLE (Crank-Nicolson with linear extrapolation), proposed by
Baker [2], which is comparable in stability and accuracy with the more expensive, fully
implicit Crank-Nicolson (CN) method, [25, 1, 12]. However, while a nonlinear solver
for CN requires several linear solves at each time step, CNLE requires just one. A
similar linearization exists for BDF2 timestepping (called BDF2LE). Herein, we will
consider a new, optimally accurate stabilization to be used with CNLE, BDF2LE,
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and the family of methods ‘in between’ them. Recall this family of methods (without
stabilization) is given by

(θ + 1
2 )un+1 − 2θun + (θ − 1

2 )un−1

4t
− θν4un+1 − ν (1− θ)4un (1.2)

+ ((θ + 1)un − θun−1) · ∇ (θun+1 + (1− θ)un) + θ∇pn+1 + (1− θ)∇pn = fn+θ,

∇ · un+1 = 0, (1.3)

where θ ∈
[

1
2 , 1

]
. If θ = 1, BDF2LE is recovered, and if θ = 1

2 , then CNLE is
recovered. For any other θ ∈ ( 1

2 , 0), a second order method is still recovered. Since
CNLE exactly conserves energy, and BDF2LE numerically dissipates it, the parameter
θ can be used to control the dissipation.

A successful stabilization method to be used with (1.2) must be able to damp
the instabilities that frequently arise in NSE simulations, but without over-smoothing
or removing important flow structures, i.e. without hurting accuracy. A common
approach for these timestepping methods is to add −α∆un+1 to the left hand side,
and −α∆un to the right hand side, where α is a tuning parameter generally taken to
be on the order of the meshwidth h. Such a stabilization has been used in methods
for Navier-Stokes (see [20, 7] and references therein), and is related in principle to
techniques used in turbulence modeling [16, 14], ocean modeling [5], and also to the
discretization of the ‘Voigt term’ in a turbulence model recently studied by Titi and
others, e.g. [6, 18]. As shown in these works, this stabilization can be effective for
several different types of flows, and also can improve conditioning of linear systems by
increasing the coefficient of the stiffness matrix, e.g. in the case of BDF2LE, from ν to
ν + α. However, as shown in the analysis of [20], this technique is O(α∆t) accurate,
and thus can potentially be a dominant error source in second order timestepping
methods if the usual choice of α = O(h) is made. If one instead takes α = O(∆t),
this creates a need for a careful retuning of α each time the time step size is changed,
which could make its use with adaptive time-stepping very difficult.

The purpose of this paper is to introduce and analyze a new stabilization for
time-stepping methods of the form (1.2), that can sufficiently stabilize but is O(∆t2)
(i.e. optimally) accurate. The design of the stabilization is inspired by the idea of
stabilizing ‘curvature’ (un+1−2un+un−1), instead of stabilizing ‘speed’ (un+1−un),
which is done by the stabilization discussed above. Not only is curvature stabilization
more accurate than speed stabilization (with respect to ∆t), but in CFD it does not
directly alter important flow quantities such as drag coefficients, as speed penalization
does (see section 5.3). To our knowledge, the idea of curvature stabilization is brand
new to CFD, and was first introduced for any timestepping method last year, in a
paper of the authors[26], for a timestepping method for a particular class of ODEs.

The new family of second-order, unconditionally stable, IMEX time-stepping
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methods we propose are given by:

(θ + 1
2 )un+1 − 2θuhn + (θ − 1

2 )un−1

4t
(1.4)

− θ(ν + ε)4un+1 − (ν − θ(ν + 2ε))4un − θε4un−1

+ ((θ + 1)un − θun−1) · ∇
(
θ
ν + ε

ν
un+1 + (1− θ ν + 2ε

ν
)un + θ

ε

ν
un−1

)
+ θ

ν + ε

ν
∇pn+1 + (1− θ ν + 2ε

ν
)∇pn + θ

ε

ν
∇pn−1 = fn+θ,

∇ · un+1 = 0,

where θ ∈
[

1
2 , 1

]
, ε ≥ 0. Our analysis will show there is optimal convergence for any

constant ε, however the natural norms of the problem dictate that ε = O(ν) is most
appropriate for simulations. Although this appears to be quite small compared to
stabilization constants in other common methods, our numerical experiments demon-
strate that such ε do provide sufficient stabilization.

The family of methods (1.4) are stabilizations of the family of methods (1.2), and
if ε = 0, then (1.2) is recovered. Thus, for θ = 1 in (1.4), we obtain a regularized
BDF2LE scheme which we will call BDF2LEReg. Similarly, the scheme (1.4) with
θ = 1

2 will be called CNLEReg. Our stability and convergence analysis will be
general, and apply to the entire family (1.4); we prove both unconditional stability
and O(∆t2) accuracy. For our numerical examples, we perform numerical tests with
both CNLEReg and BDF2LEReg. As is typical with stabilization methods, the
positive effect is seen more through numerical tests than through analysis, and we
provide several examples which show convincing evidence of the effectiveness of the
proposed stabilization.

The analysis we perform herein to prove unconditional stability and optimal con-
vergence can be applied to other advection-diffusion models, e.g., Lions’ hyperviscosity
model [22], the modified NSE of Ladyzhenskaya [21] and nonlinear spectral eddy-
viscosity models of turbulence [9]. In particular, we note our proposed method(s) are
related to one discussed by H. Johnston and J.G. Liu in [17], and our analysis can be
extended to show that (3.17) in [17] is stable (it is stated as an open problem in the
paper). We note also that our analysis also applies in a straightforward manner to
the implicit version of (1.4).

This paper is arranged as follows. In section 2, we give notation and preliminaries
to make for a smoother analysis to follow. Section 3 proves unconditional stability of
the proposed family of methods, and section 4 proves optimal convergence for them.
In section 5, we provide numerical tests that show the methods are very effective on
several benchmark problems. Finally, conclusions are drawn in section 6.

2. Notations and Preliminaries. Let Ω be an open, regular domain in Rd,
d = 2 or 3. We denote the usual L2(Ω) norm and the inner product by ‖ · ‖ and (·, ·).
The Lp(Ω) norms and the Sobolev W k

p (Ω) norms are denoted by ‖ · ‖Lp and ‖ · ‖Wk
p

respectively. In particular, Hk(Ω) is used to represent the Sobolev space W k
2 (Ω). ‖·‖k

and | · |k denote the norm and the seminorm in Hk(Ω). For functions v(x, t) defined
on the time interval (0, T ), we define (1 ≤ m <∞)

‖v‖∞,k := EssSup[0,T ]‖v(t, ·)‖k and ‖v‖m,k :=
(∫ T

0

‖v(t, ·)‖mk dt
)1/m

.
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We consider the finite element method (FEM) for the spatial discretization. Let X
be the velocity space and Q be the pressure space:

X := (H1
0 (Ω))d = {v : v ∈ (H1(Ω))d, v = 0 on ∂Ω},

Q := L2
0(Ω) = {q : q ∈ L2(Ω),

∫
Ω

q dx = 0}.

A weak formulation of (1.1) is: Find u : [0, T ] → X, p : [0, T ] → Q for a.e. t ∈ (0, T ]
satisfying

(ut, v) + (u · ∇u, v) + ν(∇u,∇v)− (p,∇ · v) = (f, v) , ∀v ∈ X
u(x, 0) = u0(x) in X and (∇ · u, q) = 0, ∀q ∈ Q.

The space of divergence free functions is given by

V := {v ∈ X : (∇ · v, q) = 0 , ∀q ∈ Q}.

Let V ∗ denote the dual space of V . The norm ‖ · ‖∗ on V ∗ is defined as

‖f‖∗ : = sup
06=v∈V

(f, v)

‖∇v‖
.

Let Xh ⊂ X,Qh ⊂ Q denote conforming velocity, pressure finite element spaces
based on an edge to edge triangulations of Ω with maximum triangle diameter h.
The velocity-pressure FEM spaces (Xh, Qh) are assumed to satisfy the usual discrete
inf-sup / LBBh condition, see Gunzburger’s book [10], for stability of the discrete
pressure:

inf
qh∈Qh

sup
vh∈Xh

(qh,∇ · vh)

‖qh‖‖∇vh‖
≥ β > 0,

where β is independent of h. Taylor-Hood elements, [10], are one commonly used
choice of such velocity-pressure finite element spaces. Other choices can also be found
in [10, 8]. We also assume the following approximation properties typical of piecewise
polynomials of degree (k, k − 1), see [4], hold for (Xh, Qh):

inf
vh∈Xh

‖u− vh‖ ≤ Chk+1|u|k+1, u ∈ Hk+1(Ω),

inf
vh∈Xh

‖∇(u− vh)‖ ≤ Chk|u|k+1, u ∈ Hk+1(Ω),

inf
qh∈Qh

‖p− qh‖ ≤ Chk|p|k, p ∈ Hk(Ω).

The discretely divergence free subspace of Xh is

V h := {vh ∈ Xh : (∇ · vh, qh) = 0 , ∀qh ∈ Qh}.

Define the usual explicitly skew symmetrized trilinear form

b∗(u, v, w) :=
1

2
(u · ∇v, w)− 1

2
(u · ∇w, v).

b∗(u, v, w) satisfies the bound, see [8],

|b∗(u, v, w)| ≤ C(Ω)‖∇u‖‖∇v‖‖∇w‖, for any u, v, w ∈ X,
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and, if v,∇v ∈ L∞(Ω) (see e.g., Lemma 2.1 in [19]),

|b∗(u, v, w)| ≤ C(Ω)(‖v‖L∞(Ω) + ‖∇v‖L∞(Ω))‖u‖‖∇w‖.

To simplify the analysis, we denote the interpolation at t = tn+θ by

J εn+θ(a) := θ
ν + ε

ν
an+1 + (1− θ ν + 2ε

ν
)an + θ

ε

ν
an−1,

and extrapolation at t = tn+θ by

Hn+θ(a) := (θ + 1)an − θan−1.

The fully discrete approximation of (1.1) we study is: Given uhn, u
h
n−1, p

h
n, p

h
n−1, find

uhn+1 ∈ Xh, phn+1 ∈ Qh satisfying

(
(θ + 1

2 )uhn+1 − 2θuhn + (θ − 1
2 )uhn−1

4t
, vh) + ν(J εn+θ(∇uh),∇vh) (2.1)

+ b∗(Hn+θ(u
h),J εn+θ(u

h), vh)− (J εn+θ(p
h),∇ · vh) = (fn+θ, v

h), ∀vh ∈ Xh,

(∇ · uhn+1, q
h) = 0, ∀qh ∈ Qh.

3. Stability Analysis. We prove unconditional, long time stability of (1.4). To
analyze the stability, we first define two matrices.

Define symmetric positive matrix F ∈ Rn×n by

F = θ(2θ − 1)I +
4θ4ε

ν
I,

and the symmetric matrix G ∈ R2n×2n as follows, see [11, 26, 27] for reference.

G =

( θ(2θ+3)
4

ν+ε
ν I − θ(2θ+1)

4
ε
ν I −( (θ+1)(2θ−1)

4
ν+ε
ν I + (1−θ)(2θ+1)

4
ε
ν I)

−( (θ+1)(2θ−1)
4

ν+ε
ν I + (1−θ)(2θ+1)

4
ε
ν I) θ(2θ−1)

4
ν+ε
ν I + θ(−2θ+3)

4
ε
ν I

)
.

For any u, v ∈ Rn, define F−norm of the n vector u:

‖u‖F = (u, Fu) ,

which is non-negative, and G−norm of the 2n vector

[
u
v

]
:

∥∥∥∥[uv
]∥∥∥∥2

G

=

([
u
v

]
, G

[
u
v

])
,

whose value could be negative.
Lemma 3.1. For any vector u , v ∈ Rn, we have([u

v

]
, G
[u
v

])
=

2θ + 1

4
‖u‖2 +

−2θ + 1

4
‖v‖2 +

(θ + 1)(2θ − 1)

2
‖u− v‖2 +

θ

2

ε

ν
‖u− v‖2

≥ 2θ + 1

4
‖u‖2 − 2θ − 1

4
‖v‖2,



6 Jiang, Mohebujjaman, Rebholz and Trenchea

and ([
u
v

]
, G
[
u
v

])
≤ 2θ + 1

4
‖u‖2 +

(θ + 1)(2θ − 1)

2
‖u− v‖2 +

θ

2

ε

ν
‖u− v‖2

≤
(

2θ + 1

4
+ (θ + 1)(2θ − 1) +

θε

ν

)
‖u‖2 +

(
(θ + 1)(2θ − 1) +

θε

ν

)
‖v‖2.

Proof. The inequality follows from direct algebraic manipulations.

Theorem 3.2. The algorithm (2.1) is unconditionally stable and ∀N ≥ 1, the
following energy estimate holds

‖uhN‖2 +
1

2θ + 1

N−1∑
n=1

‖uhn+1 − 2uhn + uhn−1‖2F +
24tν
2θ + 1

N−1∑
n=1

‖J εn+θ(∇uh)‖2

≤
(

2θ − 1

2θ + 1

)N
‖uh0‖2 +

4N

2θ + 1

∥∥∥∥[uh1uh0
]∥∥∥∥2

G

+
2N4t

ν(2θ + 1)

N−1∑
n=1

‖fn+θ‖2∗.

Remark 3.1. Setting θ = 1 in the stability result above and expanding the term
J εn+θ(∇uh) gives the BDF2LEReg stability result,

‖uhN‖2 +
1

3

N−1∑
n=1

‖uhn+1 − 2uhn + uhn−1‖2F +
24tν

3

N−1∑
n=1

‖∇uhn+1 +
ε

ν
∇
(
uhn+1 − 2uhn + uhn−1

)
‖2

≤
(

1

3

)N
‖uh0‖2 +

4N

3

∥∥∥∥[uh1uh0
]∥∥∥∥2

G

+
2N4t

3ν

N−1∑
n=1

‖fn+1‖2∗.

We observe that the viscous term has an additional ‘curvature term’ (uhn+1 − 2uhn +
uhn−1) compared to standard NSE stability estimates. It is these terms which act to
penalize curvature in the BDF2LEReg method. Moreover, the viscous term suggests
that ε ≤ O(ν) is most appropriate, otherwise the curvature terms could dominate the
viscous dissipation. Our numerical experiment show that ε = O(ν) works very well.

Proof. Set in (2.1) vh = J εn+θ(u
h). Then we have

1

4t

∥∥∥∥[uhn+1

uhn

]∥∥∥∥2

G

− 1

4t

∥∥∥∥[ uhn
uhn−1

]∥∥∥∥2

G

+
1

44t
‖uhn+1 − 2uhn + uhn−1‖2F + ν‖J εn+θ(∇uh)‖2

= (fn+θ,J εn+θ(u
h)).

Applying Cauchy-Schwarz inequality to the right hand side and then taking sum from
n = 1 to n = N − 1, we have the following inequality

∥∥∥∥[ uhN
uhN−1

]∥∥∥∥2

G

+
1

4

N−1∑
n=1

‖uhn+1 − 2uhn + uhn−1‖2F +
4tν

2

N−1∑
n=1

‖J εn+θ(∇uh)‖2

≤
∥∥∥∥[uh1uh0

]∥∥∥∥2

G

+
4t
2ν

N−1∑
n=1

‖fn+θ‖2.
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By Lemma 3.1, we have the energy estimate as follows

‖uhN‖2 +
1

2θ + 1

N−1∑
n=1

‖uhn+1 − 2uhn + uhn−1‖2F +
24tν
2θ + 1

N−1∑
n=1

‖J εn+θ(∇uh)‖2

≤ 2θ − 1

2θ + 1
‖uhN−1‖2 +

4

2θ + 1

∥∥∥∥[uh1uh0
]∥∥∥∥2

G

+
24t

ν(2θ + 1)

N−1∑
n=1

‖fn+θ‖2∗.

By induction, we obtain the following energy estimate

‖uhN‖2 +
1

2θ + 1

N−1∑
n=1

‖uhn+1 − 2uhn + uhn−1‖2F +
24tν
2θ + 1

N−1∑
n=1

‖J εn+θ(∇uh)‖2

≤
(2θ − 1

2θ + 1

)N
‖uh0‖2 +

4N

2θ + 1

∥∥∥∥[uh1uh0
]∥∥∥∥2

G

+
2N4t

ν(2θ + 1)

N−1∑
n=1

‖fn+θ‖2∗.

4. Error Analysis. In this section we present a detailed error analysis of the
proposed methods. We prove here that the entire family of stabilized methods are
optimally accurate. The use of the G-norms, and the extrapolation and interpolations
operators, are critical for a smooth analysis of the entire family of methods.

Let tn = n∆t, n = 0, 1, 2, ..., NT , and T := NT∆t. Denote un = u(tn). We
introduce the following discrete norms:

‖|v|‖m,k := (

NT∑
n=0

‖vn‖mk ∆t)1/m, ‖|v|‖∞,k = max
0≤n≤NT

‖vn‖k.

In order to establish the optimal asymptotic error estimates for the approximation we
assume that the true solution satisfies the following regularity

u ∈ L∞(0, T ;H1(Ω)) ∩H1(0, T ;Hk+1(Ω)) ∩H3(0, T ;L2(Ω)) ∩H2(0, T ;H1(Ω)),

p ∈ L2(0, T ;Hs+1(Ω)) ∩H2(0, T ;L2(Ω)), and f ∈ L2(0, T ;L2(Ω)).

Denote the error between the true solution and the approximation by en = un − uhn,
then we have the following error estimates.

Theorem 4.1. Consider the methods (1.4). For any 0 < N ≤ NT , there exists
a positive constant C independent of the mesh width h and timestep ∆t such that

‖eN‖2 +
1

2θ + 1

N−1∑
n=1

‖en+1 − 2en + en−1‖2F +
2

2θ + 1
4t

N−1∑
n=1

ν‖J εn+θ(∇e)‖2 (4.1)

≤ exp
(
Cν−1T

) [(2θ − 1

2θ + 1

)N
‖e0‖2 + C

(
1−

(2θ − 1

2θ + 1

)N) (
‖e1‖2 + ‖e0‖2

)
+ C

(
1−

(2θ − 1

2θ + 1

)N)(
ν−1∆t4‖|ptt|‖22,0 + ν−1h2s+2‖|p|‖22,s+1 + ν−1∆t4‖|uttt|‖22,0

+ ν∆t4‖|∇utt|‖22,0 + ν−1∆t4‖|∇utt|‖22,0 + ν−1∆t4‖|∇u|‖2∞,0‖|∇utt|‖22,0
+ ν−1∆t4‖∇u‖2∞,0‖|∇utt|‖22,0 + ν−1h2k+2‖|ut|‖22,k+1 + νh2k‖|u|‖22,k+1

+ ν−1h2k‖|∇u|‖2∞,0‖|u|‖22,k+1

)]
.
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Corollary 4.2. Consider Taylor-Hood approximation elements for the spatial
discretization, i.e. (Xh, Qh) = (P2, P1). Assuming e0, e1 to be 0, we have optimal
accuracy in space and time:

‖eN‖2 +
1

2θ+1

N−1∑
n=1

‖en+1−2en+en−1‖2F +
2

2θ+1
4t

N−1∑
n=1

ν‖J εn+θ(∇e)‖2 ≤ C(∆t4+h4).

Proof. (of Theorem 4.1) At time tn+θ = (n+ θ)4t, the true solution of the NSE
satisfies:( (θ + 1

2 )un+1 − 2θun + (θ − 1
2 )un−1

4t
, vh
)

+ ν
(
J εn+θ(∇u),∇vh

)
(4.2)

+ b∗
(
Hn+θ(u),J εn+θ(u), vh

)
− (pn+θ,∇ · vh) = (fn+θ, v

h) + Intp(un+θ; v
h),

where

Intp(un+θ; v
h) =

( (θ + 1
2 )un+1 − 2θun + (θ − 1

2 )un−1

4t
− ut(tn+θ), v

h
)

(4.3)

+ ν
(
∇
(
J εn+θ(u)− un+θ

)
,∇vh

)
+ b∗

(
Hn+θ(u)− un+θ,J εn+θ(u), vh

)
+ b∗

(
un+θ,J εn+θ(u)− un+θ, v

h
)
.

Let

en = un − uhn = (un − Ihun) + (Ihun − uhn) = ηn + ξhn,

where Ihun ∈ V h is an interpolant of un in V h. Subtracting (2.1) from (4.2) gives( (θ+ 1
2 )en+1 − 2θen + (θ− 1

2 )en−1

4t
, vh
)

+ ν
(
J εn+θ(∇e),∇vh

)
+ b∗

(
Hn+θ(u),J εn+θ(e), v

h
)

= Intp(un+θ; v
h)−

(
J εn+θ(p)− pn+θ,∇ · vh

)
+
(
J εn+θ(p)− qh,∇ · vh

)
+ b∗(Hn+θ(e),J εn+θ(u

h), vh),

which can be rewritten as( (θ + 1
2 )ξhn+1 − 2θξhn + (θ − 1

2 )ξhn−1

4t
, vh
)

+ ν
(
J εn+θ(∇ξh),∇vh

)
(4.4)

+ b∗
(
Hn+θ(u),J εn+θ(ξ

h), vh
)

= Intp(un+θ; v
h)−

(
J εn+θ(p)− pn+θ,∇ · vh

)
+
(
J εn+θ(p)− qh,∇ · vh

)
−
( (θ + 1

2 )ηn+1 − 2θηn + (θ − 1
2 )ηn−1

4t
, vh
)
− ν

(
J εn+θ(∇η),∇vh

)
−b∗(Hn+θ(u),J εn+θ(η), vh)+b∗(Hn+θ(ξ

h),J εn+θ(u
h), vh)+b∗(Hn+θ(η),J εn+θ(u

h), vh).

Set vh = J εn+θ(ξ
h), then (4.4) becomes

1

4t

∥∥∥[ξhn+1

ξhn

]∥∥∥2

G

− 1

4t

∥∥∥[ ξhn
ξhn−1

]∥∥∥2

G

+
1

44t
‖ξhn+1−2ξhn+ξhn−1‖2F + ν‖J εn+θ(∇ξh)‖2 (4.5)

= Intp
(
un+θ;J εn+θ(ξ

h)
)
−
(
J εn+θ(p)− pn+θ,∇ · J εn+θ(ξ

h)
)
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+
(
J εn+θ(p)− qh,∇ · (J εn+θ(ξ

h)
)
−
( (θ + 1

2 )ηn+1−2θηn+(θ− 1
2 )ηn−1

4t
,J εn+θ(ξ

h)
)

− ν
(
J εn+θ(∇η),J εn+θ(∇ξh)

)
− b∗

(
Hn+θ(u),J εn+θ(η),J εn+θ(ξ

h)
)

+ b∗
(
Hn+θ(ξ

h),J εn+θ(u
h),J εn+θ(ξ

h)
)

+ b∗
(
Hn+θ(η),J εn+θ(u

h),J εn+θ(ξ
h)
)
.

The pressure terms on the right hand side can be bounded as follows.(
J εn+θ(p)− pn+θ,∇ · J εn+θ(ξ

h)
)

≤ ν

64
‖J εn+θ(∇ξh)‖2 + Cν−1‖J εn+θ(p)− pn+θ‖2

≤ ν

64
‖J εn+θ(∇ξh)‖2+Cν−1‖θpn+1+(1−θ)pn−pn+θ‖2+Cν−3ε2θ2‖pn+1−2pn+pn−1‖2

≤ ν

64
‖∇J εn+θ(ξ

h)‖2+Cν−1θ2(1−θ)2∆t3
∫ tn+1

tn

‖ptt‖2dt+Cν−3ε2θ2∆t3
∫ tn+1

tn−1

‖ptt‖2dt,

and (
J εn+θ(p)− qh,∇ · J εn+θ(ξ

h)
)
≤ ν

64
‖J εn+θ(∇ξh)‖2 + Cν−1‖J εn+θ(p)− qh‖2

≤ ν

64
‖J εn+θ(∇ξh)‖2 + Cν−1(‖J εn+θ(p)− pn+θ‖2 + ‖pn+θ − qh‖2)

≤ ν

64
‖J εn+θ(∇ξh)‖2 + Cν−1θ2(1− θ)2∆t3

∫ tn+1

tn

‖ptt‖2dt

+ Cν−3ε2θ2∆t3
∫ tn+1

tn−1

‖ptt‖2dt+ Cν−1h2s+2‖pn+θ‖2s+1 .

Next, we bound Intp
(
un+θ;J εn+θ(ξ

h)
)
. First,( (θ + 1

2 )un+1 − 2θun + (θ − 1
2 )un−1

4t
− ut(tn+θ),J εn+θ(ξ

h)
)

≤ ν

64
‖J εn+θ(∇ξh)‖2 + Cν−1

∥∥∥ (θ + 1
2 )un+1 − 2θun + (θ − 1

2 )un−1

4t
− ut(tn+θ)

∥∥∥2

≤ ν

64
‖J εn+θ(∇ξh)‖2 + Cν−1θ6∆t3

∫ tn+1

tn−1

‖uttt‖2dt.

Secondly,

ν
(
∇
(
J εn+θ(u)−un+θ

)
,∇J εn+θ(ξ

h)
)
≤ ν

64
‖J εn+θ(∇ξh)‖2 + Cν‖∇

(
J εn+θ(u)−un+θ

)
‖2

≤ ν

64
‖J εn+θ(∇ξh)‖2+Cν‖∇(θun+1+(1−θ)un−un+θ)‖2+Cν−1ε2θ2‖∇(un+1−2un+un−1)‖2

≤ ν

64
‖∇J εn+θ(ξ

h)‖2+Cνθ2(1−θ)2∆t3
∫ tn+1

tn

‖∇utt‖2dt+Cν−1ε2θ2∆t3
∫ tn+1

tn−1

‖∇utt‖2dt.

Thirdly,

b∗(Hn+θ(u)−un+θ,J εn+θ(u),J εn+θ(ξ
h))

≤ C‖∇(Hn+θ(u)−un+θ)‖‖J εn+θ(∇u)‖‖J εn+θ(∇ξh)‖

≤ ν

64
‖J εn+θ(∇ξh)‖2 + Cν−1‖∇ (Hn+θ(u)− un+θ) ‖2‖J εn+θ(∇u)‖2

≤ ν

64
‖J εn+θ(∇ξh)‖2 + Cν−1θ2(1 + θ)2∆t3‖J εn+θ(∇u)‖2

∫ tn+1

tn−1

‖∇utt‖2dt.
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Finally,

b∗
(
un+θ,J εn+θ(u)−un+θ,J εn+θ(ξ

h)
)
≤ C‖∇un+θ‖‖∇(J εn+θ(u)−un+θ)‖‖J εn+θ(∇ξh)‖

≤ ν

64
‖J εn+θ(∇ξh)‖2 + Cν−1‖∇un+θ‖2‖∇

(
J εn+θ(u)− un+θ

)
‖2

≤ ν

64
‖J εn+θ(∇ξh)‖2 + Cν−1θ2(1− θ)2∆t3‖∇un+θ‖2

∫ tn+1

tn

‖∇utt‖2dt

+ Cν−3ε2θ2∆t3‖∇un+θ‖2
∫ tn+1

tn−1

‖∇utt‖2dt.

We then bound the other terms on the right hand side of (4.5)

( (θ + 1
2 )ηn+1 − 2θηn + (θ − 1

2 )ηn−1

4t
,J εn+θ(ξ

h)
)

(4.6)

≤
∥∥∥ (θ + 1

2 )ηn+1 − 2θηn + (θ − 1
2 )ηn−1

4t

∥∥∥‖J εn+θ(ξ
h)‖

≤ C
∥∥∥ 1

2 (ηn+1 − ηn−1) + θ(ηn+1 − ηn)− θ(ηn − ηn−1)

4t

∥∥∥‖J εn+θ(∇ξh)‖

≤ C
∥∥∥ 1

4t
(
1

2

∫ tn+1

tn−1

ηt dt+ θ

∫ tn+1

tn

ηt dt− θ
∫ tn

tn−1

ηt dt)
∥∥∥‖J εn+θ(∇ξh)‖

≤ C
(∥∥ 1

24t

∫ tn+1

tn−1

|ηt| dt
∥∥+

∥∥ 1

4t
θ

∫ tn+1

tn

|ηt| dt
∥∥+

∥∥ 1

4t
θ

∫ tn

tn−1

|ηt| dt
∥∥)‖J εn+θ(∇ξh)‖

≤ Cν−1(θ2 + 4)‖ 1

4t

∫ tn+1

tn−1

|ηt| dt‖2 +
ν

64
‖J εn+θ(∇ξh)‖2

≤ C(θ2 + 4)

ν4t

∫ tn+1

tn−1

‖ηt‖2dt+
ν

64
‖J εn+θ(∇ξh)‖2.

Also,

ν
(
J εn+θ(∇η),J εn+θ(∇ξh)

)
≤ ν‖J εn+θ(∇η)‖‖J εn+θ(∇ξh)‖

≤ Cν
((
θ+

εθ

ν

)2

‖∇ηn+1‖2+
(
1−θ− 2εθ

ν

)2‖∇ηn‖2+ ε2θ2

ν2
‖∇ηn−1‖2

)
+
ν

64
‖J εn+θ(∇ξh)‖2.

We estimate the nonlinear terms as follows

b∗
(
Hn+θ(u),J εn+θ(η),J εn+θ(ξ

h)
)

≤ C‖Hn+θ(∇u)‖‖J εn+θ(∇η)‖‖J εn+θ(∇ξh)‖

≤ Cν−1
(
(θ + 1)2‖∇un‖2 + θ2‖∇un−1‖2

)((
θ +

εθ

ν

)2‖∇ηn+1‖2

+
(
1− θ − 2εθ

ν

)2‖∇ηn‖2 +
ε2θ2

ν2
‖∇ηn−1‖2

)
+

ν

64
‖J εn+θ(∇ξh)‖2,

and

b∗
(
Hn+θ(η),J εn+θ(u

h),J εn+θ(ξ
h)
)

≤ C‖Hn+θ(∇η)‖‖J εn+θ(∇uh)‖‖J εn+θ(∇ξh)‖
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≤ Cν−1‖J εn+θ(∇uh)‖2‖Hn+θ(∇η)‖2 +
ν

64
‖J εn+θ(∇ξh)‖2

≤ Cν−1
((
θ +

εθ

ν

)2‖∇uhn+1‖2 +
(
1− θ − 2εθ

ν

)2‖∇uhn‖2 +
ε2θ2

ν2
‖∇uhn−1‖2

)
×(

(θ + 1)2‖∇ηn‖2 + θ2‖∇ηn−1‖2
)

+
ν

64
‖J εn+θ(∇ξh)‖2.

The last trilinear term is bounded as

b∗
(
Hn+θ(ξ

h),J εn+θ(u
h),J εn+θ(ξ

h)
)

(4.7)

≤ C‖J εn+θ(∇uh)‖∞‖Hn+θ(ξ
h)‖‖J εn+θ(∇ξh)‖

+ C‖J εn+θ(u
h)‖∞‖Hn+θ(ξ

h)‖‖J εn+θ(∇ξh)‖

≤Cν−1
(
‖J εn+θ(∇uh)‖2∞+‖J εn+θ(u

h)‖2∞
)(

(θ+1)2‖ξhn‖2+θ2‖ξhn−1‖2
)
+
ν

64
‖J εn+θ(∇ξh)‖2.

After bounding all the terms on the right hand side of (4.5), we now take the sum
from n = 1 to n = N − 1∥∥∥∥[ ξhN
ξhN−1

]∥∥∥∥2

G

+
1

4

N−1∑
n=1

‖ξhn+1 − 2ξhn + ξhn−1‖2F +4t
N−1∑
n=1

ν

2
‖J εn+θ(∇ξh)‖2 (4.8)

≤
∥∥∥∥[ξh1ξh0

]∥∥∥∥2

G

+ C4t
N−1∑
n=1

[
ν−1θ2(1−θ)2∆t3

∫ tn+1

tn

‖ptt‖2dt+ ν−3ε2θ2∆t3
∫ tn+1

tn−1

‖ptt‖2dt

+ ν−1h2s+2‖pn+θ‖2s+1 + ν−1θ6∆t3
∫ tn+1

tn−1

‖uttt‖2dt+ Cνθ2(1−θ)2∆t3
∫ tn+1

tn

‖∇utt‖2dt

+ Cν−1ε2θ2∆t3
∫ tn+1

tn−1

‖∇utt‖2dt+ Cν−1θ2(1+θ)2∆t3‖J εn+θ(∇u)‖2
∫ tn+1

tn−1

‖∇utt‖2dt

+Cν−1θ2(1−θ)2∆t3‖∇un+θ‖2
∫ tn+1

tn

‖∇utt‖2dt+Cν−3ε2θ2∆t3‖∇un+θ‖2
∫ tn+1

tn−1

‖∇utt‖2dt

+
(θ2+4)

ν4t

∫ tn+1

tn−1

‖ηt‖2dt+ν
((
θ+

εθ

ν

)2‖∇ηn+1‖2+
(
1−θ− 2εθ

ν

)2‖∇ηn‖2+ ε2θ2

ν2
‖∇ηn−1‖2

)
+ν−1

(
(θ + 1)2‖∇un‖2 + θ2‖∇un−1‖2

)((
θ +

εθ

ν

)2‖∇ηn+1‖2 +
(
1−θ− 2εθ

ν

)2‖∇ηn‖2
+
ε2θ2

ν2
‖∇ηn−1‖2

)
+ν−1

((
θ+

εθ

ν

)2‖∇uhn+1‖2+
(
1−θ− 2εθ

ν

)2‖∇uhn‖2+ ε2θ2

ν2
‖∇uhn−1‖2

)
×(

(θ+1)2‖∇ηn‖2+θ2‖∇ηn−1‖2
)

+ν−1
(
‖J εn+θ(∇uh)‖2∞+‖J εn+θ(u

h)‖2∞
)(

(θ+1)2‖ξhn‖2+θ2‖ξhn−1‖2
)]
.

Using Lemma 3.1 and absorbing constants into C we obtain

‖ξhN‖2 +
1

2θ + 1

N−1∑
n=1

‖ξhn+1 − 2ξhn + ξhn−1‖2F +
2

2θ + 1
4t

N−1∑
n=1

ν‖J εn+θ(∇ξh)‖2

≤
(2θ − 1

2θ + 1

)N
‖ξh0 ‖2 + 2

(
1−

(2θ − 1

2θ + 1

)N)[∥∥∥∥[ξh1ξh0
]∥∥∥∥2

G

+ C

(
ν−1∆t4‖|ptt|‖22,0

+ ν−1h2s+2‖|p|‖22,s+1 + ν−1∆t4‖|uttt|‖22,0 + ν∆t4‖|∇utt|‖22,0 + ν−1∆t4‖|∇utt|‖22,0
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+ ν−1∆t4‖|∇u|‖2∞,0‖|∇utt|‖22,0 + ν−1∆t4‖∇u‖2∞,0‖|∇utt|‖22,0 + ν−1h2k+2‖|ut|‖22,k+1

+ νh2k‖|u|‖22,k+1 + ν−1h2k‖|∇u|‖2∞,0‖|u|‖22,k+1

)
+ Cν−14t

N−1∑
n=0

‖ξhn‖2
]
.

Notice that

0 ≤
(

2θ − 1

2θ + 1

)N
< 1, for any N ≥ 0.

Then by Lemma 2.4 in [8, p. 176], we obtain

‖ξhN‖2 +
1

2θ + 1

N−1∑
n=1

‖ξhn+1 − 2ξhn + ξhn−1‖2F +
2

2θ + 1
4t

N−1∑
n=1

ν‖J εn+θ(∇ξh)‖2

≤ exp
(
Cν−1T

) [(2θ − 1

2θ + 1

)N
‖ξh0 ‖2 + 2

(
1−

(2θ − 1

2θ + 1

)N)∥∥∥∥[ξh1ξh0
]∥∥∥∥2

G

+ C
(

1−
(2θ − 1

2θ + 1

)N)(
ν−1∆t4‖|ptt|‖22,0 + ν−1h2s+2‖|p|‖22,s+1 + ν−1∆t4‖|uttt|‖22,0

+ ν∆t4‖|∇utt|‖22,0 + ν−1∆t4‖|∇utt|‖22,0 + ν−1∆t4‖|∇u|‖2∞,0‖|∇utt|‖22,0
+ ν−1∆t4‖∇u‖2∞,0‖|∇utt|‖22,0 + ν−1h2k+2‖|ut|‖22,k+1 + νh2k‖|u|‖22,k+1

+ ν−1h2k‖|∇u|‖2∞,0‖|u|‖22,k+1

)]
.

Recall en = ηn + ξhn. By triangle inequality and Lemma 3.1, we obtain the error
inequality (4.1).

5. Numerical Experiments. This section presents numerical experiments to
test the family of proposed methods. Two typical methods, i.e., CNLEReg (θ = 1

2 )
and BDFLE2Reg (θ = 1), are tested on several benchmark problems, including
a problem with known analytical solution in order to verify predicted convergence
rates, Poiseuille flow at low viscosity over a long time interval, flow past a normal flat
plate, and channel flow with a contraction and two outlets. In all cases, the proposed
methods perform very well.

For flow past a normal flat plate, we compare solutions for BDFLE2Reg to
another common stabilization method used with BDF2LE, which is discussed in the
introduction as a ‘speed’ penalization. We will call it BDFLE2Stab, and it is given
by

3un+1 − 4un + un−1

24t
− ν4un+1 − α4(un+1 − un) (BDF2LEStab)

+ (2un − un−1) · ∇un+1 +∇pn+1 = fn+1,

∇ · un+1 = 0.

It will use a standard finite element spatial discretization in our simulations.

5.1. Convergence rate verification. Our first experiment tests the predicted
convergence rates for the method. To do this, we selected the analytical solution

u =

(
cos(y)et

sin(x)et

)
, p = (x− y)(1 + t),
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took the domain to be the unit square, set the viscosity ν = 1, and then calculated
the forcing f from this data and the NSE. Errors and convergence rates were then
calculated by varying the mesh width h and timestep ∆t, using (P2, P1) Taylor-Hood
elements on uniform meshes, and the CNLEReg algorithm. Full Dirichlet boundary
conditions were enforced nodally on the boundary. For the spatial convergence rates,
we fixed ∆t = T/16 and the end time T = 0.1, and for the temporal convergence
rates, we fixed the mesh width to be h = 1/128 and set T = 2.

Denoting

‖u− uh‖2,1 :=

(
∆t

N∑
n=1

‖∇
(
u(tn)− uhn

)
‖2
)1/2

,

the results are shown in tables 5.1-5.2 (for spatial error and temporal error, respec-
tively), for different choices of the stabilization parameter ε. The spatial convergence
rate appears to be 2 for each choice of ε, which is optimal based on our element choice.
The temporal convergence rate also appears to be 2 for each choice ε, which is also
optimal, although the actual error can be observed to increase as ε increases. Hence,
these tables are consistent with the convergence rates predicted by the theory above,
and thus provide some verification that the theory (and the code) are correct.

ε = 0 ε = 10−2 ε = 1.0
h ‖u− uh‖2,1 Rate ‖u− uh‖2,1 Rate ‖u− uh‖2,1 Rate
1
4 7.5448e-4 7.5448e-4 7.5448e-4
1
8 1.8872e-4 1.99924 1.8872e-4 1.99924 1.8872e-4 1.99926
1
16 4.7186e-5 1.99982 4.7186e-5 1.99982 4.7185e-5 1.99982
1
32 1.1797e-5 1.99997 1.1797e-5 1.99996 1.1797e-5 1.99989
1
64 2.9493e-6 1.99995 2.9493e-6 1.99995 2.9517e-6 1.99886
1

128 7.3770e-7 1.99927 7.3765e-7 1.99936 7.4712e-7 1.98212

Table 5.1: This table gives errors and convergence rates for analytical test problem with ν = 1.0,
T = 0.1, ∆t = T/16, using CNLEReg and varying mesh widths.

ε = 0 ε = 10−2 ε = 1.0
∆t ‖u− uh‖2,1 Rate ‖u− uh‖2,1 Rate ‖u− uh‖2,1 Rate
T
2 1.92362e-2 1.83172e-2 2.79061e-2
T
4 3.61969e-3 2.40988 3.41510e-3 2.42320 1.20402e-2 1.21272
T
8 7.70911e-4 2.23123 7.27397e-4 2.23111 3.19789e-3 1.91267
T
16 1.80583e-4 2.09390 1.70331e-4 2.09440 8.29912e-4 1.94609
T
32 4.53413e-5 1.99376 4.28931e-5 1.98953 2.10445e-4 1.97951

Table 5.2: This table gives errors and convergence rates for analytical test problem with ν = 1.0,
T = 2.0, h = 1/128, using CNLEReg and varying time step.

5.2. Poiseuille flow with small viscosity. Our second experiment tests the
long-time stability of a Poiseuille channel flow simulation with viscosity ν = 10−4.
Although this type of flow is a smooth NSE solution, it is well known to have numerical
instabilities when viscosity values are small.
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The computations use CNLEReg on the [0,4]×[0,1] rectangular domain, ∆t =
1.0, f = 0, (P2, P1) Taylor-Hood elements on a uniform coarse mesh with h = 0.1,
and an end time of T = 1, 500. We begin with an initial condition of

u0 =

(
4y(1− y)

0

)
,

and enforce boundary conditions to be no-slip on the top and bottom of the channel,
and parabolic (same as the initial condition) at the inlet and outlet. Solutions were
then computed using ε = 0 (no stabilization) and with ε = 10−5, 10−4. Plots of
energy 1

2‖u
n
h‖2 versus time are shown in figure 5.1 for the three solutions, and reveals

that while the stabilized solutions maintain the same (correct) energy throughout
the simulation, at around T = 800 the unstabilized solution undergoes a transition
away from the correct solution. After T = 800, the energy in the unstabilized system
becomes incorrect and then oscillates in time. Plots of the velocity field speed contours
for the ε = 0 and 10−4 solutions at T=1,500 are shown in figure 5.2, and from the
plots we observe that the stabilized solution has maintained its smooth parabolic
profile, while the unstabilized solution has clearly diverged from the correct solution
it started with.

Fig. 5.1: 1
2
‖u‖2 vs. Time plots with ν = 10−4, T = 1500, h = 0.2, ∆t = 1 for different values of ε.

ε = 0 ε =1e-4

Fig. 5.2: CNLEReg computed velocity field speed contours for Poiseuille flow at T = 1500, with
ε = 0 (left) and ε = 0.0001 (right).

5.3. Flow past a normal flat plate. Next, we consider simulating flow past
a normal flat plate with the proposed scheme BDF2Reg, following the experiments
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from [23, 24]. We use the [−7, 20]× [−10, 10] rectangular channel as the domain, with
a 0.125× 1 flat plate vertically centered and placed 7 units into the channel from the
left. The inflow velocity is set with uin = 〈1, 0〉T , no forcing is applied (f = 0), and
the kinematic viscosity is taken to be ν = 0.01, which gives a Reynolds number of
Re = 100 (based on the plate height). No-slip conditions are enforced on the walls and
plate, and for the outflow, the zero-traction boundary condition is enforced weakly
via the ‘do-nothing’ condition. The quantities of interest are the Strouhal number
St (the frequency of vortex shedding) and the time averaged drag coefficient, both
of which are computed from the final 10 periods of the flow after the flow reaches
a statistically steady (periodic-in-time) state (which occurs at around T=130). The
Strouhal number is calculated as in [23, 24], using the fast Fourier transform (FFT)
of the transverse velocity at (4.0,0.0) (note since the maximum inlet speed is 1 and
fluid density is assumed to be 1, we get directly that St is the dominant frequency
of the FFT). The drag coefficients are computed at each timestep and then averaged,
using a global integral formula (see [15] for details).

The computations used (P2, P1) Taylor-Hood elements for velocity and pressure,
on a Delaunay-generated triangulation which provided 16,013 total degrees of freedom
(dof). For these tests we used θ = 1 (i.e. BDF2LEReg), varied ∆t =0.05, 0.1, and
0.25, and set the regularization parameter ε=0.002. For comparison, we also computed
using no stabilization with the same discretizations, and also no stabilization on a
much finer discretization with that used 159K total dof and ∆t = 0.01. We also
compare our results with data from direct numerical simulations of [23, 24].

Comparisons between the solutions are given in table 5.3 and figure 5.3. Table 5.3
shows the time averaged drag coefficients and Strouhal numbers for the simulations,
as well as for DNS data. We first observe that our solution on a fine mesh with
a small timestep matches the DNS of Saha in both the Strouhal number and the
time averaged drag coefficient. On the coarser discretizations, the stabilized solutions
are significantly more accurate than the unstabilized solutions, particularly as the
timestep size increases. In particular, the Strouhal numbers for the stabilized solutions
match the DNS data (up to the spacing of discrete frequencies from the FFT), and the
drag coefficients are reasonably accurate, even for ∆t = 0.25. Note that the curvature
stabilization of BDF2LEReg has a decreasing affect on the drag coefficient, which is
in sharp contrast to the results below for BDF2LEStab (where speed is stabilized).

In figure 5.3, we plot the speed contours (zoomed in near the plate) of the fine
mesh solution, and stabilized and unstabilized coarse mesh solutions with ∆t = 0.25,
at a snapshot in time, T = 200. We observe that the stabilized coarse mesh solu-
tion qualitatively matches the fine mesh solution much better than the unstabilized
solution. That is, the stabilized solution has the same flow structures in nearly the
same locations as the fine mesh solution, while the unstabilized solution appears quite
different. Flow structures of the unstabilized solution not matching the fine mesh so-
lution are consistent with the significant error in Strouhal number of the unstabilized
solution.

We also compare results for BDF2LEReg to those of BDF2LEStab. Hence
on the same coarse spatial discretization, we compute solutions with BDF2LEStab
with ∆t =0.1 and 0.25, and varying α. Time averaged drag coefficients and Strouhal
numbers for each simulation are given in table 5.4. We observe that the BDF2LEReg
solutions provides significantly better drag coefficients compared to BDF2LEStab
(for any parameter α). It is not unexpected that BDF2LEStab does a poor job with
drag coefficient prediction, since it stabilizes speed; in fact it is clear in the table that
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Fine mesh Coarse mesh Coarse mesh
∆t=0.01, ε=0 ∆t=0.25, ε=0 ∆t=0.25, ε=0.002
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Fig. 5.3: Shown above is a (zoomed) contour plot of the speed at time T=200 for a resolved solution
(left), and unstabilized (center) and stabilized (right) coarse discretization solutions.

Method mesh ∆t ε Cd Strouhal number
DNS of Saha [23, 24] fine 0.0001 - 2.60 0.183

BDF2LE (no stab) fine 0.01 0 2.59 0.183

BDF2LE (no stab) coarse 0.05 0 2.64 0.186*
BDF2LEReg coarse 0.05 0.002 2.61 0.186*

BDF2LE (no stab) coarse 0.1 0 2.68 0.195
BDF2LEReg coarse 0.1 0.002 2.58 0.186*

BDF2LE (no stab) coarse 0.25 0 3.05 0.211
BDF2LEReg coarse 0.25 0.002 2.53 0.180*

Table 5.3: Shown above are long-time average drag coefficients and Strouhal numbers for the
simulations with and without stabilization, along with DNS data from finer discretizations. We note
that the Strouhal numbers with asterisks are the closest discrete frequency values in the FFT to
0.183.

increasing α increases the drag coefficient.
For ∆t = 0.1, BDF2LEStab does accurately predict the Strouhal number, even

though Cd prediction is inaccurate and gets worse as the stabilization parameter is
increased. For ∆t = 0.25, however, the BDF2LEStab solutions do not do a good
job with Strouhal number prediction. Only for α = 0.1 does it accurately predict the
Strouhal number, but this particular solution has a terrible prediction of Cd.

5.4. Channel flow with two outlets and a contraction. For our final nu-
merical test, we apply the proposed method to a 2D benchmark contracted channel
flow problem, first studied by Turek et. al. in [13], with one inlet on the left hand
side, one vertical outlet in the middle and one outlet on the right hand side, as shown
in Figure 5.4. We enforce a parabolic inflow profile u = 〈4y(1−y), 0〉T with maximum
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Method mesh ∆t α Cd Strouhal number
BDF2LE (no stab) coarse 0.1 0 2.68 0.195

BDF2LEStab coarse 0.1 0.005 2.68 0.186*
BDF2LEStab coarse 0.1 0.01 2.69 0.186*
BDF2LEStab coarse 0.1 0.05 2.79 0.186*
BDF2LEStab coarse 0.1 0.1 2.89 0.186*

BDF2LE (no stab) coarse 0.25 0 3.05 0.211
BDF2LEStab coarse 0.25 0.005 3.07 0.203
BDF2LEStab coarse 0.25 0.01 3.08 0.203
BDF2LEStab coarse 0.25 0.05 3.21 0.195
BDF2LEStab coarse 0.25 0.1 3.38 0.180*

Table 5.4: Shown above are long-time average drag coefficients and Strouhal numbers for the
simulations with BDF2LEStab, with varying α and ∆t, using the same 18,822 dof mesh as BDF2Reg
uses above. We note that the Strouhal numbers with asterisks are the closest discrete frequency values
in the FFT to 0.183.

Fig. 5.4: The physical model of the domain for contracted channel flow with two outlets is shown
above.

horizontal velocity component umaxinlet = 1 at the center, no slip boundary conditions
on its sides, and at the outflows, zero traction is imposed (with the ’do-nothing’ con-
dition). We impose no external forcing (f = 0), set the kinematic viscosity ν = 0.001,
start the flow from rest, and the simulation is run to T = 4.

A resolved solution of the NSE was found using a timestep of ∆t = 0.005 and
260,378 total spatial dof in [3], and its T=4 speed contours are shown in figure 5.5.

We computed using (P2, P1) Taylor-Hood elements on a coarse mesh that pro-
vided 18,822 total dof, using time step size ∆t = 0.02 with both BDF2 without
stabilization (i.e. BDF2Reg with ε = 0), and BDF2Reg with stabilization parameter
ε = 0.0005. Speed contours of these solutions at T=4 are shown in figure 5.5, and
we observe that the unstabilized solution is destroyed by oscillations. The stabilized
solution, however, remains stable and is in general qualitative agreement with the
DNS, although there are some differences near the end of the channel; however on
such a coarse discretization, it is not expected to get exact agreement.

6. Conclusions. A family of efficient, stabilized, second order, unconditionally
stable timestepping methods for NSE are analyzed and numerically tested. These
methods require the solution of only one linear system per time step, and have en-
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Fig. 5.5: Shown above is contour plot of the speed of the resolved Navier-Stokes velocity solution
at T=4.

hanced stability due to a penalization of the velocity curvature, and achieve second
order temporal accuracy because the penalization is itself second order consistent.
Rigorous proofs of unconditional stability and convergence are given for the entire
family of methods.

In addition to the theoretical results, several numerical experiments are performed
which show the effectiveness of the methods. In addition to verifying the theoretically-
predicted convergence rates, a significant positive effect of the method is seen on the
stability and accuracy of solutions of three benchmark flow problems, when com-
pared to solutions of unstabilized schemes and common, related, stabilized schemes.
In particular, the method BDF2LEReg is shown to provide significantly more ac-
curate predictions of the drag coefficient for flow across a flat plate, compared to
BDF2LEStab. The methods can be easily applied to many other models with minor
modifications, and this report is an initial attempt to study these linearized meth-
ods and new stabilization in a CFD context. How the stabilization terms affect the
stability separately still requires more investigation.
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