Math 0120 Homework_12 is due : 08/25/2013 at 08:11pm EDT.

Reference: Berresford, Sections 7.1, 7.2

1. (1 pt) A car rental company charges a one-time application fee of 25 dollars, 60 dollars per day, and 14 cents per mile for its cars.

(a) Write a formula for the cost, *C*, of renting a car as a function of the number of days, *d*, and the number of miles driven, *m*. C =_____

(b) If C = f(d, m), then f(4, 560) = _____

2. (1 pt) Consider the concentration, *C*, in mg per liter (L), of a drug in the blood as a function of *x*, the amount, in mg, of the drug given and *t*, the time in hours since the injection. For $0 \le x \le 3$ and $t \ge 0$, we have $C = f(x,t) = te^{-t(4-x)}$.

Find f(1, 2.5): _____

(include units)

Be sure you can interpret what your answer means in terms of drug concentration, time and initial amount.

3. (1 pt) Suppose $f(x,y) = xy^2 + 6$. Compute the following values:

4. (1 pt) Find the partial derivatives indicated. Assume the variables are restricted to a domain on which the function is defined.

$$f(x,y) = x^3 + 4x^2y.$$

 $f_x(2,4) =$ __________ $f_y(2,4) =$ _______

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

5. (1 pt) Find the partial derivatives indicated. Assume the variables are restricted to a domain on which the function is defined.

$$z = (x^3 + x - y)^7.$$
$$= \underline{\qquad}$$

 $\frac{\partial z}{\partial y} =$

6. (1 pt) Find the partial derivatives indicated Assume the variables are restricted to a domain on which the function is defined.

$$z = x^{6} + 4^{y} + x^{y}.$$

$$z_{x} = \underline{\qquad}$$

$$z_{y} = \underline{\qquad}$$

$$\overline{z_{y} = \underline{\qquad}}$$

$$\overline{z_{y} = \underline{\qquad}}$$

7. (1 pt) Calculate all four second-order partial derivatives and check that $f_{xy} = f_{yx}$. Assume the variables are restricted to a domain on which the function is defined.

8. (1 pt) In cold weather, we feel colder when the wind blows. This is quantified by the wind chill index W, which is supposed to predict how cold we will feel for a given air temperature T, in degrees Fahrenheit, and wind speed V, in miles/hour. The National Weather Service uses the following formula:

$$W = 35.74 + 0.6215T - 35.75V^{0.16} + 0.4275TV^{0.16},$$

for $T \leq 50$ and $V \geq 3$.

What is the wind chill index when the air temperature is 0 degrees and the wind speed is 5 miles/hour?

Answer: ____

Calculate the partial derivatives W_T and W_V when T = 0 and V = 5.

$$W_T = _$$

 $W_V =$ ____

Use your answer above to do the following question: When the air temperature is 0 degrees, estimate the change in the wind chill index if the wind speed increases by 2 miles/hour from 5 miles/hour.

Answer: _____