Math 0120 Homework_08 is due : 08/29/2012 at 02:13pm EDT.

Reference: Berresford, Sections 4.1, 4.2, 4.3, 4.4

1. (1 pt) Do the exponential expressions given below represent growth or decay?

 $\overline{?}6.7.04(1.372)^t$

2. (1 pt) A travel mug of 91°C coffee is left on the roof of a parked car on a cold winter day. The temperature of the coffee after *t* minutes is given by $H = 91(2)^{-t/11}$. After how many minutes will the coffee be only lukewarm (30°C)?

t = .

3. (1 pt) What is the balance after 1 year of an account containing \$900 which earns a yearly nominal interest of 6% that is compounded (*round all answers to the nearest cent; do not include commas*) :

(a) annually? $_{-}$

(b) weekly (there are 52 weeks per year)? \$ _____

(c) every minute (there are 525,600 minutes per year)? \$

(d) continuously? \$ _____

4. (1 pt) Rewrite each of the following as an expression of x which does not involve any logs.

(a) $\log_{10}(1000^x) =$ _____ (b) $100^{\log_{10}(x)} =$ _____

(c) $\log_{10}(0.01^x) =$ _____

5. (1 pt) Find the doubling time for a city whose population is growing by 15% per year.

The doubling time is _____ years.

6. (1 pt) Find the derivative of the function $y(x) = q^x + x^q$. Assume that *q* is a constant. y'(x) =______

7. (1 pt) Since January 1, 1960, the population of Slim Chance has been described by the formula $P = 24000(0.96)^t$, where *P* is the population of the city *t* years after the start of 1960. At what rate was the population changing on January 1, 1987?

rate = _____ people/yr

8. (1 pt) Find the derivative of the function f(x), below. It may be to your advantage to simplify first.

$$f(x) = \frac{x'}{8^x}$$
$$f'(x) = \underline{\qquad}$$

9. (1 pt) Find the derivative of

$$y = te^{-t^3}$$
$$\frac{dy}{dt} = \underline{\qquad}$$

10. (1 pt) Find the derivative of

 $y = \frac{e^{7x}}{x^2 + 1}$ $\frac{dy}{dx} = \underline{\qquad}$

11. (1 pt) Let

$$f(x) = 2x^8 \ln x$$

$$f'(x) =$$

12. (1 pt) Let

$$f(x) = [\ln x]^5$$

Then $f'(x) =$ ______

and f''(x) = ______

13. (1 pt) Demand for movie tickets to a certain theater depends on the ticket price p, in dollars, according to the demand function

$$D(p) = 120\sqrt{30-p}$$
.

Ticket price is currently set at 10 dollars. Find the elasticity of demand at the current ticket price. $E(10) = ___$

Find the ticket price which will maximize revenue. Answer: _____ dollars

14. (1 pt) The concentration in miligrams per liter of a drug in a patient's blood t hours after being dosed is give by

$$c(t) = 12te^{-1.2}$$

How long will it take for the blood concentration of the drug to peak?

Answer: ____ hours

What is the peak concentration? Answer: ____ mg/l

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America