Math 0120 Homework_06 is due : 08/29/2012 at 02:11pm EDT.

Reference: Berresford, Sections 3.2, 3.3, 3.4

1. (1 pt) A fence is to be built to enclose a rectangular area of 300 square feet. The fence along three sides is to be made of material that costs 5 dollars per foot, and the material for the fourth side costs 15 dollars per foot. Find the length L and width W (with $W \le L$) of the enclosure that is most economical to construct.

L = _____

```
W = _____
```

2. (1 pt) Suppose that

$$f(x) = \frac{1}{8x^2 + 6}.$$

(A) Find the **smallest** inflection point of f. Smallest inflection point: x = _____

(B) Find the **largest** inflection point of *f*. Largest inflection point: x = _____

3. (1 pt) The manager of a large apartment complex knows from experience that 110 units will be occupied if the rent is 474 dollars per month. A market survey suggests that, on the average, one additional unit will remain vacant for each 1 dollar increase in rent. Similarly, one additional unit will be occupied for each 1 dollar decrease in rent. What rent should the manager charge to maximize revenue?

4. (1 pt) The revenue from selling q items is $R(q) = 625q - q^2$, and the total cost is C(q) = 150 + 8q. Write a function that gives the total profit earned, and find the quantity which maximizes the profit.

Profit $\pi(q) =$ ____

Quantity maximizing profit q = _____

5. (1 pt) Consider the function $f(x) = -2x^3 + 33x^2 - 180x + 5$. This function has two critical numbers A < BFind A _____ and B _____

For each of the following intervals, tell whether f(x) is increasing (type in INC) or decreasing (type in DEC).

(−∞,A]: _____

[*A*,*B*]: _____

 $[B,\infty)$ _____ The critical number *A* is a relative _____ (type in MAX or MIN) and the critical number *B* is a relative _____ (type in MAX or MIN)

f(x) has an inflection point at x = Cwhere C is _____

Finally for each of the following intervals, tell whether f(x) is

concave up (type in CU) or concave down (type in CD).

 $(-\infty, C]$: _____ $[C, \infty)$ _____

6. (1 pt) Let $f(x) = x^3 - (3/2)x^2$ on the interval [-1,2]. Find the absolute maximum and absolute minimum of f(x) on this interval.

The absolute max occurs at x =_____. The absolute min occurs at x =_____.

7. (1 pt) Let $f(x) = 3x^{2/3} - 2x$ on the interval [-1, 1]. Find the absolute maximum and absolute minimum of f(x) on this interval.

The absolute max occurs at x =_____ The absolute min occurs at x =_____

8. (1 pt) Let $g(x) = (4x)/(x^2 + 1)$ on the interval [-4, 0]. Find the absolute maximum and absolute minimum of g(x) on this interval.

The absolute max occurs at x =_____. The absolute min occurs at x =_____.

9. (1 pt)

A rectangular storage container with a lid is to have a volume of 4 m^3 . The length of its base is twice the width. Material for the base costs \$2 per m^2 . Material for the sides and lid costs \$4 per m^2 . Find the dimensions of the container which will minimize cost and the minimum cost.

base width =	m
base length =	m
height =	m
minimum cost = \$	

10. (1 pt) A box is to be made out of a 6 by 14 piece of cardboard. Squares of equal size will be cut out of each corner, and then the ends and sides will be folded up to form a box with an open top. Find the length *L*, width *W*, and height *H* of the resulting box that maximizes the volume. (Assume that $W \le L$). $L = ___$

W = _____

H = _____

11. (1 pt) A company manufacturers and sells *x* electric drills per month. The monthly cost and price-demand equations are C(x) = 64000 + 60x,

 $p = 210 - \frac{x}{30}, \qquad 0 \le x \le 5000.$

(A) Find the production level that results in the maximum profit. Production Level = _____

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

(B) Find the price that the company should charge for each drill in order to maximize profit.

Price = _____