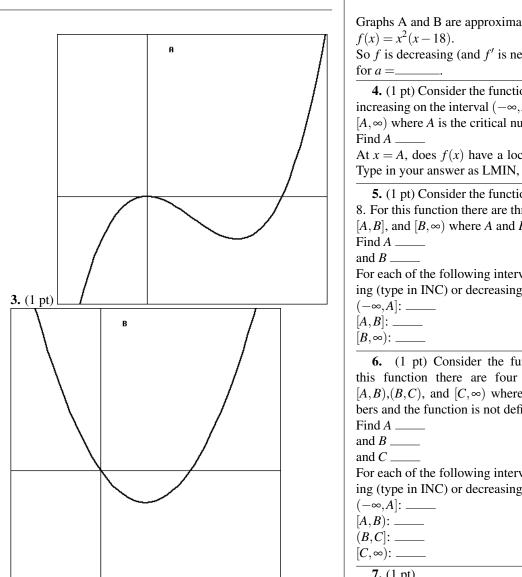

Math 0120 Homework_05 is due : 08/29/2012 at 02:10pm EDT.

Reference: Berresford, Sections 3.1, 3.2



Graphs A and B are approximate graphs of f and f' for $f(x) = -x^2 - 12x - 34$.

So *f* is decreasing (and f' is negative) on the interval (a, ∞) for a =_____.

Graphs A and B are approximate graphs of *f* and *f'* for $f(x) = x^2 - 2x + 5$. So *f* is increasing (and *f'* is positive) on the interval (a, ∞) for a =_____.

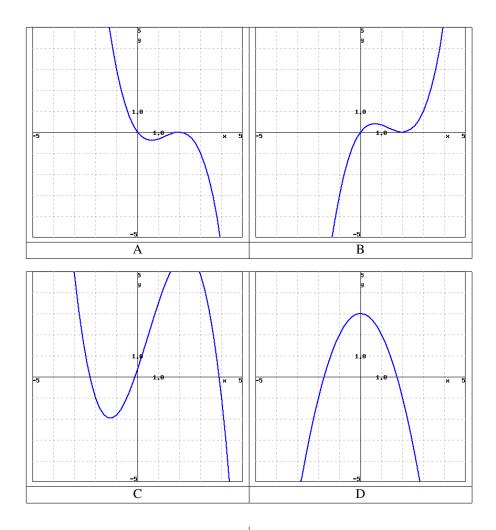
Graphs A and B are approximate graphs of f and f' for So f is decreasing (and f' is negative) on the interval (0, a)

4. (1 pt) Consider the function $f(x) = -2x^2 + 8x - 4$. f(x) is increasing on the interval $(-\infty, A]$ and decreasing on the interval $[A,\infty)$ where A is the critical number.

At x = A, does f(x) have a local min, a local max, or neither? Type in your answer as LMIN, LMAX, or NEITHER. _

5. (1 pt) Consider the function $f(x) = -2x^3 + 30x^2 - 126x + 30$ 8. For this function there are three important intervals: $(-\infty, A]$, [A, B], and $[B, \infty)$ where A and B are the critical numbers.

For each of the following intervals, tell whether f(x) is increasing (type in INC) or decreasing (type in DEC).


6. (1 pt) Consider the function $f(x) = 8x + 6x^{-1}$. For this function there are four important intervals: $(-\infty, A]$, [A,B),(B,C), and $[C,\infty)$ where A, and C are the critical numbers and the function is not defined at *B*.

For each of the following intervals, tell whether f(x) is increasing (type in INC) or decreasing (type in DEC).

7. (1 pt)

Use properties of functions to match each of the following functions with its graph. Do not use your calculator. Clicking on a graph will give you an enlarged view.

$$\begin{array}{c} \hline ? & 1. \ f(x) = -x(2-x)^2/3 \\ \hline ? & 2. \ f(x) = x(2-x)^2/3 \\ \hline ? & 3. \ f(x) = -x^3/3 + x^2/2 + 3x + 1/3 \\ \hline ? & 4. \ f(x) = -x^2 + 3 \end{array}$$

$$f(x) = 1x^3 + 0x^2 + (-12)x + (-9)$$

Give your answer as a comma separated list of numbers. If there are no critical numbers, enter NONE.

Answer: _____

Classify each of the critical numbers you found above as a relative minimum (MIN), relative maximum (MAX), or neither (NEITHER). Again, give your answer as a comma separated list, in the same order that you listed the critical points above. Answer: ______

9. (1 pt) Find all critical numbers for the function

$$f(x) = -\frac{x^{1/3}}{x^2 + 7} + 10$$

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

Give your answer as a comma separated list of numbers. If there are no critical numbers, enter NONE.

Answer: _____

Classify each of the critical numbers you found above as a relative minimum (MIN), relative maximum (MAX), or neither (NEITHER). Again, give your answer as a comma separated list, in the same order that you listed the critical points above. Answer: ______

List all numbers *a* such that the line x = a is an asymptote for the graph of *f*. Give your answer as a comma separated list of numbers. If the graph has no vertical asymptotes, enter NONE. Answer: ______

List all numbers *b* such that the line y = b is an asymptote for the graph of *f*. If the graph has no horizontal asymptotes, enter NONE.

Answer: _____