Math 0120 Homework_01 is due : 08/29/2012 at 01:43pm EDT.

Reference: Berresford, Sections 1.1, 1.2

1. (1 pt)

Find an equation for of each of the lines in the figure.

Line A (in red) has equation y = _____

Line B (in blue) has equation y =_____

(Click on graph to enlarge)

2. (1 pt) Write the linear equation 100x + 50y = 450 in slope-intercept form. Enter your answer as an equation in slope-intercept form.

The slope is m =_____

The *y*-intercept is b =_____

3. (1 pt)

Without a calculator, match each equation with its graph A-G.

(Click on a graph to enlarge it)

4. (1 pt) Find the equation of the line that passes through the (x,y) points (-4,5) and (1,6).

5. (1 pt) The monthly charge for a waste collection service is 1630 dollars for 100 kg of waste and 2430 dollars for 150 kg of waste.

(a) Find a linear model for the cost, *C*, of waste collection as a function of the number of kilograms, *w*. C =_____

(**b**) What is the slope of the line found in part (a)? Slope = _____

Think about the interpretation of the slope: are the units of the slope

• A. dollars

1

- B. kilograms
- C. kilograms per dollar
- D. dollars per kilogram

(c) What is the value of the vertical intercept of the line found in part (a)?

Value=

Think about the interpretation of the intercept: are the units of the intercept

- A. kilograms per dollar
- B. dollars per kilogram
- C. kilograms
- D. dollars

6. (1 pt) The expression $(3a^5b^3c^2)^2(2a^5b^2c^2)^3$ equals $na^rb^sc^t$

where *n*, the leading coefficient, is: _____ and *r*, the exponent of *a*, is: ______ and *s*, the exponent of *b*, is: ______ and finally *t*, the exponent of *c*, is: _____

7. (1 pt) Enter numerical values for the following **powers**. I recommend you don't use a calculator, to make sure you understand the concepts involved. Your answer needs to be a natural number, the system will not accept an arithmetic expression.

 $9\frac{3}{5} =$ ____.

- $8^{\frac{5}{3}} = _$. $27^{\frac{4}{3}} = _$.

8. (1 pt) Enter numerical values for the following powers.

- $(5^2)^{\frac{3}{2}} = \underline{\qquad}.$ $(2^3)^{\frac{5}{3}} = \underline{\qquad}.$
- $(2^{3})^{\frac{4}{3}} =$ ____.
- $(5)^{3} =$ ____

Hint: You take a power to a power by multiplying the exponents.

9. (1 pt) Match the radical expressions below with the letters labeling their equivalent exponential expressions.

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

10. (1 pt) Evaluate the expression

$$\frac{\sqrt{180}}{\sqrt{5}}$$

Your answer is ____

11. (1 pt) The expression

$$\left(\frac{3a^{-4}}{3b^{-1/2}}\right)^{-1}$$

equals na^r/b^t where

n, the coefficient, is: _____

r, the exponent of a, is: _____

t, the exponent of b, is: _____

12. (1 pt) The expression

 $\sqrt[6]{a^5b^2}$

equals $a^r b^s$ where r, the exponent of a, is: ______ s, the exponent of b, is: ______