WeBWorK Assignment Homework09 is due : 05/21/2016 at 04:10pm EDT.

Reference: Axler, Precalculus, 2nd ed, Sections 5.1, 5.2, and 5.3

Here's the list of **functions and symbols** that WeBWorK understands.

1. (1 pt) Find the exact value of each expression if defined; otherwise, input undefined. (a) $\sin^{-1}\frac{1}{2} =$ ______ degrees. (b) $\cos^{-1}\frac{1}{2} =$ ______ degrees. (c) $\cos^{-1}6 =$ ______ degrees.

2. (1 pt) Evaluate the following expressions. Your answer must be in radians.

(a) $\tan^{-1}(-\frac{\sqrt{3}}{3}) =$ _____ (b) $\tan^{-1}(-1) =$ _____ (c) $\tan^{-1}(0) =$ _____

3. (1 pt) Find the exact value of each expression if defined; **otherwise, input undefined.**

(a) $\tan^{-1} \frac{\sqrt{3}}{3} =$ ______ degrees. (b) $\tan^{-1}(-\frac{\sqrt{3}}{3}) =$ ______ degrees. (c) $\sin^{-1}(-6) =$ ______ degrees.

4. (1 pt) Evaluate the following expressions. Your answer must be an angle in radians and in the interval $[-\pi/2, \pi/2]$. Note that π is already provided in the answer so you just have to write the appropriate multiple. E.g. if the answer is $\pi/2$ you should write 1/2. Do not use decimal numbers. The answer should be a fraction or an integer.

(a) $\tan^{-1}(\tan(-5\pi/6)) = _____{\pi}$ (b) $\tan^{-1}(\tan(3\pi/4)) = ______{\pi}$ (c) $\tan^{-1}(\tan(7\pi/6)) = ______{\pi}$

5. (1 pt) Solve the equation in the interval $[0, 2\pi]$. If there is more than one solution write them separated by commas. $(\sin(x))^2 = \frac{1}{25}$ x =_____

6. (1 pt) Solve the equation in the interval $[0, 2\pi]$. If there is more than one solution write them separated by commas. **Hint:** To solve this problem you will have to use the quadratic formula, inverse trigonometric functions and the symmetry of the unit circle.

 $(\tan x)^2 - 0.3 \tan x - 7 = 0$ x = _____

7. (1 pt) Evaluate the following expressions. $\cos(\sin^{-1}(\frac{\sqrt{2}}{2}))$ ______ $\tan(\sin^{-1}(0))$ ______ **8.** (1 pt) Find the exact value of each expression if defined; otherwise, input undefined.

(a) $\tan(\sin^{-1}\frac{1}{2}) =$ _____. (b) $\tan(\sin^{-1}(-\frac{1}{2})) =$ _____.

9. (1 pt) Find the exact value of each expression by sketching a triangle: (a) $\sin(\cos^{-1/3}) =$

(a) $\sin(\cos^{-1}\frac{3}{5}) =$ _____. (b) $\cos(\sin^{-1}\frac{4}{5}) =$ _____.

10. (1 pt) Find the exact value of each expression by sketching a triangle:

(a) $\cos(\tan^{-1} 2) =$ ____. (b) $\tan(\cos^{-1} \frac{1}{\sqrt{5}}) =$ ____.

11. (1 pt) Rewrite the expression as an algebraic expression in x:

 $\tan(\sin^{-1}x) = \underline{\qquad}.$

12. (1 pt)

Simplify by referring to the appropriate triangle or trigonometric identity.

 $\cot(\sin^{-1}(x)) = \underline{\qquad}$

b =_____

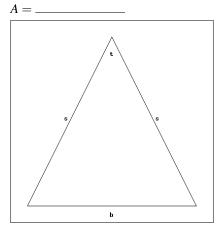
13. (1 pt) A triangle has sides of lengths 9 and 4 and unknown included angle θ . If the area of the triangle is 3.6, find the angle θ . Give your answer in radians. If there is more than one possible answer, give them as a comma separated list. $\theta = \underline{\qquad}$ radians

14. (1 pt)

An isosceles triangle has slant height *s* and angle *t* opposite the base.

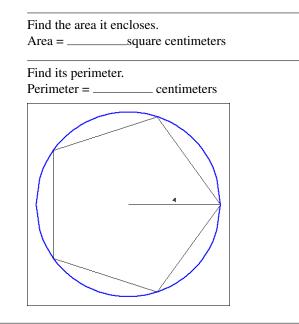
Find a formula for the base length b in terms of the angle t and the slant height s.

Find a formula for the enclosed area A in terms of t and s.



15. (1 pt)

A regular pentagon (5 sided polygon) is inscribed in a circle of radius 4 centimeters.



16. (1 pt)

An isosceles triangle has height h and angle t opposite the base.

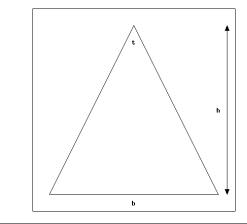
Find a formula for the base length b in terms of the angle t and the height h.

b = _____

Find a formula for the enclosed area A in terms of t and h.

 $A = _$

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America



17. (1 pt)

A regular septagon (7 sided polygon) is circumscribed about a circle of radius 7 centimeters.

Find the area it encloses. Area = _____square centimeters

Find its perimeter.

