WeBWorK Assignment Homework07 is due : 05/21/2016 at 04:09pm EDT.

Reference: Axler, Precalculus, 2nd ed, Sections 4.1, 4.2, and 4.3

Here's the list of functions and symbols that WeBWorK understands.

1. (1 pt)

On a twelve hour clock, find the angle in degrees between the hour hand and the minute hand at 10 o'clock. Your answer should be betweeen 0° and 180° .

Angle = _____ degrees.

Find the angle between the hour hand and the minute had at 10:45.

Angle = _____ degrees.

2. (1 pt)

An angle of 7° is drawn from the center of the unit circle. What is the arc length of the intercepted arc on the circle? Arc length = _

An angle drawn from the center of the unit circle intercepts an arc of length 2.5. What is the angle measure in degrees? Give your answer to the nearest tenth of a degree.

Angle = _____ degrees

3. (1 pt)

An angle of 28° is drawn from the center of a circle of radius 3. What is the arc length of the intercepted arc on the circle? Arc length = ____

An angle drawn from the center of a circle of radius 3 intercepts an arc of length 2.4. What is the angle measure in degrees? Give your answer to the nearest tenth of a degree.

Angle = _____ degrees

4. (1 pt) Starting from a longitude of 120°, you travel east along the equator to a longitude of 148°. How far do you travel? The radius of the earth is 3959 miles.

Distance traveled = ____ miles

5. (1 pt) Find the length of an arc on a circle of radius 2

corresponding to an angle of $\left(\frac{135}{\pi}\right)^{\circ}$. Arc length = _____ units. (Give an exact answer as a fraction, not a decimal approximation.)

6. (1 pt) How far does the tip of the minute hand of a clock move in 25 minutes if the hand is 8 inches long?

(include units in your answer:)

7. (1 pt) You have just been served a 39° slice of a 14 inch diameter pizza. What is its area?

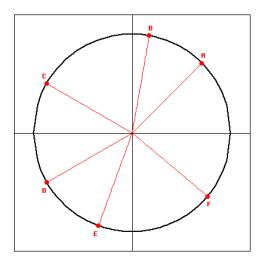
Area=_____ square inches

8. (1 pt) What is the length of an arc cut off by an angle of 1.5 radians on a circle of radius 9 inches? _ (include units:)

9. (1 pt) Convert each of the following degree measurements to radians. In each case, your answer should be a fracion times π . Decimal answers will not be accepted.

Degree measure	Radian measure
-30°	×π
120°	×π
45°	×π
30°	×π
-135°	×π
-240°	×π

10. (1 pt) Convert each of the following radian measurements to degrees. In each case, your answer should be an integer (whole number).


Radian measure	Degree measure
$\frac{4\pi}{3}$	degrees
$\frac{-7\pi}{4}$	degrees
$\frac{7\pi}{4}$	degrees
$\frac{-\pi}{6}$	degrees
$\frac{-4\pi}{3}$	degrees
$\frac{11\pi}{6}$	degrees

11. (1 pt) For each angle below (in radians), enter the end point of the corresponding radius of the unit circle.

A 1	F 1
Angle	End point
π	
3	
$\frac{\frac{\pi}{3}}{\frac{\pi}{6}}$	
4	
$-\frac{7\pi}{4}$	
$-\frac{7\pi}{6}$	
$-\frac{4\pi}{3}$	

12. (1 pt) For each angle listed in the table below, select the letter of the corresponding point on the unit circle, the value of the x-coordinate of the point, and the value of the y-coordinate of the point. Round the coordinates of the point to 3 decimal places. Don't enter sin or cos. (You must approximate your answers.)

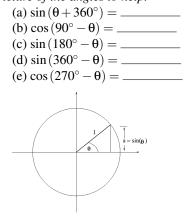
Angle	Point	x-coordinate	y-coordinate
250°	?		
-150°	?		
150°	?		
800°	?		
45°	?		
-400°	?		

(Click on graph to enlarge)

13. (1 pt) Find the coordinates of the point *P* at an angle of -140° on a circle of radius 2.9. Round your answers to the three decimal places. Enter a point as (a, b) including parentheses.

The point P is _____

14. (1 pt) (a) Find another angle θ between 0° and 360° that has the same cosine as 240°. (That is, find θ satisfying $\cos(\theta) = \cos(240^\circ)$.)


 $\theta = _$ degrees.

(b) Find another angle θ between 0° and 360° that has the same sine as 240° . (That is, find θ satisfying $\sin(\theta) = \sin(240^{\circ})$.)

 $\theta = _$ degrees.

15. (1 pt)

Let θ be an angle in the first quadrant, and suppose $\sin(\theta) = a$. Evaluate the following expressions in terms of *a*. For example, $\sin(\theta + 180^\circ) = -a$. Your answers will be expressions that involve the letter *a*. Sketch a picture of the angles to help.

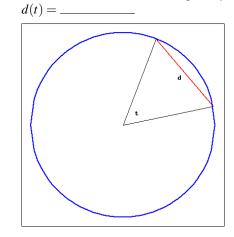
(Click on graph to enlarge)

16. (1 pt) Without the aid of a calculator, enter enter the numerical values of $\cos \theta$ and $\cos \theta$ for each angle θ . The angles are given in radians.

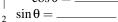
θ	$\cos\theta$	sinθ
$\frac{-1\pi}{6}$		
$\frac{4\pi}{3}$		
$\frac{-19\pi}{4}$		
$\frac{28\pi}{3}$		
$\frac{11\pi}{6}$		
$\frac{6}{\frac{5\pi}{4}}$		

17. (1 pt) Without the aid of a calculator, enter enter the numerical values of $\cos \theta$ and $\cos \theta$ for each angle θ . The angles are given in degrees.

θ	$\cos\theta$	sinθ
210°		
45°		
570°		
765°		
-120°		
240°		


18. (1 pt) If $\sin \theta = 0.9$ and $\frac{\pi}{2} < \theta < \pi$ then $\cos \theta =$ ____

If $\cos \theta = 0.3$ and $0 < \theta < \frac{\pi}{2}$ then $\sin \theta = \underline{\qquad}$


19. (1 pt)

An angle t is drawn from the center of the unit circle. Find a formula in terms of t for the straight line distance d between the points where the two radii meet the unit circle.

Hint: By rotating the picture, you may assume that one of the radii meets the circle at the point (1,0).

20. (1 pt) Let θ be the acute angle formed with the positive *x* axis by a line with slope $\frac{1}{5}$. Find the cosine and sine of θ . $\cos \theta =$ _____

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America