WeBWorK Assignment Homework01 is due : 04/28/2016 at 05:32pm EDT.

Reference: Axler, Precalculus, 2nd ed, Sections 0.3, 1.1, and 1.2

Here's the list of **functions and symbols** that WeBWorK understands.

1. (1 pt) Solve the following equation.

$$|-3x+7|+4=11$$

Answer: _

Note: If there is more than one answer, write them separated by commas (e.g., 1, 2).

2. (1 pt) Solve the following equation.

$$\frac{1}{|11-7x|} = 4$$

Answer: ____

Note: If there is more than one answer, write them separated by commas (e.g., 1, 2).

3. (1 pt) Solve the following equation.

$$|2x+9| = |9x+10|$$

Answer: _

Note: If there is more than one answer, write them separated by commas (e.g., 1, 2).

4. (1 pt) Express each union below as a single interval. $[5,9) \cup (7,10] =$ _____ $[1,11) \cup (5,9] =$ _____ $[0,2) \cup (-1,4] =$ _____ $(-\infty, -4] \cup (-\infty, -3) =$ _____

5. (1 pt) Express each intersection below in interval notation. If the intersection is empty, enter {} for the empty set.

6. (1 pt) Match the statements in the lefthand column with their equivalent statements in the righthand column.

1.	$ x-2 \le 8$
2.	x-2 > 8
3.	x-2 = 8
4.	$ x-2 \ge 8$
5.	$ x-2 < \infty$

A. $x \in (-\infty, \infty)$ B. $x \in (-\infty, -6) \cup (10, \infty)$ C. $x \in \{-6, 10\}$ D. $x \in [-6, 10]$ E. $x \in (-\infty, -6] \cup [10, \infty)$

7. (1 pt) Solve the following inequality. Write the answer in interval notation. If the answer includes more than one interval write the intervals separated by the "union" symbol, U. If needed enter ∞ as "infinity".

$$8|1x+2|+8 \le 24$$

Answer: _____

8. (1 pt) Solve the following inequality. Write the answer in interval notation.

Note: If the answer includes more than one interval write the intervals separated by the "union" symbol, U. If needed enter ∞ as *infinity* and $-\infty$ as *-infinity*.

$$|x - 7| > 5$$

Answer: _____

9. (1 pt) Solve the following inequality. Enter the answer in interval notation.

$$|2x-5| < 10$$

Answer: ____

10. (1 pt) Solve the following inequality. Write the answer in interval notation. Note: If the answer includes more than one interval write the intervals separated by the "union" symbol, U. If needed enter ∞ as *infinity* and $-\infty$ as *-infinity*.

$$\frac{x-2}{x-5} \le -7$$

Answer: _____

11. (1 pt) Suppose f(x) = 2x + 1.

(a) Find, simplifying your answer as possible: f(0) =

(b) Solve f(x) = 0, simplifying your answer as possible: x =_____

13. (1 pt) Suppose $f(x) = \sqrt{32 + 2x^2}$.

(a) Calculate exactly the value of y when y = f(6). Simplify your answer as much as possible.

y = _____

(b) Calculate the exactly the value of x when f(x) = 8. Simplify your answer as much as possible. x = _____

14. (1 pt) A national park records data regarding the total fox population F over a 12 month period, where t = 0 means January 1, t = 1 means February 1, and so on. Below is the table of values they recorded:

t, month	0	1	2	3	4	5	6	7	8	9	10
F, foxes	150	143	125	100	75	57	50	57	75	100	125

(a) Is F a function of t

• A. Yes

• B. No

(b) Let g(t) = F denote the fox population in month *t*. Find all solution(s) to the equation g(t) = 125. If there is more than one solution, give your answer as a comma separated list of numbers.

 $t = _$

15. (1 pt) Let $q(x) = 4 - x^2$. Evaluate and simplify the following:

(a) q(3) =____ (b) q(r) =____ (c) q(r-3) =____ (d) q(r) - 3 =_____

(d) q(r) = 3 (e) q(r) - q(3) = 3

16. (1 pt) Find the domain and range of the function $y = f(x) = \sqrt{x-5}$. Your answers must be inequalities (not intervals).

Domain: _____

Range: _____

17. (1 pt) Find the domain and range of the function $y = f(x) = \sqrt{x^2 - 9}$ algebraically. Domain: ______

Range: _____

18. (1 pt) Find the domain and range of the function $y = f(x) = (x-5)^2 + 3$.

Domain: _____

Range: _____

19. (1 pt) Let $f(x) = \frac{1}{\sqrt{x-3}}$. Find the domain and range algebraically: a) What is the domain of f(x)? ______ b) What is the range of f(x)? ______

20. (1 pt) Fill in all of the blanks in the table below for which you have sufficient information. If you do not have enough information to fill in a blank, type **NONE** in the blank space provided. Do not leave any blanks empty.

	x	-3	-2	-1	0	1	2	3
	f(x)	2	-6	3	0	-3	-1	-4
	f(-x)							
	-f(x)							
	-f(x) - 2							
5	$-\frac{1}{1}(x+2)$							
_	$\frac{1}{f(x)} + 2$							
	f(x+2)							
	2f(x)							
	-f(x)/3							

21. (1 pt) Let y = f(x) be the piecewise defined function given below.

$$f(x) = \begin{cases} -x - 1, & \text{if } x \le -2, \\ 1, & \text{if } -2 < x < 2, \\ x - 1, & \text{if } x \ge 2. \end{cases}$$
a. $f(-3) = \underline{\qquad}$

b. f(2) =_____

c. For what values of *x* is f(x) = 1?

d. Find the domain and range of *f*. (You may find it helpful to graph this function on your own paper to find the domain and range.) Your answers must be inequalities (not intervals).

Domain: _____

Range: ____

22. (1 pt)

The graph of y = f(x) is given in the figure.

(a) f(0) = _____

(b) For what x-value(s) is f(x) = 0?

(c) For what x-value(s) is f(x) > 0?

23. (1 pt)

Use the graph of y = f(x) in the figure to estimate:

$f(0) \approx$	
$f(1) \approx$	
$f(b) \approx$	
$f(c) \approx$	
$f(d) \approx$	

Using the graph in the figure for the function y = h(x), fill in the missing values in the table below.

ĺ	х	-2	-1	0	1	2	3
ĺ	h(x)						

(a) Evaluate h(0) - h(-2) = _____

- (b) Evaluate h(3) h(1) = _____
- (c) Evaluate $3 \cdot h(2) =$ _____
- (d) Evaluate h(1) + 6 =_____

25. (1 pt) Use the letters a, b, c, d, j, and k labeled in the graph below to answer the following questions.

(click on image to enlarge) (a) What are the coordinates of the point *P*? $P = _$ (b) What are the coordinates of the point *Q*? $Q = _$ (c) Evaluate: $f(c) = __$ (d) Suppose k = f(z) and z = f(x): then $x = __$

26. (1 pt)

Estimate the domain and range of the function y = f(x) graphed in the figure. Assume the entire graph is shown.

- (a) What is the domain of f(x)?
- (b) What is the range of f(x)?

27. (1 pt)

Estimate the domain and range of the function y = f(x) graphed to the right. Assume the entire graph is shown.

- (a) What is the domain of f(x)?
- (b) What is the range of f(x)?

(Click graph to enlarge)

28. (1 pt) Graph the piecewise defined function below. Use an open circle to represent a point which is not included and a solid dot to indicate a point which is on the graph.

$$f(x) = \begin{cases} 1 & -1 \le x < 0\\ 0 & 0 \le x \le 1\\ -1 & 1 < x < 3 \end{cases}$$

After you have graphed the function on a separate piece of paper, indicate which of the graphs below matches the graph you sketched. Be sure to pay attention to whether endpoints are open or closed.

Choose the letter A-E of the correct graph ?

