Problem 1. (15 pts.) a) Use Gauss-Jordan elimination (reduced row echelon form) to solve the system of linear equations

$$
\left\{\begin{aligned}
x+y+z+w & =2 \\
2 x+2 y+z-w & =-1 \\
3 x+3 y+2 z-y & =1 \\
x+y & =-3
\end{aligned}\right.
$$

or explain why the system is inconsistent. If the system is consistent, write down the solution in a vector form. NO CREDIT will be given, if any other method is used.

Problem 1. (CONTINUED)
b) For the matrix

$$
A=\left(\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
2 & 2 & 1 & -1 \\
3 & 3 & 2 & 0 \\
1 & 1 & 0 & -2
\end{array}\right)
$$

determine if the vector $\mathbf{v}=\left[\begin{array}{r}2 \\ -1 \\ 1 \\ -3\end{array}\right]$ is in $\operatorname{col}(A)$. Explain.

Problem 2. (20 pts .) The matrix A is given by

$$
A=\left(\begin{array}{rrrr}
3 & -2 & 1 & 2 \\
-1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1
\end{array}\right)
$$

a) Find a basis of $\operatorname{col}(A)$ and the dimension of $\operatorname{col}(A)$.
b) Find a basis of $\operatorname{row}(A)$ and the dimension of $\operatorname{row}(A)$.

Problem 2. (CONTINUED)
c) Find a basis of $\operatorname{null}(A)$ and the dimension of $\operatorname{null}(A)$.
d) Find a basis and the dimension of the orthogonal complement W^{\perp} of the subspace W given by
$W=\operatorname{span}\{[3,-2,1,2],[-1,1,0,0],[1,0,1,1]\}$

Problem 3. ($10 \mathrm{pts)}$.) Find the standard matrix of the linear transformation T from \mathbb{R}^{2} to \mathbb{R}^{2}, that rotates a vector clockwise by 60° about the origin, then projects it onto the y-axis and then reflects it about the x-axis.

Problem 4. (20 pts.) For each given matrix A, determine if A is diagonalizable or not. If it is diagonalizable, find an invertible matrix P and a diagonal matrix D such that $D=P^{-1} A P$. (You DO NOT have to find P^{-1}).
If A is not diagonalizable, explain why.
a) $A=\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$

Problem 4. (CONTINUED)
b) $A=\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1\end{array}\right)$

Problem 5. (10 pts.) a) If $W=\operatorname{span}\left\{\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}\right\}$ is a subspace of \mathbb{R}^{4}, where $\mathbf{x}_{\mathbf{1}}=\left[\begin{array}{r}1 \\ 1 \\ 1 \\ -1\end{array}\right]$ and $\mathbf{x}_{\mathbf{2}}=\left[\begin{array}{r}2 \\ -1 \\ 2 \\ -1\end{array}\right]$,
use the Gram-Schmidt process to construct an orthogonal basis of W.
b) Use your answer in part a) to find the orthogonal projection $\operatorname{proj}_{W}(\mathbf{v})$
of the vector $\mathbf{v}=\left[\begin{array}{r}5 \\ 4 \\ -3 \\ -2\end{array}\right]$ onto W.

Problem 6. (25 pts.) Determine if each of the statements below is TRUE or FALSE. Circle your choice and give the explanation for your answer.
a) If A is a square 4×4 matrix with $\operatorname{det}(A) \neq 0$, and the vector $\mathbf{v}=$ $\left[\begin{array}{l}2 \\ 0 \\ 1 \\ 9\end{array}\right]$, then the system $(A \mid \mathbf{v})$ must have exactly one solution TRUE

FALSE

Explanation:
b) If A is a square 4×4 matrix with $\operatorname{det}(A)=0$, and the vector $\mathbf{v}=$ $\left[\begin{array}{l}2 \\ 0 \\ 1 \\ 9\end{array}\right]$ then the system $(A \mid \mathbf{v})$ must have no solutions TRUE

FALSE
Explanation:
c) If a square $n \times n$ matrix A can be represented as a product of elementary matrices, then A must be diagonalizable.

TRUE
FALSE
Explanation:
d) If three non-zero vectors in \mathbb{R}^{3} are linearly dependent, then two of them must be parallel

TRUE
FALSE
Explanation:

Problem 6. (CONTINUED)

e) If a 5×3 matrix A has $\operatorname{rank}(A)=3$, then the columns of A must be linearly independent.

TRUE
FALSE
Explanation:
f) If λ is an eigenvalue of a square matrix A, and the algebraic multiplicity of λ is 1 , then the geometric multiplicity of λ can be
(i) 0

TRUE
 FALSE

(ii) 1

TRUE
FALSE
(iii) 2

TRUE
FALSE
Explanation:
g) Any four non-zero vectors in \mathbb{R}^{4} must form a basis of \mathbb{R}^{4}

TRUE
FALSE
Explanation:
h) If a 3×3 matrix A has a row-echelon form $\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right)$, then A is invertible

TRUE
FALSE
Explanation:

