Problem 1. (15 pts.) a) Use **Gauss-Jordan elimination** (reduced row echelon form) to solve the system of linear equations

<pre>{</pre>	x	+	y	+	z	+	w	=	2
	2x	+	2y	+	z	_	w	=	-1
	3x	+	3y	+	2z			=	1
l	x	+	y			_	2w	=	-3

or explain why the system is inconsistent. If the system is consistent, write down the solution in a vector form. NO CREDIT will be given, if **any other method** is used.

Problem 1. (CONTINUED) b) For the matrix

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 2 & 2 & 1 & -1 \\ 3 & 3 & 2 & 0 \\ 1 & 1 & 0 & -2 \end{pmatrix},$$

determine if the vector $\mathbf{v} = \begin{bmatrix} 2 \\ -1 \\ 1 \\ -3 \end{bmatrix}$ is in $col(A)$. Explain.

Problem 2. (20 pts.) The matrix A is given by

$$A = \left(\begin{array}{rrrrr} 3 & -2 & 1 & 2 \\ -1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \end{array}\right)$$

a) Find a basis of col(A) and the dimension of col(A).

b) Find a basis of row(A) and the dimension of row(A).

Problem 2. (CONTINUED)

c) Find a basis of null(A) and the dimension of null(A).

d) Find a basis and the dimension of the orthogonal complement W^{\perp} of the subspace W given by $W = span\{[3, -2, 1, 2], [-1, 1, 0, 0], [1, 0, 1, 1]\}$ **Problem 3.** (10 pts.) Find the standard matrix of the linear transformation T from \mathbb{R}^2 to \mathbb{R}^2 , that rotates a vector clockwise by 60° about the origin, then projects it onto the y-axis and then reflects it about the x-axis.

Problem 4. (20 pts.) For each given matrix A, determine if A is diagonalizable or not. If it is diagonalizable, find an invertible matrix P and a diagonal matrix D such that $D = P^{-1}AP$. (You DO NOT have to find P^{-1}). If A is not diagonalizable, explain why.

a)
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

Problem 4. (CONTINUED)

b)
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

Problem 5. (10 pts.) a) If $W = span \{\mathbf{x_1}, \mathbf{x_2}\}$ is a subspace of \mathbb{R}^4 ,

where
$$\mathbf{x_1} = \begin{bmatrix} 1\\ 1\\ 1\\ -1 \end{bmatrix}$$
 and $\mathbf{x_2} = \begin{bmatrix} 2\\ -1\\ 2\\ -1 \end{bmatrix}$,

use the Gram-Schmidt process to construct an orthogonal basis of W.

b) Use your answer in part a) to find the orthogonal projection $\mathbf{proj}_W(\mathbf{v})$

of the vector
$$\mathbf{v} = \begin{bmatrix} 5\\4\\-3\\-2 \end{bmatrix}$$
 onto W .

Problem 6. (25 pts.) Determine if each of the statements below is TRUE or FALSE. Circle your choice and give the explanation for your answer.

a) If A is a square 4×4 matrix with $det(A) \neq 0$, and the vector $\mathbf{v} = \begin{bmatrix} 2 \\ 0 \\ 1 \\ 9 \end{bmatrix}$, then the system $(A|\mathbf{v})$ must have exactly one solution

Explanation:

b) If A is a square 4×4 matrix with det(A) = 0, and the vector $\mathbf{v} = \begin{bmatrix} 2 \\ 0 \\ 1 \\ 9 \end{bmatrix}$, then the system $(A|\mathbf{v})$ must have no solutions

FALSE

Explanation:

c) If a square $n \times n$ matrix A can be represented as a product of elementary matrices, then A must be diagonalizable.

TRUE	FALSE
------	-------

Explanation:

d) If three non-zero vectors in \mathbb{R}^3 are linearly dependent, then two of them must be parallel

TRUE	FALSE
------	-------

Explanation:

Problem 6. (CONTINUED)

e) If a 5×3 matrix A has rank(A) = 3, then the columns of A must be linearly independent.

TRUE FALSE

Explanation:

f) If λ is an eigenvalue of a square matrix A, and the algebraic multiplicity of λ is 1, then the geometric multiplicity of λ can be

(i) 0		
	TRUE	FALSE
(ii) 1		
	TRUE	FALSE
(iii) 2		
	TRUE	FALSE

Explanation:

g) Any four non-zero vectors in \mathbb{R}^4 must form a basis of \mathbb{R}^4

TRUE FALSE

Explanation:

h) If a 3 × 3 matrix A has a row-echelon form $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$, then A is wortible

invertible

TRUE FALSE

Explanation: