Math 0280 - Linear Algebra - Sample Final

1. (7 points) Find the distance from the point $(1,2,3)$ to the line $\vec{x}=\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]+t\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$.
2. (7 points) Determine whether the following vectors are linearly dependent or independent. If they are linearly dependent please find a linear dependence relationship among the vectors. Justify your answer.

$$
\vec{v}_{1}=\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right], \quad \vec{v}_{2}=\left[\begin{array}{l}
2 \\
1 \\
3
\end{array}\right], \text { and } \quad \vec{v}_{3}=\left[\begin{array}{c}
2 \\
-1 \\
-1
\end{array}\right]
$$

3. (8 points) Consider the following linear system.

$$
\left\{\begin{array}{l}
x+y+k z=1 \\
x+k y+z=1 \\
k x+y+z=-2
\end{array}\right.
$$

Find all values of k such that the above linear system has
(i) no solution,
(ii) a unique solution, and
(iii) infinitely many solutions.
4. (8 points) Find the inverse of the matrix

$$
A=\left[\begin{array}{cccc}
2 & 0 & 1 & -1 \\
0 & 1 & 1 & 1 \\
-1 & 1 & 1 & 1 \\
1 & 0 & 0 & 1
\end{array}\right]
$$

or explain why it does not exist.
5. (20 points) For the matrix

$$
A=\left[\begin{array}{ccccc}
2 & -4 & 0 & 2 & 1 \\
1 & -2 & -1 & -2 & -2 \\
-1 & 2 & 1 & 2 & 2 \\
1 & -2 & 1 & 4 & 4
\end{array}\right]
$$

Find each of the following, Show all work.
(i) a basis for $\operatorname{row}(A)$;
ii) a basis for $\operatorname{col}(A)$;
(iii) a basis for $\operatorname{null}(A)$;
(iv) $\operatorname{rank}(A)$;
(v) nullity (A).
6. (7 points) Find the standard matrix of the linear transformation T from \mathbb{R}^{2} to \mathbb{R}^{2}, that reflects a vector about the x-axis, then rotates it counterclockwise by 60° about the origin and then reflects a vector about the y-axis.
7. (8 points) Use Cramer's Rule to solve the following linear system.

$$
\left\{\begin{array}{l}
x+y=3 \\
2 x-3 y=1
\end{array}\right.
$$

NO CREDIT will be given, if any other method is used.
8. (20 points) The matrix A is given by

$$
A=\left[\begin{array}{lll}
2 & 0 & 1 \\
1 & 1 & 1 \\
1 & 0 & 2
\end{array}\right]
$$

Determine if A is diagonalizable or not. If it is, find an invertible matrix P and a diagonal matrix D such that $P^{-1} A P=D$. (You DO NOT have to find P^{-1}).
If it is not diagonalizable, explain why.
9. (15 points) Suppose W is a subspace of \mathbb{R}^{5}, such that $W=\operatorname{span}\left\{\left[\begin{array}{c}2 \\ -1 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{c}3 \\ -1 \\ 0 \\ 4\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]\right\}$.
a) Use the Gram-Schmidt process to construct an orthogonal basis of W.
b) Find the orthogonal projection $\operatorname{proj}_{W}(\vec{v})$ of vector $\vec{v}=\left[\begin{array}{l}1 \\ 4 \\ 0 \\ 2\end{array}\right]$ onto W.

