MATH 0280 Final Examination, Sample 5

There are 6 problems for a total of 100 points in this exam.
(1) (15 pts) Consider the matrix below:

$$
A=\left[\begin{array}{cccc}
1 & 1 & 0 & -2 \\
-1 & -2 & 3 & 0 \\
0 & 2 & -6 & 5
\end{array}\right]
$$

(a) Find bases for $\operatorname{row}(A)$ and $\operatorname{col}(A)$.
(b) Compute $\operatorname{rank}(A)$ and nullity (A).
(c) Determine whether $\mathbf{v}=\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]$ is in $\operatorname{col}(A)$.
(2) (15 pts)
(a) Write the standard matrix of the linear transformation $S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by counterclockwise rotation about the origin by an angle of $\pi / 4$ (a.k.a. 45 degrees).
(b) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be the linear transformation with standard matrix below:

$$
[T]=\left[\begin{array}{ccc}
1 & 2 & 0 \\
-1 & 2 & 4
\end{array}\right]
$$

Compute the standard matrix of $S \circ T$, then compute $(S \circ T)(\mathbf{v})$, where $\mathbf{v}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$.
Simplify your answer as much as possible.
(3) (15 pts) Find the inverse of the matrix below:

$$
\left[\begin{array}{ccc}
1 & 0 & 3 \\
1 & 1 & 2 \\
0 & -2 & 1
\end{array}\right]
$$

(4) (15 pts) Consider the matrices below:

$$
A=\left[\begin{array}{ccc}
4 & 3 & 1 \\
0 & 2 & 0 \\
0 & 0 & -1
\end{array}\right] \quad B=\left[\begin{array}{ccc}
1 & 1 & 2 \\
2 & 0 & 3 \\
0 & -2 & 1
\end{array}\right]
$$

Compute $\operatorname{det} A, \operatorname{det} B$, and $\operatorname{det} B^{2} A^{-1}$.
(5) (20 pts) Determine whether the matrix A below is diagonalizable; and if so, find an invertible matrix P and diagonal matrix D such that $P^{-1} A P=D$.

$$
A=\left[\begin{array}{lll}
1 & 0 & 3 \\
1 & 2 & 2 \\
1 & 0 & 3
\end{array}\right]
$$

(6) (20 pts) Consider the subspace V and vector \mathbf{u} below:

$$
V=\operatorname{span}\left\{\left[\begin{array}{c}
1 \\
0 \\
-2 \\
1
\end{array}\right],\left[\begin{array}{l}
4 \\
1 \\
0 \\
2
\end{array}\right],\left[\begin{array}{c}
4 \\
-3 \\
4 \\
-2
\end{array}\right]\right\} \quad \mathbf{u}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
3
\end{array}\right]
$$

(a) Use the Gram-Schmidt process to find an orthogonal basis $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ for V.
(b) Compute the projection of \mathbf{u} onto V.

