MATH 0280 Final Examination, Sample 4

Problem 1. Show that A is diagonalizable. Then find A^{2012}.

$$
A=\left(\begin{array}{rrr}
4 & 2 & 2 \\
2 & 1 & 1 \\
-8 & -4 & -4
\end{array}\right)
$$

Problem 2. a) Find the standard matrix of the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, if T rotates a vector clockwise about the origin by $\frac{2 \pi}{3}$, and then stretches it by a factor of 4 in the x-component.
b) Find the standard matrix of the inverse transformation T^{-1}, or show that the transformation T is not invertible.

Problem 3. a) Determine whether the given matrix A is invertible. If it is invertible, find its inverse:

$$
A=\left(\begin{array}{rrr}
1 & 0 & 3 \\
2 & 1 & -1 \\
2 & 3 & 3
\end{array}\right)
$$

b) Represent the matrix A as a product of elementary matrices or show that it is not possible.

Problem 4. Find $\operatorname{det}\left(\frac{1}{3} A\right)$, if $A=\left(\begin{array}{rrrrr}1 & 2 & -1 & 0 & 1 \\ 0 & 0 & 2 & 1 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & -3 & 0 & 4 & 10\end{array}\right)$
Problem 5. Find bases for $\operatorname{row}(A), \operatorname{col}(A)$ and $\operatorname{null}(A)$, and the rank and nullity of A, if

$$
A=\left(\begin{array}{rrrrr}
-1 & 3 & 4 & 0 & -2 \\
0 & 1 & -3 & -1 & 2 \\
-3 & 7 & 18 & 2 & -10
\end{array}\right)
$$

Problem 6. Solve the system of linear equations by using Cramer's method. Any other method will receive NO CREDIT.

$$
\left\{\begin{aligned}
x-z & =5 \\
3 y-x & =-1 \\
z-2 x+y & =2
\end{aligned}\right.
$$

Problem 7. Find an orthogonal basis of \mathbb{R}^{4}, containing vector $[1,1,1,1]$.

