MATH 0280 Final Examination, Sample 2

Problem 1. (15 pts)
Suppose A is a 4×4 matrix, and $\operatorname{det} A=2$. Find $\operatorname{det}\left(A \cdot B^{-1}\right)$, where

$$
B=\left[\begin{array}{llll}
5 & 6 & 7 & 8 \\
1 & 2 & 3 & 4 \\
0 & 0 & 2 & 3 \\
0 & 0 & 4 & 7
\end{array}\right]
$$

Problem 2. (15 pts)
A linear transformation F from \mathbb{R}^{2} to \mathbb{R}^{2} is defined as the projection onto the x-axis, followed by the rotation counterclockwise by $\frac{\pi}{3}$, followed by the projection onto the y-axis. Find the matrix of F.

Problem 3. (15 pts)
Determine if the vector v is in the span of the vectors u_{1}, u_{2}, and u_{3}, where

$$
v=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \quad u_{1}=\left[\begin{array}{l}
3 \\
0 \\
1
\end{array}\right], \quad u_{2}=\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right], \quad u_{3}=\left[\begin{array}{c}
5 \\
6 \\
11
\end{array}\right]
$$

Problem 4. (15 pts)
a) Find an orthonormal basis of

$$
W=\operatorname{span}\left\{\left[\begin{array}{r}
3 \\
0 \\
-1
\end{array}\right],\left[\begin{array}{r}
-4 \\
3 \\
8
\end{array}\right]\right\}
$$

b) Find the projection onto W of the vector $\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]$

Problem 5. (15 pts)
Matrix A is given:

$$
A=\left[\begin{array}{rr}
1 & 2 \\
-2 & -3
\end{array}\right]
$$

a) Find the characteristic polynomial of A.
b) Find a matrix P such that $P^{-1} A P$ is diagonal, or show that it is not possible.

Problem 6. (25 pts)
Matrix A is given:

$$
A=\left[\begin{array}{rrrr}
1 & 0 & 2 & 3 \\
2 & 1 & 4 & 5 \\
0 & 1 & 0 & -1
\end{array}\right]
$$

a) Find a basis of $\operatorname{col}(A)$.
b) Find a basis of $\operatorname{row}(A)$.
c) Find a basis of $\operatorname{null}(A)$.
d) Find rank and nullity of A.

