MATH 0280 Final Examination, Sample 1-ANSWERS

Problem 1.

a)
$$\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} 5 \\ -7 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 \\ -1 \\ 0 \\ 1 \end{bmatrix} t + \begin{bmatrix} -2 \\ 6 \\ 1 \\ 0 \end{bmatrix} s$$

b) i) Basis of $col(A)$ is
$$\begin{bmatrix} 0 \\ 1 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix};$$

ii) Basis of row(A) is [1, 0, 2, -1], [0, 1, -6, 5]; iii) rk(A) = 2, nullity(A) = 2; iv) Yes, the system is consistent.

Problem 2.

a)
$$A^{-1} = \begin{pmatrix} 1/2 & -1/2 & 2\\ -1/2 & -1/2 & 3\\ 0 & 1 & -4 \end{pmatrix}$$

b) Yes, the vectors are the columns of the invertible matrix.

Problem 3.

a)
$$A_T = \begin{pmatrix} 4 & \frac{\sqrt{3}}{2} \\ & & \\ 4\sqrt{3} & -\frac{1}{2} \end{pmatrix}$$
.

Problem 4. a) $\lambda_1 = \lambda_2 = 0, \ \lambda_3 = 4.$

b) For
$$\lambda = 0$$
, basis of E_0 is $\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\-2\\1 \end{bmatrix} \right\};$

For
$$\lambda = 4$$
, basis of E_4 is $\left\{ \begin{bmatrix} 3\\2\\1 \end{bmatrix} \right\}$

c) For $\lambda = 0$, both algebraic and geometric multiplicities are equal to 2. For $\lambda = 4$, both algebraic and geometric multiplicities are equal to 1.

d) A is diagonalizable,
$$D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 4 \end{pmatrix}$$
, $P = \begin{pmatrix} 1 & 0 & 3 \\ 0 & -2 & 2 \\ 0 & 1 & 1 \end{pmatrix}$

(the matrices D and P are not unique)