MATH 0280 Final Examination, Sample 1-ANSWERS

Problem 1.
a) $\left[\begin{array}{l}x \\ y \\ z \\ w\end{array}\right]=\left[\begin{array}{r}5 \\ -7 \\ 0 \\ 0\end{array}\right]+\left[\begin{array}{r}1 \\ -1 \\ 0 \\ 1\end{array}\right] t+\left[\begin{array}{r}-2 \\ 6 \\ 1 \\ 0\end{array}\right] s$
b) i) Basis of $\operatorname{col}(A)$ is $\left[\begin{array}{l}0 \\ 1 \\ 3\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$;
ii) Basis of $\operatorname{row}(A)$ is $[1,0,2,-1],[0,1,-6,5]$;
iii) $\operatorname{rk}(A)=2, \operatorname{nullity}(A)=2$;
iv) Yes, the system is consistent.

Problem 2.

a) $A^{-1}=\left(\begin{array}{rrr}1 / 2 & -1 / 2 & 2 \\ -1 / 2 & -1 / 2 & 3 \\ 0 & 1 & -4\end{array}\right)$
b) Yes, the vectors are the columns of the invertible matrix.

Problem 3.
a) $A_{T}=\left(\begin{array}{rc}4 & \frac{\sqrt{3}}{2} \\ 4 \sqrt{3} & -\frac{1}{2}\end{array}\right)$.

Problem 4. a) $\lambda_{1}=\lambda_{2}=0, \lambda_{3}=4$.
b) For $\lambda=0$, basis of E_{0} is $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{r}0 \\ -2 \\ 1\end{array}\right]\right\}$;

For $\lambda=4$, basis of E_{4} is $\left\{\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]\right\}$
c) For $\lambda=0$, both algebraic and geometric multiplicities are equal to 2 . For $\lambda=4$, both algebraic and geometric multiplicities are equal to 1 .
d) A is diagonalizable, $D=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 4\end{array}\right), P=\left(\begin{array}{rrr}1 & 0 & 3 \\ 0 & -2 & 2 \\ 0 & 1 & 1\end{array}\right)$
(the matrices D and P are not unique)
Problem 5. a) Basis of W^{\perp} is $\left\{\left[\begin{array}{r}-1 \\ 2 \\ -1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{r}1 \\ -3 \\ 2 \\ 1 \\ 0\end{array}\right]\right\}$.
b) Orthogonal basis of W is $\left\{\left[\begin{array}{r}1 \\ 0 \\ -1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{r}2 \\ 1 \\ 1 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{r}0 \\ 2 \\ 2 \\ 2 \\ -2\end{array}\right]\right\}$.

