MATH 0280 FINAL EXAMINATION - Sample 1

Problem 1. a) Use Gauss-Jordan elimination (reduced row echelon form) to solve the system of linear equations

$$
\left\{\begin{aligned}
y-6 z+5 w & =-7 \\
x+2 z-w & =5 \\
3 x+y+2 w & =8
\end{aligned}\right.
$$

or explain why the system is inconsistent. If the system is consistent, write down the solution in a vector form. NO CREDIT will be given, if any other method is used.
b) For the matrix $A=\left(\begin{array}{rrrr}0 & 1 & -6 & 5 \\ 1 & 0 & 2 & -1 \\ 3 & 1 & 0 & 2\end{array}\right)$,
i) find a basis of the column space of A;
ii) find a basis of the row space of A;
iii) Determine rank and nullity of A;
iv) Determine if the vector $\mathbf{v}=\left[\begin{array}{r}-7 \\ 5 \\ 8\end{array}\right]$ is in $\operatorname{col}(A)$.

Give detailed explanation.
Problem 2. a) Determine if the matrix $A=\left(\begin{array}{ccc}2 & 0 & 1 \\ 4 & 4 & 5 \\ 1 & 1 & 1\end{array}\right)$
is invertible. If A is invertible, find the inverse matrix A^{-1}. If A is not invertible, explain why.
b) Determine if the vectors
$\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{l}2 \\ 4 \\ 1\end{array}\right], \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{l}0 \\ 4 \\ 1\end{array}\right]$, and $\mathbf{v}_{\mathbf{3}}=\left[\begin{array}{l}1 \\ 5 \\ 1\end{array}\right]$,
form a basis of \mathbb{R}^{3} or not. Explain your conclusion in details.
Problem 3. Find the standard matrix of the linear transformation T from \mathbb{R}^{2} to \mathbb{R}^{2}, that stretches a vector by a factor of 8 in the x-coordinate, then reflects it about the line $y=x$, and then rotates a vector clockwise by 30° about the origin.

Problem 4. The matrix A is given by

$$
A=\left(\begin{array}{lll}
0 & 3 & 6 \\
0 & 2 & 4 \\
0 & 1 & 2
\end{array}\right)
$$

a) Find all eigenvalues of A.
b) Find a basis for each eigenspace of A.
c) Find the algebraic and geometric multiplicities for each eigenvalue of A.
d) Determine if A is diagonalizable. If it is, find an invertible matrix P and a diagonal matrix D such that $D=P^{-1} A P$.
(You DO NOT have to find P^{-1})
Problem 5. If $W=\operatorname{span}\{[1,0,-1,1,0],[3,1,0,0,1],[-1,2,3,1,-2]\}$,
a) Find a basis for the orthogonal complement W^{\perp} of W.
b) Use Gram-Schmidt process to construct an orthogonal basis of W.

