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Abstract. We analyze a second-order accurate implicit-symplectic (IMSP) scheme for reaction-diffusion systems
modeling spatio-temporal dynamics of predator-prey populations. We prove stability, errors estimates and positivity
of the the semi-discrete in time approximations. The numerical simulations confirm the theoretically derived rates of
convergence, and show, at same computational cost, an improved accuracy in the second-order IMSP in comparison
with the first-order IMSP.
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1. Introduction. In this work we focus on predator-prey spatially extended dynamics described
by reaction-diffusion systems of the general form

∂u

∂t
= f(u, v) +Du∆u (1.1)

∂v

∂t
= g(u, v) +Dv∆v (1.2)

where u(x, t) and v(x, t) represent population densities of prey and predators at time t and position x.

Here ∆ denotes the Laplacian operator
∑d
i=1

∂2

∂xi
2 , and Du and Dv are positive diffusion coefficients.

The equations evolve in the space-time cylinder ΩT := Ω× (0, T ), where the domain Ω is a bounded
and open subset of Rd, d ≤ 3. The initial densities u0(x) = u(x, 0) and v0(x) = v(x, 0), x ∈ Ω are
provided, as well as the conditions on the boundary ∂Ω× (0, T ).

The comprehension of species interaction in ecological systems and spatiotemporal predator-prey
behavior is a very active area of research. The modeling reaction-diffusion equations exhibit abundant
and rich dynamical features (see e.g., the fundamental paper [16] and references therein). Theoretical
analysis is seldom sufficient in the study of these complex dynamics, and important results and
conclusions often rely on extensive numerical simulations. This is the case of examining parameter
regions of forming patterns, revealing snapshots of spatial patterns, as well as when detection of the
onset of chaotic dynamics (see e.g. [15]). Therefore a particular attention is devoted to the choice of
accurate, long-time stable numerical schemes, which yield solutions unaffected by numerical artifacts
and better preserve properties of the continuous equations.

Two first-order implicit-explicit numerical schemes (IMEX) for reaction-diffusion problems, mod-
eling predator-prey dynamics, were rigorously analyzed in [7], [8], [5], [7]. More recently, it has been
proposed in [3] and [4] the use of symplectic integrators for approximating the reaction terms, in
conjunction with implicit schemes for the treatment of the diffusive part. The analysis of a first-
order implicit-symplectic scheme was performed in [2], where a comparison with a first-order IMEX
scheme was also provided. The test examples, widely used in ecological applications ([2]), reveal the
advantage of using the implicit-symplectic integrator with respect to the IMEX scheme.

In this paper we analyze the second-order IMSP scheme introduced in [3]. We prove stability
and positivity of solutions, provided a timestep restriction, also an a priori error estimate. The
fully-discrete approximations, both in finite-difference/finite-element settings, improve in terms of
accuracy the results obtained by the first-order IMSP scheme. Our numerical tests confirm the
theoretical rates of convergence, and compare the second-order IMSP [3] and first-order IMSP [2] in
terms of computational cost.

The paper is organized as follows. In Section 2 we recall some theoretical results from semigroup
theory and make some assumptions which delimit the field of application for our results. In Section
3 we present the semi-discrete in time formulation of the first- and second-order IMSP schemes, in
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the framework of partitioned Runge-Kutta methods. The study of positivity for the solutions of the
numerical approximations is performed in Section 4. The theoretical results concerning stability and
error estimates for the semi-discrete in time formulation of IMSP schemes are presented in Sections
5 and 6, respectively. The fully discrete second-order IMSP algorithm is described in Section 7, and
its behavior is exemplified with some numerical simulations in Section 8. Finally, some conclusions
are drawn in Section 9.

2. Mathematical preliminaries. Results from semigroup theory and an a priori estimate were
used in [8] to prove the global existence and uniqueness of the classical solutions of the predator-prey
system (1.1)-(1.2). We recall that, for the well-posedness of the problem, the reaction terms f, g are
assumed to be locally Lipschitz, i.e., ∃L > 0 such that

|f(u1, v1)− f(u2, v2)|+ |g(u1, v1)− g(u2, v2)| ≤ L(|u1 − u2|+ |v1 − v2|). (2.1)

In order to insure the non-negativity of solutions corresponding to biologically meaningful densities,
the reaction kinetics are also supposed to satisfy

f(0, v), g(u, 0) ≥ 0, ∀u, v ≥ 0. (2.2)

Consequently, if the initial data (u0(x), v0(x)) are in [0,+∞)2 for all x ∈ Ω then, by a maximum
principle, the solution (u(x, t), v(x, t)) lies in [0,+∞)2 which is a positively invariant region for the
system.

Moreover, we assume that f(u, v) has logistic dominated growth in the first variable

f(u, v) ≤ u(1− u), ∀u, v ≥ 0, (2.3)

and the function g satisfies a sub-linear growth in the second variable, namely ∃Cg > 0 such that

g(u, v) ≤ Cgv, ∀u, v ≥ 0. (2.4)

We note that, from the assumptions (2.2), (2.3) and (2.4) it is easy to show that, for all u, v ≥ 0,

g(u, 0) = f(0, v) = 0. (2.5)

Assumptions (2.2), (2.3), (2.4) are not restrictive in that the principal population dynamics mod-
els, based on logistic prey growth and ‘Holling types’ functional predator response (well documented
in specialized literature), satisfy the previous requirements (for review, see [9], [13], [18]). This is the
case of the well-known Rosenzweig-MacArthur model [17], as well as models which couple logistic
prey growth with Holling II and IV functional predator responses [12].

3. IMSP as Partitioned Runge-Kutta schemes.

3.1. Mathematical notations. Let us introduce some mathematical notations. Consider the
Banach space L2(Ω) with norm

‖u‖ :=

(∫
Ω

|u(x)|2 dx
)1/2

and (·, ·) is the usual L2 inner product. We denote by 〈·, ·〉 the duality pairing between (H1(Ω))′ and
H1(Ω), where standard notations for the Sobolev space H1(Ω) and its dual (H1(Ω))′ have been used.
The norm of (H1(Ω))′ is denoted by ‖·‖∗. We also define L2(ΩT ) as the Banach space L2(0, T, L2(Ω))
of all the functions u : (0, T )→ L2(Ω) such that t→ ‖u(t)‖ is in L2(0, T ), with norm

‖u‖L2(ΩT ) :=

(∫ T

0

‖u(t)‖2 dt

)1/2

.

A similar definition is used to denote the space L2(0, T, (H1(Ω))′) as the space of all the functions
u : (0, T )→ (H1(Ω))′ such that t→ ‖u(t)‖∗ is in L2(0, T ) with norm

‖u‖L2(0,T,(H1(Ω))′) :=

(∫ T

0

‖u(t)‖2∗ dt

)1/2

.

2



LetD = diag(Du, Dv ) be a linear matrix operator and consider the vectorG(y) = [f(u, v), g(u, v)]T .
With the previous notations, the system (1.1)-(1.2) leads to the following continuous-in-time weak
formulation: find y(·, t) = [u(·, t), v(·, t)] ∈ H1(Ω)×H1(Ω) such that(

yt, χ
)

+ (D∇y,∇χ) = (G(y), χ) (3.1)

for all χ ∈ H1(Ω)×H1(Ω) and for almost every t ∈ (0, T ).

3.2. The algorithms. The implicit-explicit methods, which are widely used for solving (3.1),
may be interpreted as partitioned Runge-Kutta methods ([14]). Indeed, by introducing two variables
z and w such that y = z + w the equivalent system(

zt, χ
)

+ (D∇z,∇χ) = 0, (3.2)(
wt, χ

)
= (G(z + w), χ) (3.3)

can be solved for z(·, t)w(·, t) ∈ H1(Ω)×H1(Ω) in place of (3.1); the solution y(·, t) is then retrieved
by adding their values. Then IMEX schemes use a partitioned Runge-Kutta method (see., e.g. [10])
consisting of a pair of implicit/explicit schemes, for finding the approximated solutions of (3.3).

In the same framework, in [4] a three-term splitting for the variable y was proposed, i.e., y =
z + w + q, and a partitioned Runge-Kutta scheme for solving the system(

zt, χ
)

+ (D∇z,∇χ) = 0, (3.4)(
wt, χ

)
= (G(u)(z + w + q), χ) (3.5)(

qt, χ
)

= (G(v)(z + w + q), χ) (3.6)

where G = G(u) + G(v), G(u) = [ f(u, v), 0 ]T , G(v) = [0, g(u, v) ]T , was considered.
Given α, β ≥ 0, the IMSP approach consists in using an implicit scheme for the variable z (which

is related to diffusion)

0 0
α β
α β

(3.7)

and a partitioned symplectic Runge-Kutta scheme [10] for the variables w and q (which are related
to the reaction term)

0 0
β α
β α

β 0
β 0
β α.

(3.8)

Consider a discretization of the temporal horizon (0, T ) based on a uniform mesh grid of N +1 points
tn = n∆t, n = 0, . . . , N with constant stepsize ∆t = T/N . Let v0(x) and u0(x) be the predator-prey
initial densities v(x, 0) and u(x, 0), ∀x ∈ Ω.

The IMSP scheme (in weak form) is defined as follows: for n = 0, . . . , N−1, find yn1 , yn2 , yn3 , yn+1 ∈
H1(Ω)×H1(Ω) such that ∀χ ∈ H1(Ω)×H1(Ω):(yn1 − yn

∆t
, χ
)

= β
(
G(v)(yn1), χ

)
(yn2 − yn1

∆t
, χ
)

+ α(D∇yn1 ,∇χ) = β
(
G(u)(yn1), χ

)
(yn3 − yn2

∆t
, χ
)

+ β(D∇yn3 ,∇χ) = α
(
G(u)(yn3), χ

)
(yn+1 − yn3

∆t
, χ
)

= α
(
G(v)(yn3), χ

)
.

For β = 1 and α = 0 we recover the first-order accurate IMSP scheme, see e.g., [2]. In this
paper we analyze the second-order scheme obtained by setting β = α = 1/2. We notice that, with
this choice of parameters, the triplet (3.7)–(3.8) reduces to the Stormer-Verlet method written in
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partitioned form ([10]). It is a symplectic second-order procedure which, applied to our problem,
provides the second-order IMSP scheme. In terms of the variables u and v, it can be written as
follows. For n = 0, . . . , N − 1, find vn1 , vn2 , un+1, vn+1 ∈ H1(Ω) such that ∀χ ∈ H1(Ω):

(vn1 − vn

∆t
, χ
)

=
1

2

(
g(un, vn1), χ

)
(3.9)(vn2 − vn

∆t
, χ
)

+
Dv

2
(∇(vn1 +vn2),∇χ) =

1

2

(
g(un, vn1), χ

)
(3.10)(un+1 − un

∆t
, χ
)

+
Du

2
(∇(un+un+1),∇χ) =

1

2

(
f(un, vn1) + f(un+1, vn2), χ

)
(3.11)(vn+1 − vn

∆t
, χ
)

+
Dv

2
(∇(vn1 +vn2),∇χ) =

1

2

(
g(un, vn1) + g(un+1, vn2), χ

)
(3.12)

or, equivalently,
find vn1 , un1 , vn2 , un2 , vn3 , un+1, vn+1 ∈ H1(Ω) such that ∀χ ∈ H1(Ω):(vn1 − vn

∆t
, χ
)

=
1

2

(
g(un, vn1), χ

)
(3.13)(un1 − un

∆t
, χ
)

+
Du

2
(∇un,∇χ) = 0 (3.14)(vn2 − vn1

∆t
, χ
)

+
Dv

2
(∇vn1 ,∇χ) = 0 (3.15)(un2 − un1

∆t
, χ
)

=
1

2

(
f(un, vn1), χ

)
(3.16)(vn3 − vn2

∆t
, χ
)

+
Dv

2
(∇vn3 ,∇χ) = 0 (3.17)(un+1 − un2

∆t
, χ
)

+
Du

2
(∇un+1,∇χ) =

1

2

(
f(un+1, vn3), χ

)
(3.18)(vn+1 − vn3

∆t
, χ
)

=
1

2

(
g(un+1, vn3), χ

)
(3.19)

In the following sections we will use either formulations, (3.9)-(3.12) or (3.13)-(3.19), to prove the
positivity and stability of solutions, and to provide errors estimates.

4. Positivity. In order to prove positivity of the second-order IMSP solution, we need further
assumptions, including a necessary bound on the timestep size.
We denote by −∆h the discrete Laplace operator depending on a (spatial) mesh-size h, used in the
weak formulation equations (3.14)-(3.15), and let λhmax be its largest (non negative) eigenvalue. Then
for the stability of the solutions un1 , vn2 to the forward Euler schemes (3.14) and (3.15) we require
the usual CFL condition

∆t ≤ 2/(λhmax max{Du, Dv}).

However, for the positivity of the IMSP solutions we need a slightly stronger assumption

∆t < ∆t◦ :=
2

L+ λhmax max{Du, Dv}
. (4.1)

Moreover, we assume also that ∀∆t ≤ ∆t◦ and w, v > 0, the equation

u−∆tDu∆u = w + ∆tf(u, v) (4.2)

has a unique solution that depends continuously on ∆t, Du, w and v.
Theorem 4.1. Assume the timestep ∆t < ∆t◦ and Ω is a domain of class C1. Provided the

initial conditions are positive, i.e., u0(x) = u(x, 0) > 0, v0(x) = v(x, 0) > 0,∀x ∈ Ω, then the solutions
un(x), vn(x) of the second-order scheme (3.13)-(3.19) are positive for all n ≥ 0. Proof. We will
use an induction argument. Suppose that un, vn > 0 in Ω, for a fixed arbitrary n ≥ 0. First we prove
that vn1(x) 6= 0,∀x ∈ Ω. Assume by contradiction that ∃x◦ ∈ Ω such that vn1(x◦) = 0. Then, from
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(3.13), using (2.5), we have that 0 = vn1(x◦) = vn(x◦) + ∆tg(un(x◦), v
n1(x◦)) = vn(x◦), which is in

conflict with the positivity of vn. Moreover, from (3.13), using (2.5), (2.1) and the assumption (4.1)
on the timestep ∆t ≤ 2

L , we also have

|vn1 − vn| = ∆t

2
|g(un, vn1)− g(un, 0)| ≤ ∆t

2
L|vn1 | ≤ |vn1 |.

From the above relation, and the induction assumption vn(x) > 0, it follows that vn1(x) > 0,∀x ∈ Ω.
To prove that un1 and vn2 are both positive it is enough to apply the (stronger than the CFL
condition) assumption (4.1) to the fully discrete approximations of (3.14)-(3.15). Indeed,

un1 = un + ∆t
Du

2
∆hu

n =
(
1−∆t

Du

2
λh
)
un ≥

(
1−∆t

Du

2
λhmax

)
un

≥
(
1− 2

L+ λhmax max{Du, Dv}
Du

2
λhmax

)
un =

(
1− λhmaxDu

L+ λhmax max{Du, Dv}
)
un

≥
(
1− λhmaxDu

L+ λhmaxDu

)
un > 0,

and similarly for vn2 .
By (3.16), using (3.14), (2.5), (2.1), the induction assumption un > 0 and the time step condition
(4.1), it follows that

un2 = un1 +
∆t

2
f(un, vn1) = un +

∆t

2
Du∆hu

n +
∆t

2
f(un, vn1)

= un − ∆t

2
Duλ

hun +
∆t

2

(
f(un, vn1)− f(0, vn1)

)
≥ un − ∆t

2
Duλ

h
maxu

n − ∆t

2
L|un| = un − ∆t

2
Duλ

h
maxu

n − ∆t

2
Lun

>
(
1− 1

L+ λhmax max{Du, Dv}
(Duλ

h
max + L)

)
un ≥ 0,

hence un2(x) > 0,∀x ∈ Ω.
In the continuous-in-space version of the Backward Euler scheme (3.17), the positivity of vn3 is
a direct consequence of the maximum principle for elliptic equations with homogeneous Neumann
boundary conditions (see e.g. [1, Theorem 3.6.2]). In the fully-discrete case, the proof is contingent to
the type of spatial discretization. For example, in the piecewise linear finite-element approximation
considered in Section 7, which is equivalent finite-difference representation on rectangular domains
using the classical central difference schemes both in one and two dimensions, implemented taking
into account zero-flux boundary conditions, the positivity of vn3 follows straightforward from the
positivity of vn2 . We illustrate here the proof for the two dimensional case, the five-point stencil
(discrete) Laplacian (a similar argument holds for the fourth-order nine-point Laplacian [19, Chapter
12]), when the grid spacing ∆x = ∆y = h. Let ` be the index for the x direction and the index m
for the y direction. The standard central difference approximations for the second derivatives lead to
the difference formula (corresponding to (3.17))

vn3

`,m −∆t
Dv

2

1

h2

(
vn3

`+1,m + un3

`−1,m + un3

`,m+1 + un3

`,m−1 − 4un3

`,m

)
= vn2

`,m.

This leads to the conclusion that at any interior point which is (local) minimum point, un+1
`,m =

mini,j u
n+1
i,j has positive values

0 < vn2

`,m ≤ v
n3

`,m,

and then the zero-flux boundary conditions complete the proof of this discrete maximum principle.
To prove that un+1 is positive, since un2 and vn3 are both positive we can consider the solution of
(3.18) as a particular solution of (4.2). Consequently, un+1 = un+1(∆t) depends continuously on the
timestep size ∆t. Notice that for ∆t = 0, un+1(0) = un2 > 0. In order to prove that un+1(∆t) is
positive for all ∆t > 0, by continuity it is enough to prove that un+1 6= 0 for all ∆t > 0. Suppose,
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in contradiction, that ∃∆t◦ > 0 such that un+1(∆t) > 0 for all ∆t < ∆t◦ and un+1(∆t◦) = 0. By
(3.18) and (2.5) we obtain that

un+1(∆t◦)−
∆t◦

2
Du∆un+1(∆t◦) = un2 +

∆t◦
2
f(un+1(∆t◦), v

n3) = un2 > 0;

hence, from the strong maximum principle and Hopf’s lemma for elliptic equations, the positivity of
un+1(∆t◦) follows - which is in conflict with the assumption.
Finally, the positivity of vn+1 follows by (3.19), using (2.5), (2.1), the positivity of vn3 and the
assumption ∆t < 2

L

vn+1 = vn3 +
∆t

2
g(un+1,vn3

) = vn3 +
∆t

2

(
g(un+1, vn3)− g(un+1, 0)

)
≥ vn3 − ∆t

2
L|vn3 | =

(
1− ∆t

2
L
)
vn3 > 0. 2

5. Stability.

5.1. un estimate. We derive energy estimates for u in a usual manner. First we use (un+1 +
un)/2 as the test function in (3.11) to obtain the following energy equality

1

2∆t
‖un+1‖2 − 1

2∆t
‖un‖2 +Du‖∇

un+1 + un

2
‖2 (5.1)

=
1

4
〈f(un, vn1) + f(un+1, vn2), un+1 + un〉.

Remark 5.1. If f depends linearly only on the first variable (i.e., f(u, v) = λu), (5.1) gives the
same energy estimate as the Crank-Nicolson method.

Proposition 5.1. For all n = 1, . . . , N we have

‖un‖ ≤ 2|Ω| 12 . (5.2)

Proof. First we multiply (5.1) by 2∆t, then use assumption (2.3), the polarized identity, and that
un, vn are non-negative for all n, to get

‖un+1‖2 − ‖un‖2 + 2∆tDu‖∇
un+1 + un

2
‖2

=
∆t

2
〈f(un, vn1) + f(un+1, vn2), un+1 + un〉

≤ ∆t

2
〈un(1− un), un+1 + un〉+

∆t

2
〈un+1(1− un+1), un+1 + un〉

=
∆t

2
〈un − |un|2, un+1 + un〉+

∆t

2
〈un+1 − |un+1|2, un+1 + un〉

=
∆t

2
〈un − |un|2, un+1〉+

∆t

2
〈un − |un|2, un〉

+
∆t

2
〈un+1 − |un+1|2, un+1〉+

∆t

2
〈un+1 − |un+1|2, un〉

=
∆t

2
〈un − |un|2, un+1〉+

∆t

2

(
‖un‖2 − ‖un‖3L3(D)

)
+

∆t

2

(
‖un+1‖2 − ‖un+1‖3L3(D)

)
+

∆t

2
〈un+1 − |un+1|2, un〉

≤ ∆t

2
〈un, un+1〉+

∆t

2

(
‖un‖2 − ‖un‖3L3(D)

)
+

∆t

2

(
‖un+1‖2 − ‖un+1‖3L3(D)

)
+

∆t

2
〈un+1, un〉

=
∆t

2

(
‖un‖2 + ‖un+1‖2 − ‖un+1 − un‖2

)
+

∆t

2

(
‖un‖2 − ‖un‖3L3(D)

)
+

∆t

2

(
‖un+1‖2 − ‖un+1‖3L3(D)

)
6



= ∆t
(
‖un‖2 + ‖un+1‖2

)
− ∆t

2
‖un+1 − un‖2 − ∆t

2
‖un‖3L3(Ω) −

∆t

2
‖un+1‖3L3(Ω)

which simplifies to

‖un+1‖2 − ‖un‖2 +
∆t

2
‖un+1 − un‖2 + 2∆tDu‖∇

un+1 + un

2
‖2

≤ ∆t
(
‖un‖2 + ‖un+1‖2

)
− ∆t

2
‖un‖3L3(D) −

∆t

2
‖un+1‖3L3(D).

Using now Hölder’s inequality (‖φ‖L2(Ω) ≤ |Ω|
1
6 ‖φ‖L3(Ω)) we have

‖un+1‖2 − ‖un‖2 +
∆t

2
‖un+1 − un‖2 + 2∆tDu‖∇

un+1 + un

2
‖2

≤ ∆t
(
‖un‖2 + ‖un+1‖2

)
− ∆t

2
|Ω|− 1

2 ‖un‖3L2(D) −
∆t

2
|Ω|− 1

2 ‖un+1‖3L2(D)

≤ ∆t
(
‖un‖+ ‖un+1‖

)2 − ∆t

2
|Ω|− 1

2

(
‖un‖3L2(D) + ‖un+1‖3L2(D)

)
= ∆t

(
‖un‖+ ‖un+1‖

)2 − ∆t

2
|Ω|− 1

2

(
‖un‖+ ‖un+1‖

)(
‖un‖2 + ‖un+1‖‖un‖+ ‖un+1‖2

)
≤ ∆t

(
‖un‖+ ‖un+1‖

)2 − ∆t

2
|Ω|− 1

2

(
‖un‖+ ‖un+1‖

)(
‖un‖2 + ‖un+1‖2

)
=
(
‖un‖+ ‖un+1‖

)(
∆t
(
‖un‖+ ‖un+1‖

)
− ∆t

2
|Ω|− 1

2

(
‖un‖2 + ‖un+1‖2

))
which dividing by (‖un‖+ ‖un+1‖) yields

‖un+1‖ − ‖un‖+
∆t

2

‖un+1 − un‖2

‖un‖+ ‖un+1‖
+ 2∆tDu

‖∇un+1+un

2 ‖2

‖un‖+ ‖un+1‖

≤ ∆t
(
‖un‖+ ‖un+1‖

)
− ∆t

2
|Ω|− 1

2

(
‖un‖2 + ‖un+1‖2

)
.

Furthermore, division by ‖un‖‖un+1‖ yields

1

‖un+1‖
− 1

‖un‖
+ ∆t

( 1

‖un‖
+

1

‖un+1‖
)
≥ |Ω|− 1

2 ∆t+ ∆tEn, (5.3)

where

En :=
1

‖un‖‖un+1‖(‖un‖+ ‖un+1‖)

(1

2

(
‖un+1 − un‖2

)
+ 2Du‖∇

un+1 + un

2
‖2
)
.

Now we multiply (5.3) by (1+∆t)n

(1−∆t)n and sum for n = 0, . . . , N − 1 to obtain

1

‖uN‖
(1 + ∆t)N

(1−∆t)N−1
− 1

‖u0‖
(1−∆t) ≥ 1

2
|Ω|− 1

2 (1−∆t)
((1 + ∆t

1−∆t

)N
− 1
)

+ ∆t

N−1∑
n=0

(1 + ∆t)n

(1−∆t)n
En.

Next we multiply by (1−∆t)N−1

(1+∆t)N

1

‖uN‖
− 1

‖u0‖
(1−∆t)

(1−∆t)N−1

(1 + ∆t)N
≥ 1

2
|Ω|− 1

2

(
1− (1−∆t)N

(1 + ∆t)N

)
+ ∆t

(1−∆t)N−1

(1 + ∆t)N

N−1∑
n=0

(1 + ∆t)n

(1−∆t)n
En

and rearrange

‖uN‖ ≤ 1

1
‖u0‖

(1−∆t)N

(1+∆t)N
+ 1

2 |Ω|
− 1

2

(
1− (1−∆t)N

(1+∆t)N

)
+ ∆t (1−∆t)N−1

(1+∆t)N

∑N−1
n=0

(1+∆t)n

(1−∆t)n En

which finally gives (5.2). 2
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5.2. vn estimate. We will derive now energy estimates for v. First, subtract (3.10) from (3.12)
to get

vn+1 − vn2

∆t
=

1

2
g(un+1, vn2), (5.4)

then multiply by vn+1 and integrate over the space domain to obtain

1

2∆t
‖vn+1‖2 − 1

2∆t
‖vn2‖2 +

1

2∆t
‖vn+1 − vn2‖2 =

1

2
〈g(un+1, vn2), vn+1〉. (5.5)

Next subtract (3.9) from (3.10) to get

vn2 − vn1

∆t
=

1

2

(
Dv∆hv

n1 +Dv∆hv
n2
)
, (5.6)

which, when tested with (vn2 + vn1)/2, gives

1

2∆t
‖vn2‖2 − 1

2∆t
‖vn1‖2 +Dv‖∇h

vn1 + vn2

2
‖2 = 0. (5.7)

Multiplying (3.9) with vn1 yields

1

2∆t
‖vn1‖2 − 1

2∆t
‖vn‖2 +

1

2∆t
‖vn1 − vn‖2 =

1

2
〈g(un, vn1), vn1〉. (5.8)

Finally add (5.5), (5.7) and (5.8) and obtain

1

2∆t
‖vn+1‖2 − 1

2∆t
‖vn‖2 (5.9)

+
1

2∆t
‖vn+1 − vn2‖2 +

1

2∆t
‖vn1 − vn‖2 +Dv‖∇h

vn1 + vn2

2
‖2

=
1

2
〈g(un+1, vn2), vn+1〉+

1

2
〈g(un, vn1), vn1〉.

Since the nonlinearity g depends heavily on the intermediary time steps n1, n2, bounding the
RHS of (5.9) in terms of vn+1, vn requires manipulation of the intermediary relations (5.5), (5.7),
(5.8).

Proposition 5.2. For all m = 1, . . . , N we have

‖vm‖2 +
1

1− 1
2Cg∆t

m−1∑
n=0

‖vn+1 − vn2‖2 +
1 + 1

2Cg∆t

(1− Cg∆t)(1− 1
2Cg∆t)

m−1∑
n=0

‖vn1 − vn‖2 (5.10)

+ ∆tDv
2 + Cg∆t

1− 1
2Cg∆t

‖∇h
m−1∑
n=0

vn1 + vn2

2
‖2 +

1
2Cg∆t

1− 1
2Cg∆t

m−1∑
n=0

∣∣‖vn2‖ − ‖vn+1‖
∣∣2

≤ ‖v0‖2 exp
( 2CgN∆t

(1− 1
2Cg∆t)(1− Cg∆t)

)
.

Proof. From (5.7) we deduce

‖vn2‖2 + 2∆tDv‖∇h
vn1 + vn2

2
‖2 ≤ ‖vn1‖2,

while using assumptions (2.4), (4.1) and Theorem 4.1, relation (5.8) yields

‖vn1‖2 +
1

1− Cg∆t
‖vn1 − vn‖2 ≤ 1

1− Cg∆t
‖vn‖2, (5.11)

and therefore

‖vn2‖2 + 2∆tDv‖∇h
vn1 + vn2

2
‖2 +

1

1− Cg∆t
‖vn1 − vn‖2 ≤ 1

1− Cg∆t
‖vn‖2. (5.12)
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Multiplying (5.9) by ∆t, using (2.4), the Cauchy-Schwarz inequality, (5.11)-(5.12), we obtain

‖vn+1‖2 − ‖vn‖2 +
1

1− 1
2Cg∆t

‖vn+1 − vn2‖2 +
1 + 1

2Cg∆t

(1− Cg∆t)(1− 1
2Cg∆t)

‖vn1 − vn‖2

+ ∆tDv
2 + Cg∆t

1− 1
2Cg∆t

‖∇h
vn1 + vn2

2
‖2 +

1
2Cg∆t

1− 1
2Cg∆t

∣∣‖vn2‖ − ‖vn+1‖
∣∣2

≤ 2Cg∆t

(1− 1
2Cg∆t)(1− Cg∆t)

‖vn‖2.

Summation from n = 0 to m− 1 and use of Gronwall’s inequality consequently gives (5.10). 2

6. Error estimates. Let ε
n+ 1

2
u , ε

n+ 1
2

v ∈ (H1(Ω))′ denote the following local truncation errors
for scheme (3.11)-(3.10)

〈εn+ 1
2

u , χ〉 :=
1

∆t
〈u(tn+1)− u(tn), χ〉 − 1

2

〈
f(u(tn), v(tn)) (6.1)

+ f(u(tn+1), v(tn+1)), χ
〉

+Du(∇u(tn+1) + u(tn)

2
,∇χ),

〈εn+ 1
2

v , χ〉 :=
1

∆t
〈v(tn+1)− v(tn), χ〉 − 1

2

〈
g(u(tn), v(tn)) (6.2)

+ g(u(tn+1), v(tn+1)), χ
〉

+Dv(∇
v(tn+1) + v(tn)

2
,∇χ),

where χ ∈ H1(Ω), and enu, e
n
v ∈ H1(Ω) denote the pointwise errors

enu = u(tn)− un, env = v(tn)− vn.

Lemma 6.1. Assume the classical solution of (1.1)-(1.2) has the following regularity

d2u

dt2
,
d2v

dt2
∈ L2(0, T,H1(Ω)),

du

dt
,
dv

dt
,
d3u

dt3
,
d3v

dt3
∈ L2(0, T, (H1(Ω))′). (6.3)

Then the truncation errors satisfy the following bound:

∆t

N−1∑
n=0

( 1

Du
‖εn+ 1

2
u ‖2∗ +

1

Dv
‖εn+ 1

2
v ‖2∗

)
(6.4)

≤ ∆t4

24

∫ tN

t0

[ 1

5Du
‖u′′′(t)‖2 +

1

5Dv
‖v′′′(t)‖2

+
1

3

( 1

Du
‖∇f

∥∥∥2

L∞(0,T ;L∞(Ω))
+

1

Dv
‖∇g‖2L∞(0,T ;L∞(Ω))

)
(‖u′′(t)‖2 + ‖v′′(t)‖2)

+
( 1

Du
‖∇2f‖2L∞(0,T ;L∞(Ω)) +

1

Dv
‖∇2g‖2L∞(0,T ;L∞(Ω))

)
(‖u′(t)‖4L4(Ω) + ‖v′(t)‖4L4(Ω))

+
1

12

(
Du‖∇u′′(t)‖2 +Dv‖∇v′′(t)‖2

)]
dt.

Proof. Using Taylor’s formula to expand v(tn), v(tn+1), u(tn), u(tn+1) about tn+ 1
2

we have

〈εn+ 1
2

u , χ〉 ≤ ∆t3/2

8
√

5

(∫ tn+∆t

tn

‖u′′′(t)‖2dt
)1/2

‖χ‖

+
∆t3/2

8
√

3
‖∇f‖L∞(0,T ;L∞(Ω))

(∫ tn+1

tn

(‖u′′(t)‖2 + ‖v′′(t)‖2)dt
)1/2

‖χ‖

+
∆t3/2

8
‖∇2f‖L∞(0,T ;L∞(Ω))

(∫ tn+1

tn

(‖u′(t)‖4L4(Ω) + ‖v′(t)‖4L4(Ω))dt
)1/2

‖χ‖

+
∆t3/2

16
√

3
Du

(∫ tn+∆t

tn

‖∇u′′(t)‖2dt
)1/2

‖∇χ‖,
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and

〈εn+ 1
2

v , χ〉 ≤ ∆t3/2

8
√

5

(∫ tn+∆t

tn

‖v′′′(t)‖2dt
)1/2

‖χ‖

+
∆t3/2

8
√

3

∥∥∥∇g∥∥∥
L∞(0,T ;L∞(Ω))

(∫ tn+1

tn

(‖u′′(t)‖2 + ‖v′′(t)‖2)dt
)1/2

‖χ‖

+
∆t3/2

8

∥∥∥∇2g
∥∥∥
L∞(0,T ;L∞(Ω))

(∫ tn+1

tn

(‖u′(t)‖4L4(Ω) + ‖v′(t)‖4L4(Ω))dt
)1/2

‖χ‖

+
∆t3/2

16
√

3
Dv

(∫ tn+∆t

tn

‖∇v′′(t)‖2dt
)1/2

‖∇χ‖,

which yields (6.4) in a standard manner. 2

To establish the error estimate for the numerical solution, we also need an energy-type bound for
the errors in terms of local truncation errors. We start by proving a preliminary estimate.

Lemma 6.2. Assume that the reaction terms and the solution to the system (3.9)-(3.12) are
sufficiently regular. Then, the following inequalities hold∥∥∥∇ (vn+1 + vn)− (vn2 + vn1)

2

∥∥∥ ≤ C∆t2, (6.5)

∥∥f(un, vn)− f(un, vn1) + f(un+1, vn+1)− f(un+1, vn2)
∥∥ (6.6)

+
∥∥g(un, vn)− g(un, vn1) + g(un+1, vn+1)− g(un+1, vn2)

∥∥ ≤ C∆t2.

Proof. First add (3.9) and (3.10), then subtract the result from (3.12) to get

(vn+1 + vn)− (vn2 + vn1) =
∆t

2

(
g(un+1, vn2)− g(un, vn1)

)
.

Next we use Taylor expansion, assume that the gradient and the Hessian of g are uniformly bounded,
and that the sequences {un}, {vn1}, {vn2} are uniformly bounded in H1(Ω), to obtain∥∥∥∇ (vn+1 + vn)− (vn2 + vn1)

2

∥∥∥ ≤ C∆t
(
‖un+1 − un‖H1(Ω) + ‖vn2 − vn1‖H1(Ω)

)
.

Finally, provided that {un}, {vn1}, {vn2} are uniformly bounded in H3(Ω) and f,∇f are bounded,
the equations (3.11) and (5.6) imply the estimate (6.5).

To prove (6.6), we proceed similarly. We note that subtracting (3.10) from (3.12) gives

vn+1 − vn2

∆t
=

1

2
g(un+1, vn2). (6.7)

Then a combination of Taylor expansions and manipulation of equations (3.9), (6.7), (3.11) and (5.6)
yields the estimate (6.6), and concludes the argument. 2

Lemma 6.3. For a sufficiently small timestep, the error in the implicit-symplectic scheme (3.11)-
(3.9) satisfies the following stability property

‖eNu ‖2 + ‖eNv ‖2 + ∆t

N−1∑
n=0

(
Du

∥∥∇en+1
u + enu

2

∥∥2
+Dv

∥∥∇en+1
v + env

2

∥∥2
)

(6.8)

≤ exp( CT
1−C∆t )

(
‖e0
u‖2 + ‖e0

v‖2 + ∆t

N−1∑
n=0

( 1

Du
‖εn+ 1

2
u ‖2∗ +

2

Dv
‖εn+ 1

2
v ‖2∗

)
+ CT∆t4

)
.

Proof. We subtract (3.11), (3.12) from (6.1)-(6.2) to obtain

1

∆t
〈en+1
u − enu, χ〉+Du(∇e

n+1
u + enu

2
,∇χ) = 〈εn+ 1

2
u , χ〉

+
1

2

〈
f(u(tn), v(tn))− f(un, vn1) + f(u(tn+1), v(tn+1))− f(un+1, vn2), χ

〉
,
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1

∆t
〈en+1
v − env , χ〉+Dv(∇

en+1
v + env

2
,∇χ)

+Dv(∇
(vn+1 + vn)− (vn1 + vn2)

2
,∇χ)

= 〈εn+ 1
2

v , χ〉+
1

2

〈
g(u(tn), v(tn))− g(un, vn1) + g(u(tn+1), v(tn+1))− g(un+1, vn2), χ

〉
.

Next we test with
en+1
u +enu

2 ,
en+1
v +env

2 , respectively, add up, use the Cauchy-Schwarz inequality and
rearrange to obtain

1

2∆t

(
‖en+1
u ‖2 + ‖en+1

v ‖2 − ‖enu‖2 − ‖env‖2
)

(6.9)

+
Du

2

∥∥∇en+1
u + enu

2

∥∥2
+
Dv

2

∥∥∇en+1
v + env

2

∥∥2

≤ 1

2Du
‖εn+ 1

2
u ‖2∗ +

1

Dv
‖εn+ 1

2
v ‖2∗ +

Du

2

∥∥en+1
u + enu

2

∥∥2
+
Dv

4

∥∥en+1
v + env

2

∥∥2

+Dv

∥∥∥∇ (vn+1 + vn)− (vn1 + vn2)

2

∥∥∥2

+
1

2

∥∥f(u(tn), v(tn))− f(un, vn1) + f(u(tn+1), v(tn+1))− f(un+1, vn2)
∥∥∥∥en+1

u + enu
2

∥∥
+

1

2
‖g(u(tn), v(tn))− g(un, vn1) + g(u(tn+1), v(tn+1))− g(un+1, vn2)‖

∥∥en+1
v + env

2

∥∥.
The third-to-last term in the right-hand-side is going to be handled by the estimate (6.5) in the
Lemma 6.2. The last two terms are treated with a triangle inequality and the following estimate,
which is again a consequence of the Taylor expansion and equations (3.11), (3.12)

‖f(u(tn+1), v(tn+1)) + f(u(tn), v(tn)−
(
f(un+1, vn+1) + f(un, vn)

)
‖ (6.10)

+ ‖g(u(tn+1), v(tn+1)) + g(u(tn), v(tn)−
(
g(un+1, vn+1) + g(un, vn)

)
‖

≤ L(‖en+1
u + enu‖+ ‖en+1

v + env‖) + C∆t2.

Hence using (6.5), (6.6) and (6.10) in (6.9) we obtain

1

2∆t

(
‖en+1
u ‖2 + ‖en+1

v ‖2 − ‖enu‖2 − ‖env‖2
)

+
Du

2

∥∥∇en+1
u + enu

2

∥∥2
+
Dv

2

∥∥∇en+1
v + env

2

∥∥2

≤ 1

2Du
‖εn+ 1

2
u ‖2∗ +

1

Dv
‖εn+ 1

2
v ‖2∗ + C

(
‖en+1
u ‖2 + ‖en+1

v ‖2 + ‖enu‖2 + ‖env‖2
)

+ C∆t4.

Summing for n = 0 to N − 1 yields

‖eNu ‖2 + ‖eNv ‖2 +Du∆t

N−1∑
n=0

∥∥∇en+1
u + enu

2

∥∥2
+Dv∆t

N−1∑
n=0

∥∥∇en+1
v + env

2

∥∥2

≤ ‖e0
u‖2 + ‖e0

v‖2 +
1

Du
∆t

N−1∑
n=0

‖εn+ 1
2

u ‖2∗ +
2

Dv
∆t

N−1∑
n=0

‖εn+ 1
2

v ‖2∗ + CT∆t4

+ C∆t

N∑
n=0

(
‖enu‖2 + ‖env‖2

)
.

Then under a small timestep condition, the discrete Gronwall inequality [11] yields (6.8). 2

The error estimate of the semi-discrete-in time approximation (3.9)-(3.12) follows necessarily,
proving the second-order accuracy in time.

Proposition 6.4. Under the assumptions of Lemmata 6.1-6.3, suppose also that the error in
the initial data is second-order accurate. Then, there exists a positive constant C◦ such that

‖eNu ‖2 + ‖eNv ‖2 + ∆t

N−1∑
n=0

(
Du

∥∥∇en+1
u + enu

2

∥∥2
+Dv

∥∥∇en+1
v + env

2

∥∥2
)
≤ C◦∆t4.
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7. A fully discrete approximation. For the numerical implementation of the second-order
IMSP scheme, we follow [7] and use the Galerkin finite-element approximation with piecewise linear
basis functions (which has an equivalent standard finite-difference representation on rectangular do-
mains). Let Th be a quasi-uniform partitioning of Ω into disjoint open simplices {τ} with hτ :=diam τ
and h :=maxτ∈Thhτ , so that Ω̄ = ∪τ∈Th τ̄ . We use the standard Galerkin finite element space of piece-
wise linear continuous functions defined by:

Sh := {v ∈ C(Ω̄) : v|τ is linear ∀τ ∈ Ωh} ⊂ H1(Ω).

We shall also need the Lagrange interpolation operator πh : C(Ω̄)→ Sh s.t. πh(v(xj) = v(xj) for all
j = 0, . . . ,M where {xj}Mj=0 are the nodesof the triangulation. Let {φ}Mj=0 be the standard basis for

Sh, satisfying φj(xi) = δij , where {xj}Mj=0 is the set of nodes of Th. A discrete L2 inner product on

C(Ω̄) is then defined by

(u, v)h :=

∫
Ω

πh(u(x)v(x)) dx ≡
M∑
j=0

M̂jju(xj)v(xj),

where M̂jj := (1, φj) ≡ (φj , φj)
h, corresponding to the (diagonal) lumped mass matrix M̂ . Then, the

fully discrete finite-element second-order IMSP approximation can be formulated as follows. Starting
with U0

h = πh(u(x, 0)), and V 0
h = πh(v(x, 0)) for all x ∈ Ωh, for n = 0, . . . , N − 1 find Un1

h , V n1

h ,
Un+1
h and V n+1

h so that for all χh ∈ Sh(V n1

h − V nh
∆t

, χ
)h

=
(
g(Unh , V

n1

h ), χ
)h

(7.1)(Un1

h − Unh
∆t

, χ
)h

+
Du

2
(∇Unh ,∇χ) = 0 (7.2)(V n2

h − V
n1

h

∆t
, χ
)h

+
Dv

2
(∇V n1

h ,∇χ) = 0 (7.3)(Un2

h − U
n1

h

∆t
, χ
)h

=
1

2

(
f(Unh , V

n1

h ), χ
)h

(7.4)(V n3

h − V
n2

h

∆t
, χ
)h

+
Dv

2
(∇V n3

h ,∇χ) = 0 (7.5)(Un+1
h − Un2

h

∆t
, χ
)h

+
Du

2
(∇Un+1

h ,∇χ) =
1

2

(
f(Un+1

h , V n3

h ), χ
)h

(7.6)(V n+1
h − V n3

h

∆t
, χ
)h

=
1

2

(
g(Un+1

h , V n3

h ), χ
)h

(7.7)

Choosing Unh =
∑h
j=0 U

n
j φj , V

n
h =

∑h
j=0 V

n
j φj , χh = φi, i = 0, . . . T , where Unj ≈ u(xj , tn),

V nj ≈ v(xj , tn), the above finite-element scheme has an equivalent finite-difference representation

on rectangular domains. Indeed, we let the set of nodes {xj}Mj=0 correspond to a rectangular grid

Ωh ⊂ Ω̄, with mesh width h. Consider L the approximation of the Laplacian operator ∆ acting on
the element of Ωh, obtained by classical central difference schemes both in one and two dimensions,
with zero-flux boundary conditions. Denoting I the identity matrix, the finite difference IMSP ap-
proximation leads to the same steps provided by the finite element scheme (7.1-7.6) for the vectors
{Un}i = Uni , {Vn}i = V ni :

1. solve the nonlinear system for the vector Vn1

Vn1 − ∆t

2
g(Un,Vn1) = Vn,

2. evaluate the entries of the vectors Un1 , Un2 , Vn2

Un1 = (I +
∆t

2
Du L)Un

Un2 = Un1 +
∆t

2
f(Un,Vn1)

12



Vn2 = (I +
∆t

2
Dv L)Vn

3. solve the linear system for Vn3

(I − ∆t

2
Dv L)Vn3 = Vn2

4. solve the nonlinear system for the vector Un+1

(I − ∆t

2
Du L)Un+1 − ∆t

2
f(Un+1,Vn3) = Un2 . (7.8)

5. evaluate the entries of the vectors Vn+1

Vn+1 = Vn3 +
∆t

2
g(Un+1,Vn3)

Comparing the above algorithm with the first-order IMSP scheme, we notice that the second-order
accuracy requires a major computational effort due to the solution of the nonlinear (7.8). Provided
that for all n, Un+1

0 = Un is a good approximation of the solution Un+1, iterative schemes based on
the evaluation of the Jacobian of the function

F (U) = (I − ∆t

2
Du L)U− ∆t

2
f(U,Vn3)−Un2 .

given by

JF (U) = I − ∆t

2
Du L−

∆t

2

∂f

∂U
(U,Vn3)

can be implemented. Moreover, in order to cut down the computational effort for updating the
Jacobian, the algorithms may be modified in such a way that, during the iterations, the value of
the Jacobian is kept constant. In the next Section 8 we will show the results of the application of
the modified Newton algorithm where the same LU decomposition of the Jacobian has been used for
every step of the iteration and only back substitutions were performed.

8. Numerical examples. In a previous article, [2], we tested the first-order IMSP scheme on
dynamics of both ecological and numerical interest. Among these, we recall the well-known spatially
explicit Rosenzweig-MacArthur (RM) model [17], as well as models that couple logistic prey growth
with Holling II and IV functional predator responses [12]. In this paper we test the second-order
accurate scheme on the same examples as in [2], in order to numerically verify the increment in
accuracy and to evaluate the advantage of the augmented accuracy with respect to the increased
computational cost.

8.1. A one-dimensional example. In this section we present the results related to a one-
dimensional problem with Holling II type dynamics governing the reaction term:

∂u

∂t
= u(1− u)− v(1− e−γu) + ∆u

∂v

∂t
= βv(α− 1− αe−γu) + ∆v

The parameters α = 1.5, β = 1 and γ = 5 were chosen in order to guarantee a stable limit cycle in
the reaction kinetics surrounding an unstable steady state. Thus, the densities of predators and prey
are oscillatory, which is the situation of primary interest from an ecological point of view, and which
can be better treated with the IMSP schemes. The initial densities for prey and predator population
were set to 0.2 and 0.0328.

In order to numerically verify the second-order in time convergence rate of the IMSP scheme, we
considered as reference solution, the solution at T = 20 of the continuous in time approximation

dU

dt
= DuLU + U(1− U)− V (1− e−γU ),
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dV

dt
= DvLV + βV (α− 1− αe−γU )

obtained with the Matlab code ode45 with absolute and relative tolerance set to 10−15 and 10−13,
respectively. The solution U(20) and V (20) are the vectors of prey and predators densities on the
uniform grid xj = j h (for j = 0, . . .M = 1/h) of space step h = 1/1024 embedded into the domain
Ω = [0, 1]. The initial values are given by the vectors with entries Uj(0) = u(xj , 0) and Vj(0) = v(xj , 0)
for j = 0, . . .M . The matrix L is obtained by approximating the second order derivatives with central
differences and imposing zero flux boundary conditions (see [2]).

We set as initial step size ∆t0 = 1/2; then, we successively halved this value obtaining a decreasing
sequences of stepsizes ∆ti = 1/2i+1 for i = 1, . . . , 8. We compared the reference solutions U(20) and
V (20) with the approximations UNi and VNi , with Ni = 20/∆ti, obtained advancing in time for
n = 0, 1, . . . Ni − 1 according to the IMSP second order steps

V n1
j =

Vj
n

1− ∆ti
2 β(α− 1− αe−γUj

n
)

j = 0, . . . ,M (8.1)

Un1 = (I +
∆ti
2
Du L)Un

Un2
j = Un1

j +
∆ti
2

(
Unj (1− Unj )− V n1

j (1− e−γU
n
j )
)

j = 0, . . . ,M

Vn2 = (I +
∆ti
2
Dv L)Vn

(I − ∆ti
2
Dv L)Vn3 = Vn2

(I − ∆ti
2
Du L)Un+1 − ∆ti

2

(
Un+1(1−Un+1)−Vn3(1− e−γU

n+1

)
)

= Un2

V n+1
j = V n3

j +
∆ti
2
βV n3

j (α− 1− αe−γU
n+1
j ) j = 0, . . . ,M.

Notice that in (8.1) the mathematical operations between vectors are defined as vectors with entries
given by the elementwise operations.

In order to solve the nonlinear system (8.1) we implemented, for each n, a modified Newton-
Rhapson procedure with an LU decomposition of the Jacobian frozen at Un, given by

JF (Un) = diag
(

1− ∆ti
2

(
1− 2Unj − γV

n3
j e−γU

n
j
))
j=0,...M

− ∆ti
2
Du L. (8.2)

The errors in the prey densities E
(U)
i = ‖U(20) −UNi‖1 = max

0≤j≤M
|Uj(20) − UjNi | are plotted

in Figure 8.1 (left) with respect to ∆ti for i = 1, . . . , 8 using logarithmic scales for both axes. The
slope of the segments joining the different points of the IMSP2 curve, which denote the second-order
scheme, confirms the second-order rate of convergence. For comparison, in Figure 8.1 (left), we also
report the results of the first-order IMSP approximation, denoted by IMSP1 curve.

In Figure 8.1 (right) we report the previous errors in prey densities versus the cputimes evaluated
by means of Matlab counters tic and toc. We notice that, reducing the stepsize, the first-order
scheme requires an increment of computational time that is is greater than the one corresponding to
the second-order method. This means that for values of stepsize below a threshold, using the same
computational time, the second-order scheme provides more accurate approximations compared to
the first-order scheme. 1.

8.2. A two-dimensional example. We compare the results of the first-order and second-order
IMSP schemes on the test case proposed in [6], for the spatially extended predator-prey interactions
of Rosenzweig-MacArthur form:

∂u

∂t
= u(1− u)− uv

u+ α
+Du∆u (8.3)

1Matlab codes implementing first (fd1dKin1IMSP1) and second order (fd1dKin1IMSP2) IMSP schemes applied to
the above example are downloadable from http://www.uoguelph.ca/ mgarvie/PredPrey files/.
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Fig. 8.1. On the left: Convergence rate and accuracy comparison between first- and second-order IMSPs schemes
at T = 20. The two curves have different slopes, suggesting the different orders of convergence. The slope of the
IMSP1 curve is approximately 1, validating the first-order accuracy, while IMSP2 slope is approximately 2, verifying
the second-order accuracy. On the right: comparison between numerical errors and cputime for the first- and second-
order IMSP schemes.

∂v

∂t
=

βuv

u+ α
− γv +Dv∆v. (8.4)

We consider the same spatial domain given in [6], a hypothetical lake with an island. The unstructured
mesh grid given by a coarse triangularization of M = 427 nodes generated by the authors with Mesh2d

v2.4 Matlab routine was used in our example for providing comparisons not affected by different
spatial discretization. Parameters were set as follows: Du = Dv = 1, α = 0.4, β = 0.2 and γ = 0.6,
u0 = 6/35 − 2 · 10−7(x − 0.1 · y − 225)(x − 0.1 · y − 675) and v0 = 116/245 − 3 · 10−5 · (x − 450) −
1.2 · 10−4(y − 150). We ran our code several times, with different time steps, and we compare the
performance of IMSP second-order scheme with respect to the first-order method.

The first test evaluates the rates of convergence. Since no exact solution is known we considered
as reference solutions the approximation at T = 50 on a fine temporal mesh ∆t = 1/210 of the
second-order IMSP scheme applied to the ODE system

dU

dt
= DuLU + U(1− U)− U V

U + α
,

dV

dt
= DvLV +

βU V

U + α
− γV.

The solution U(50) and V (50) are the vectors of prey and predators densities on the considered
unstructured mesh grid. The explicit expression of the approximated Laplacian L on the considered
spatial triangularization and imposing zero flux boundary conditions can be found in [6].

In our tests we used a decreasing sequences of stepsizes ∆ti = 1/2i for i = 1, . . . , 6. We compared
the reference solutions U(50) and V (50) with the approximations UNi and VNi , with Ni = 50/∆ti,
obtained advancing in time for n = 0, 1, . . . Ni − 1 according to the IMSP second-order steps

V n1
j =

Vj
n

1− ∆ti
2 (

βUj
n

Uj
n+α − γ)

j = 0, . . .M

Un1 = (I +
∆ti
2
Du L)Un

Un2
j = Un1

j +
∆ti
2

(
Unj (1− Unj )−

Uj
n V n1

j

Uj
n + α

)
j = 0, . . .M

Vn2 = (I +
∆ti
2
Dv L)Vn

(I − ∆ti
2
Dv L)Vn3 = Vn2

(I − ∆ti
2
Du L)Un+1 − ∆ti

2

(
Un+1(1−Un+1)− Un+1 Vn3

Un+1 + α

)
= Un2 (8.5)
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Fig. 8.2. On the left: Convergence rate and accuracy comparison between first and second order IMSPs schemes
at T = 50. The two curves have different slopes, this confirming the different order of convergence; the slope of IMSP1
curve is approximately 1 denoting a first order accuracy while IMSP2 slope is approximately equal to 2 denoting a
second order accuracy. On the right: comparison between numerical error and cputime for first and second order
IMSP schemes

V n+1
j = V n3

j +
∆ti
2
V n3
j

( βUn+1
j

Un+1
j + α

− γ
)

j = 0, . . .M

As for the previous example, in (8.5) the operations among vectors are defined as vectors with entries
given by the corresponding elementwise operation. In order to solve the nonlinear system (8.5)
we implemented, for each n, a modified Newton-Rhapson procedure with LU decomposition of the
Jacobian frozen at Un and given by

JF (Un) = diag
(

1− ∆ti
2

(
1− 2Unj − α

V n3
j

(Unj + α)2

))
j=0,...M

− ∆ti
2
Du L.

The errors in the prey densities E
(U)
i = ‖U(50)−UNi‖ = max

0≤j≤M
|Uj(50)−UjNi | are plotted in Figure

8.2 (left) with respect to ∆ti for i = 1, . . . , 6, using logarithmic scales for both axes. The slopes
of the segments joining the different points confirm the theoretically predicted rates of convergence
for the first- and second-order IMSP schemes. In Figure 8.2 (right) we report the previous errors in
prey densities versus the cputimes evaluated by means of Matlab counters tic and toc. The results
show that, reducing the stepsize, the first-order scheme requires an increased computational time in
comparison with the second-order scheme. Hence, using the same amount of computational time, the
second-order scheme with stepsizes below a threshold value provides more accurate approximations
than the first-order scheme. 2

Finally, we show the spatial distribution of prey densities on the two-dimensional domain obtained
by using IMSP first- and second-order approaches. On the left column of Figure 8.3 we display
the successive approximations at T = 150 using the IMSP first-order scheme with stepsizes ∆t =
1/3, 1/24, 1/384. On the right, we report the approximations of the second-order IMSP scheme
corresponding to the same temporal stepsizes. Again, we emphasize the faster convergence of the
IMSP second-order scheme versus the first-order approximation.

9. Conclusion. A semi-discrete in time formulation of a second-order implicit-symplectic scheme
for reaction-diffusion systems modeling predator-prey dynamics has been analyzed. We proved sta-
bility of the algorithm, an optimal a priori error estimate, and the positivity of solutions, provided
the temporal stepsize is small. These results extend the study developed in [2] for the first-order
IMSP scheme, and constitute the basis for the analysis of the fully-discrete approximations in finite-
difference and finite-element settings. The numerical examples confirm that the IMSP second-order
approximations, applied with stepsizes below a suitable threshold value, provide an improvement in
terms of accuracy compared the corresponding first-order algorithm, at same computational cost.

2Matlab codes implementing first (IMSP1fe2dnfast) and second order (IMSP2fe2dnfast) IMSP schemes applied to
the above example are downloadable from http://www.uoguelph.ca/ mgarvie/PredPrey files/.
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Fig. 8.3. RM model (8.3)-(8.4). Spatial distribution of prey densities in the domain: on the left column IMSP
first order approximations with ∆t = 1/3, 1/24, 1/384, on the right column the approximation with IMSP second order
scheme in correspondence of the same temporal stepsizes. Parameters: Du = Dv = 1, α = 0.4, β = 0.2, γ = 0.6. Initial
conditions: u0 = 6/35−2·10−7(x−0.1·y−225)(x−0.1·y−675) and v0 = 116/245−3·10−5 ·(x−450)−1.2·10−4(y−150).
Notice that IMSP2 approximation reaches convergence more quickly than IMSP1 scheme.

Matlab codes, downloadable from http://www.uoguelph.ca/ mgarvie/PredPrey files/, have been de-
veloped to implement the considered schemes on two examples.
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