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Abstract

In this paper, we discuss the steady and time-dependent nonlinear convection-diffusion (advection-diffusion) equations with the
Dirichlet boundary condition. For the steady nonlinear equation, we use an iteration method to reformulate the nonlinear equation
into its linear counterpart, and derive a fourth-order compact 9-point finite difference method (FDM) to solve the reformulated
equation on a uniform Cartesian grid. To increase the accuracy, we modify the FDM to reduce the pollution effect. The linear
system of the FDM generates an M-matrix, provided the mesh size h is sufficiently small. For the time-dependent nonlinear
equation, we discrete the temporal domain using the Crank-Nicolson (CN), BDF3, BDF4 time stepping methods, and apply a
similar iterative method to rewrite the nonlinear equation as the same linear convection-diffusion equation. Then we propose the
second-order to fourth-order compact 9-point FDMs with the reduced pollution effects on a uniform Cartesian grid. We prove that
all FDMs satisfy the discrete maximum principle for sufficiently small h. Several examples with the variable and time-dependent
diffusion coefficients and challenging nonlinear terms (not limited to the Burgers equation) are provided to verify the accuracy
and the desired convergence rates in the l2 and l∞ norms in space and time. We also compare our second-order CN method with
the third-order BDF3 method and the discontinuous Galerkin (DG) method, and the numerical results demonstrate that our FDM
with the coarse time step generates the small error. Especially, if the same BDF3 scheme is applied, our error is 1.6% of that
obtained from the DG method. The proposed methods can be easily extended to a 3D spatial domain and more general nonlinear
convection-diffusion-reaction equations.
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1. Introduction

The nonlinear convection-diffusion-reaction equations (advection-diffusion-reaction equations, the terms ’convection’ and ’ad-
vection’ are used indiscriminately in numerical analysis [16, p.2]) arise in a wide range of important physical and engineering
applications. They serve as the foundation for several well-known models, such as the porous medium equation for the investi-
gation of the fluid transport in porous materials, the Navier-Stokes equation for modeling flows in pipes and channels, and the
Fisher-Kolmogorov-Petrovsky-Piskunov equation to describe population growth. To analyze and numerically solve various nonlin-
ear convection-diffusion-reaction equations, we present the following literature review. Additional related works can be found in
their references.

In [3], Burman and al. proposed the stabilized Galerkin approximation for the steady nonlinear convection-diffusion-reaction
equation −ε∆u + v · ∇u + r(u) = f with the Dirichlet and Neumann boundary conditions, and the nonlinear reaction term r(u),
on a square in the numerical examples. In [5], Clain and al. established the second-order to sixth-order FDMs with the uniform
Cartesian grids for the steady nonlinear convection-diffusion-reaction equation −κ(u)∆u+ F(u) ·∇(u)+ r(u)u = f with the nonlinear
terms of diffusion κ(u), convection F(u), and reaction r(u), the Dirichlet, Neumann, and nonlinear Robin conditions in a curved
domain. For ut − ε∆u + ∇ · F(u) = f with the nonlinear convective term F(u), the Dirichlet and/or Neumann boundary conditions
on a bounded polyhedral domain in 2D and/or 3D, the priori asymptotic error estimate of the discontinuous Galerkin (DG) method
was deduced in [7, 8, 9, 23], and [11] proposed the convergence analysis of the combined finite volume-finite element (FV-FE)
method. In [7, 8, 9], Dolejšı́ and al. tested the 2D viscous Burgers equation with the Dirichlet boundary condition on a square in
the numerical example. Nguyen and al. introduced in [24] the fourth-order DG method for −∇ · (κ∇u) + ∇ · F(u) = f , and the
third-order DG method for ut −∇ · (κ∇u) +∇ · F(u) = f with the constant diffusion κ, the nonlinear convection F(u) = (u2/2, u2/2),
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and the Dirichlet boundary condition on a rectangle in the numerical experiments. For ut − ∇ · (K(u)∇u) + ∇ · F(u) = 0 with the
periodic boundary condition and the nonlinear diffusion term K(u), where K(u) is a symmetric and positive definite matrix of the
variable u, [27] constructed the error estimate for the semi-discrete local DG method on a rectangular domain, and [28] provided
the error analysis for the nonsymmetric DG method using the uniform and nonuniform meshes on a bounded domain in 1D and
2D. The equation ut − (u2)xx − (u2)yy = 0 and the 2D strongly degenerate parabolic problem in a square domain were examined
in [28]. New central schemes that maintain the high-resolution independent of O(1/τ) for the general nonlinear diffusion equation
ut− (P(u, ux, uy))x− (Q(u, ux, uy))x +∇·F(u) = 0 were offered in [18], where τ is the time step of the temporal discretization. In [10],
Eymard and al. described the combined FV-FE method for (α(u))t −∇ · (K∇u) +∇ · (vu) + r(u) = f with nonlinear α(u) and r(u), the
Dirichlet and Neumann boundary conditions, and the nonmatching grids on a bounded domain in 2D and 3D. In [25], Tezduyar and
al. built the streamline-upwind/Petrov-Galerkin method for the steady nonlinear convection-diffusion-reaction equation systems.
The numerical approximated solutions from [25] are accurate with the minimal numerical dissipation and oscillations. For the
systems of the time-dependent nonlinear convection-diffusion-reaction equations, [1] presented a conforming FEM of up to the
fourth order using the regular triangular mesh, [6] extended the Runge-Kutta DG method of the purely hyperbolic system to design
the local DG method, and [22] extended the von Neumann analysis to prove the nonlinear stability of the high-order DG method.
Furthermore, [4] analyzed the large time behavior of the nonlinear FVMs for the linear anisotropic convection-diffusion equations
with the Dirichlet and Neumann boundary conditions in a bounded domain.

In this paper, we consider the steady and time-dependent nonlinear convection-diffusion equations in the spatial domain Ω =

(0, 1)2 and the temporal domain I = [0, 1] as follows−∇ · (κ∇u) + ∇ · F(u) = f , (x, y) ∈ Ω,

u = g, (x, y) ∈ ∂Ω,
(1.1)

and 
ut − ∇ · (κ∇u) + ∇ · F(u) = f , (x, y) ∈ Ω and t ∈ I,
u = u0, (x, y) ∈ Ω and t = 0,
u = g, (x, y) ∈ ∂Ω and t ∈ I,

(1.2)

where u is the unknown scalar variable function; κ and f denote the available scalar-valued diffusion coefficient and the source term,
respectively; g and u0 represent the given Dirichlet boundary function of u on Ω and the initial value of u at t = 0, respectively.
Here F is the vector-valued nonlinear function of u, i.e.,

F(u) = (α(u), β(u)), with two nonlinear scalar functions α(u), β(u) of the variable u.

For example, if
(α(u), β(u)) = (u2/2, u2/2), (sin(u), cos(u)), (cos(u), exp(u)),

then
∇ · F(u) = uux + uuy, cos(u)ux − sin(u)uy, − sin(u)ux + exp(u)u.

In this paper, we assume that κ > 0, and u, κ, f , α, β are smooth in Ω and I. The rest of the paper is organized as follows:
In Section 2 we consider the steady nonlinear convection-diffusion equation (1.1). We first reformulate (1.1) into a linear

convection-diffusion equation in Section 2.1. Then, we provide the explicit expression of the fourth-order compact 9-point FDM
for the linear equation in Section 2.3 by using the techniques in Section 2.2. To increase the accuracy of our FDM, we reduce the
pollution effect in Section 2.4.

In Section 3 we discuss the time-dependent nonlinear convection-diffusion equation (1.2). We apply the Crank-Nicolson (CN),
BDF3, and BDF4 time stepping methods, and rewrite (1.2) as the linear convection-diffusion equation in Section 3.1. The second-
to fourth-order compact 9-point FDMs with the reduced pollution effects are proposed in Section 3.2.

In Section 4 we provide various examples with the variable κ(x, y), κ(x, y, t), and the challenging α(u), β(u), and compare our
scheme with the discontinuous Galerkin (DG) and the BDF3 methods in [24].

In Section 5 we highlight the main conclusion of this paper.

2. Fourth-order compact 9-point FDMs for the steady nonlinear convection-diffusion equation

In this section we convert the steady nonlinear convection-diffusion equation (1.1) into its linear counterpart by a fixed point
method, and derive the fourth-order compact 9-point FDMs.
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2.1. Reformulation of the steady nonlinear convection-diffusion equation

Clearly, (1.1) results in
−κ∆u − κxux − κyuy + αu(u)ux + βu(u)uy = f .

Let

a :=
κx − αu(u)

κ
, b :=

κy − βu(u)
κ

, ψ := −
f
κ
. (2.1)

Then (1.1) is equivalent to ∆u + aux + buy = ψ, (x, y) ∈ Ω,

u = g, (x, y) ∈ ∂Ω.
(2.2)

In this paper, an iteration method is applied to numerically solve the nonlinear equation (2.2):
∆uk+1 + ak(uk+1)x + bk(uk+1)y = ψ, (x, y) ∈ Ω,

uk+1 = g, (x, y) ∈ ∂Ω,

k := k + 1, the initial k = 0, u0 = 0,
(2.3)

where k denotes the index of the k-th iteration, and

ak :=
κx − αu(uk)

κ
, bk :=

κy − βu(uk)
κ

. (2.4)

As uk is computed in the k-th iteration, (2.3) can be considered as the linear problem in the (k + 1)-th iteration. Precisely, we rewrite
the nonlinear problem (1.1) as the following steady linear convection-diffusion equation:∆u + aux + buy = ψ, (x, y) ∈ Ω,

u = g, (x, y) ∈ ∂Ω,
(2.5)

where

u := uk+1, a := ak =
κx − αu(uk)

κ
, b := bk =

κy − βu(uk)
κ

. (2.6)

To solve (2.5) efficiently, we propose the fourth-order compact 9-point FDMs in the following Sections 2.2 to 2.4.

2.2. Techniques to derive the high-order FDMs
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Figure 1: The illustration for ΛM = Λ1
M ∪ Λ2

M in (2.7)–(2.8) with M = 7.

In this section, we present the key techniques for deriving the high-order (not limited to the fourth-order) FDMs in 2D, which
can be naturally extended to the three-dimensional spatial domain. For M ∈ N0 := N∪ {0}, we define (see Fig. 1 for an illustration)

ΛM := {(m, n) ∈ N2
0 : m + n ≤ M}, (2.7)

Λ2
M := ΛM \ Λ1

M with Λ1
M := {(m, n) ∈ ΛM : m = 0, 1}. (2.8)

For any smooth function ϕ, we also define

ϕ(m,n) :=
∂m+nϕ(x, y)
∂mx∂ny

, i.e., the (m, n)-th order partial derivative of ϕ(x, y). (2.9)
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Figure 2: The illustration for (2.17) with M = 7.

The main technique to derive the high-order FDM is the following formula (2.33). Note that (2.33) can be obtained by [14, (2.2)-
(2.12)]. For the readers’ convenience and to further simplify the corresponding expression in [14, (2.12)], we provide more details
in the following relations (2.10)-(2.33). It follows from (2.5) and (2.9) that

u(2,0) = −u(0,2) − a(0,0)u(1,0) − b(0,0)u(0,1) + ψ(0,0), (2.10)

where a, b, u are defined in (2.6), and ψ is defined in (2.1). Next, we take the m-th derivative with respect to x of (2.10),

u(m+2,0) = −u(m,2) −

m∑
i=0

(
m
i

)
a(m−i,0)u(i+1,0) −

m∑
i=0

(
m
i

)
b(m−i,0)u(i,1) + ψ(m,0), m ≥ 0. (2.11)

We also take the n-th derivative with respect to y of (2.11) to obtain

u(m+2,n) = − u(m,n+2) −

n∑
j=0

m∑
i=0

(
n
j

)(
m
i

)
a(m−i,n− j)u(i+1, j)

−

n∑
j=0

m∑
i=0

(
n
j

)(
m
i

)
b(m−i,n− j)u(i, j+1) + ψ(m,n), m, n ≥ 0.

(2.12)

Then (2.12) implies

u(m+2,n) −→ (u(m,n+2), u(i+1, j), u(i, j+1), ψ(m,n)), with 0 ≤ i ≤ m, 0 ≤ j ≤ n, m, n ≥ 0. (2.13)

Applying (2.13) recursively m + 1 times yields

u(m+2,n) −→ (u(0, j0), u(1, j1), ψ(i, j)), (2.14)

with 0 ≤ j0 ≤ m + n + 2, 0 ≤ j1 ≤ m + n + 1, m, n ≥ 0, 0 ≤ i, j ≤ m + n, and i + j ≤ m + n (examples of (2.14) for u(m+2,n) with
m = 0, 1, 2 are explicitly given in the following identities (2.20)–(2.23)). Namely,

u(m+2,n) =

m+2∑
j=0

ξm+2,n,0, ju(0, j) +

m+1∑
j=0

ξm+2,n,1, ju(1, j) +

m+n∑
i, j=0

i+ j≤m+n

ηm+2,n,i, jψ
(i, j), m, n ≥ 0, (2.15)

where ξm+2,n,0, j, ξm+2,n,1, j, ηm+2,n,i, j are uniquely determined by the above recursive algorithms (2.12)–(2.14), and only depend on the
high-order partial derivatives of a and b. Now, we replace (m + 2, n) by (p, q) in (2.15) to get

u(p,q) =

p∑
j=0

ξp,q,0, ju(0, j) +

p−1∑
j=0

ξp,q,1, ju(1, j) +

p+q−2∑
i, j=0

i+ j≤p+q−2

ηp,q,i, jψ
(i, j), p ≥ 2, q ≥ 0. (2.16)
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According to the definitions of ΛM ,Λ
1
M ,Λ

2
M in (2.7) and (2.8),

u(p,q) =
∑

(m,n)∈Λ1
p+q

ξp,q,m,nu(m,n) +
∑

(m,n)∈Λp+q−2

ηp,q,m,nψ
(m,n), (p, q) ∈ Λ2

M , (2.17)

where ψ, a, b, u are defined in (2.1) and (2.6), and ξp,q,m,n, ηp,q,m,n are uniquely determined by the high-order partial derivatives of
a and b (see Fig. 2 for an illustration). By the derivations (2.12)–(2.16) of (2.17), we can say that ξp,q,m,n and ηp,q,m,n are uniquely
determined by the multiplications of the high-order partial derivatives of a and b, i.e., ξp,q,m,n and ηp,q,m,n in (2.17) belong to

S := span
{ ∏

i1, j1∈N0

v1,w1∈N0

a(i1, j1)b(v1,w1),
∏

i2, j2∈N0

v2,w2∈N0

a(i2, j2)b(v2,w2), . . . ,
∏

ik , jk∈N0

vk ,wk∈N0

a(ik , jk)b(vk ,wk)
}
, (2.18)

with k ∈ N, and the coefficients in R. Precisely,

ξp,q,m,n =
∑
k∈N

cp,q,m,n,k

∏
ik , jk ,vk ,wk∈N0

a(ik , jk)b(vk ,wk), with cp,q,m,n,k ∈ R,

ηp,q,m,n =
∑
k∈N

dp,q,m,n,k

∏
ik , jk ,vk ,wk∈N0

a(ik , jk)b(vk ,wk), with dp,q,m,n,k ∈ R.
(2.19)

For example, u(p,q) with (p, q) ∈ Λ2
M , M ≥ 4, and p = 2, 3, 4 in (2.17) can be explicitly given by

u(2,q) = −u(0,q+2) −

q∑
k=0

(
q
k

) [
a(0,q−k)u(1,k) + b(0,q−k)u(0,k+1)

]
+ ψ(0,q), 0 ≤ q ≤ M − 2, (2.20)

u(3,q) = − u(1,q+2) +

q∑
k=0

(
q
k

)[
(ab − b(1,0))(0,q−k)u(0,k+1) + a(0,q−k)u(0,k+2)

+ (a2 − a(1,0))(0,q−k)u(1,k)] − q∑
k=0

(
q
k

)
b(0,q−k)u(1,k+1)

−

q∑
k=0

(
q
k

)
a(0,q−k)ψ(0,k) + ψ(1,q), 0 ≤ q ≤ M − 3,

(2.21)

u(4,q) =

q∑
k=0

(
q
k

)[
ξ

(0,q−k)
4,0,0,1 u(0,k+1) + ξ

(0,q−k)
4,0,0,2 u(0,k+2) + 2b(0,q−k)u(0,k+3) + ξ

(0,q−k)
4,0,1,0 u(1,k)

+ ξ
(0,q−k)
4,0,1,1 u(1,k+1) + 2a(0,q−k)u(1,k+2)

]
+ u(0,q+4) +

q∑
k=0

(
q
k

)[
(a2 − 2a(1,0))(0,q−k)ψ(0,k)

− a(0,q−k)ψ(1,k) − b(0,q−k)ψ(0,k+1)
]

+ ψ(2,q) − ψ(0,q+2), 0 ≤ q ≤ M − 4,

(2.22)

where

ξ4,0,0,1 = 2a(1,0)b − a2b + b(0,1)b + ab(1,0) + b(0,2) − b(2,0), ξ4,0,0,2 = 2a(1,0) − a2 + b2 + 2b(0,1),

ξ4,0,1,0 = 3aa(1,0) − a3 + a(0,1)b + a(0,2) − a(2,0), ξ4,0,1,1 = 2ab + 2a(0,1) − 2b(1,0).
(2.23)

To derive a fourth-order compact 9-point FDM, we use the uniform Cartesian grid in the spatial domain Ω = (0, 1)2 as follows:

xi := ih, i = 0, . . . ,N1, y j := jh, j = 0, . . . ,N1, and h := 1/N1, (2.24)

for some integer N1 ∈ N. To simplify the presentation, we adapt the following notations throughout the remainder of this paper:

a(m,n) :=
∂m+na(xi, y j)
∂mx∂ny

, b(m,n) :=
∂m+nb(xi, y j)
∂mx∂ny

,

u(m,n) :=
∂m+nu(xi, y j)
∂mx∂ny

, ψ(m,n) :=
∂m+nψ(xi, y j)
∂mx∂ny

.

(2.25)

The Taylor approximation at the base point (xi, y j) and the definitions of ΛM ,Λ
1
M ,Λ

2
M in (2.7) and (2.8) yield

u(x + xi, y + y j) =
∑

(m,n)∈ΛM

u(m,n) xmyn

m!n!
+ O(hM+1) (2.26)
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=
∑

(m,n)∈Λ1
M

u(m,n) xmyn

m!n!
+

∑
(p,q)∈Λ2

M

u(p,q) xpyq

p!q!
+ O(hM+1), (2.27)

where x, y ∈ [−h, h]. From (2.17), we see that∑
(p,q)∈Λ2

M

u(p,q) xpyq

p!q!
=

∑
(p,q)∈Λ2

M

[ ∑
(m,n)∈Λ1

p+q

ξp,q,m,nu(m,n) +
∑

(m,n)∈Λp+q−2

ηp,q,m,nψ
(m,n)

]
xpyq

p!q!

=

M∑
p=2,q=0
p+q≤M

[ p+q∑
n=0

ξp,q,0,nu(0,n) +

p+q−1∑
n=0

ξp,q,1,nu(1,n) +

p+q−2∑
m,n=0

m+n≤p+q−2

ηp,q,m,nψ
(m,n)

]
xpyq

p!q!
.

(2.28)

Clearly,
M∑

p=2,q=0
p+q≤M

[ p+q∑
n=0

ξp,q,0,nu(0,n)
]

xpyq

p!q!
=

M∑
n=0

[ M∑
p=2,q=0

n≤p+q≤M

ξp,q,0,n
xpyq

p!q!

]
u(0,n), (2.29)

M∑
p=2,q=0
p+q≤M

[ p+q−1∑
n=0

ξp,q,1,nu(1,n)
]

xpyq

p!q!
=

M−1∑
n=0

[ M∑
p=2,q=0

n+1≤p+q≤M

ξp,q,1,n
xpyq

p!q!

]
u(1,n), (2.30)

M∑
p=2,q=0
p+q≤M

[ p+q−2∑
m,n=0

m+n≤p+q−2

ηp,q,m,nψ
(m,n)

]
xpyq

p!q!
=

M−2∑
m,n=0

m+n≤M−2

[ M∑
p=2,q=0

m+n+2≤p+q≤M

ηp,q,m,n
xpyq

p!q!

]
ψ(m,n). (2.31)

Plugging (2.29)–(2.31) into (2.28) gives∑
(p,q)∈Λ2

M

u(p,q) xpyq

p!q!
=

∑
(m,n)∈Λ1

M

[ ∑
(p,q)∈Λ2

M\Λ
2
m+n−1

ξp,q,m,n
xpyq

p!q!

]
u(m,n)

+
∑

(m,n)∈ΛM−2

[ ∑
(p,q)∈Λ2

M\Λ
2
m+n+1

ηp,q,m,n
xpyq

p!q!

]
ψ(m,n).

(2.32)

Then, we substitute (2.32) into (2.27),

u(x + xi, y + y j) =
∑

(m,n)∈Λ1
M

u(m,n)GM,m,n(x, y) +
∑

(m,n)∈ΛM−2

ψ(m,n)HM,m,n(x, y) + O(hM+1), (2.33)

where x, y ∈ [−h, h], and

GM,m,n(x, y) :=
xmyn

m!n!
+

∑
(p,q)∈Λ2

M\Λ
2
m+n−1

ξp,q,m,n
xpyq

p!q!
, HM,m,n(x, y) :=

∑
(p,q)∈Λ2

M\Λ
2
m+n+1

ηp,q,m,n
xpyq

p!q!
, (2.34)

where the expressions of ξp,q,m,n and ηp,q,m,n are provided in (2.19). Finally, we use (2.33) to construct the fourth-order compact
9-point FDMs for (2.5) in the following Section 2.3.

2.3. Fourth-order compact 9-point FDMs
Recall that u denotes the exact solution of (2.5), and the grid point (xi, y j) with the uniform mesh size h is defined in (2.24). We

define uh as the numerical solution computed by the FDM, ui, j = u(xi, y j), and (uh)i, j is the value of uh at (xi, y j). The fourth-order
compact 9-point FDM at the grid point (xi, y j) is expressed as

h−2Lhuh := h−2
1∑

k=−1

1∑
`=−1

Ck,`(uh)i+k, j+` = Fi, j, (2.35)

with

Ck,` :=
M+1∑
p=0

ck,`,php, ck,`,p ∈ S , M ∈ N0, (2.36)
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where S is defined in (2.18). The coefficients {ck,`,p}k,`=−1,0,1,p=0,...,M+1 and the right-hand side Fi, j are determined next via relations
(2.37)–(2.50). We restrict each ck,`,p ∈ S such that the high-order partial derivatives a(m,n) and b(m,n) do not appear in the denomi-
nator, ensuring that each ck,`,p is well defined. We say that the set of nine elements {Ck,`}k,`=−1,0,1 is nontrivial if Ck,` |h=0 , 0 for at
least some k, ` = −1, 0, 1.
The algorithm to derive the fourth-order compact 9-point FDMs: We define the linear operator Lhu

h−2Lhu := h−2
1∑

k=−1

1∑
`=−1

Ck,`u(kh + xi, `h + y j). (2.37)

Plugging (2.33) into (2.37) and replacing M by M + 1 generate

h−2Lhu =h−2
1∑

k=−1

1∑
`=−1

Ck,`

∑
(m,n)∈Λ1

M+1

u(m,n)GM+1,m,n(kh, `h)

+ h−2
1∑

k=−1

1∑
`=−1

Ck,`

∑
(m,n)∈ΛM−1

ψ(m,n)HM+1,m,n(kh, `h) + O(hM),

=h−2
∑

(m,n)∈Λ1
M+1

u(m,n)IM+1,m,n + h−2
∑

(m,n)∈ΛM−1

ψ(m,n)JM−1,m,n + O(hM), (2.38)

where

IM+1,m,n :=
1∑

k=−1

1∑
`=−1

Ck,`GM+1,m,n(kh, `h), JM−1,m,n :=
1∑

k=−1

1∑
`=−1

Ck,`HM+1,m,n(kh, `h), (2.39)

with GM+1,m,n(x, y) and HM+1,m,n(x, y) defined by (2.34). Owing to (2.35) and (2.38), the local spatial truncation error

h−2Lh(u − uh) = h−2
∑

(m,n)∈Λ1
M+1

u(m,n)IM+1,m,n + h−2
∑

(m,n)∈ΛM−1

ψ(m,n)JM−1,m,n − Fi, j + O(hM). (2.40)

Let
Fi, j := the terms of

(
h−2

∑
(m,n)∈ΛM−1

ψ(m,n)JM−1,m,n

)
with degree ≤ M − 1 in h, (2.41)

where JM−1,m,n is defined in (2.39) with HM+1,m,n(x, y) in (2.34). Then (2.40) leads to

h−2Lh(u − uh) = h−2
∑

(m,n)∈Λ1
M+1

u(m,n)IM+1,m,n + O(hM). (2.42)

By (2.7), (2.8), and (2.34), we have that smallest degrees of h among the nonzero terms in GM+1,m,n(kh, `h) and HM+1,m,n(kh, `h) are
0 and 2, respectively. So, (2.36), (2.39), and (2.41) imply that the smallest degree of h among the nonzero terms in both IM+1,m,n
and Fi, j is 0.

Now, if Ck,` in (2.36), IM+1,m,n in (2.39), and Fi, j in (2.41) satisfy

IM+1,m,n =

1∑
k=−1

1∑
`=−1

Ck,`GM+1,m,n(kh, `h) = O(hM+2) for all (m, n) ∈ Λ1
M+1, (2.43)

and
C0,0|h=0 , 0, Fi, j|h=0 = ψ, (2.44)

where GM+1,m,n(x, y) is defined in (2.34), then (2.42) generates

h−2Lh(u − uh) = O(hM), (2.45)

and Lhuh approximates ∆u + aux + buy = ψ in (2.5) with the consistency order M at the grid point (xi, y j).
By the definitions of JM−1,m,n and Fi, j in (2.39) and (2.41), Fi, j can be obtained immediately if {ck,`,p}|

p=0,M+1
k,`=−1,0,1 in (2.36) are

fixed. So the main task of deriving the high-order FDM is to find {ck,`,p}|
p=0,M+1
k,`=−1,0,1 to satisfy (2.43) and (2.44). Using the symbolic

calculation in Maple, the largest M such that the nontrivial {Ck,`}k,`=−1,0,1 solving the corresponding linear system of (2.43) with the
variables {ck,`,p}|

p=0,M+1
k,`=−1,0,1 is, M = 4. Therefore, the highest consistency order of the compact 9-point FDM based on our technique
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using the uniform Cartesian mesh grid for ∆u + aux + buy = ψ, is 4. Furthermore, there exist nine coefficients in {Ck,`}k,`=−1,0,1
satisfying (2.43) with M = 4, for any free variables in the following set:

{c0,0,0, c0,0,1, c−1,−1,2, c1,1,2, c0,1,3, c1,0,3, c1,0,2, c1,1,3} ∪ {ck,`,p}
p=4,5
k,`=−1,0,1. (2.46)

The symbolic calculation in Maple also reveals that: if we fix c0,0,0 = −10/3, c0,0,1 = c−1,−1,2 = c1,1,2 = c0,1,3 = c1,0,3 = 0,
{ck,`,p}k,`=−1,0,1,p=4,5 = {0}, c1,0,2 = (a2 + ab + a(0,1) + a(1,0) + b(1,0) − b(0,1))/12, and c1,1,3 = a(0,1)b/24 in (2.46), then there exist
the unique {Ck,`}k,`=−1,0,1 and Fi, j fulfilling (2.43) and (2.44) with M = 4 as follows (every free variable ck,`,p in (2.46) is chosen to
ensure (2.44) and make the expression of Ck,` concise):

C−1,−1 = 1
6 −

r1h
12 + (r3a − (2a(0,1) + a(1,0))b + ∆r1) h3

24 ,

C−1,0 = 2
3 −

ah
3 + (a2 + ab + r2 + r3) h2

12 + (r2b − r3a − ∆r1) h3

12 ,

C−1,1 = 1
6 −

r5h
12 − (ab + r4) h2

12 + (ab(1,0) − r2b + ∆b) h3

24 ,

C0,−1 = 2
3 −

bh
3 + (ab + b2 + r6 + r7) h2

12 + (r2b − r3a − ∆r1) h3

12 ,

C0,0 = − 10
3 − (a2 + ab + b2 + r4) h2

6 + (r3a − r2b + ∆r1) h3

12 , (2.47)

C0,1 = 2
3 + bh

3 + (ab + b2 + r6 + r7) h2

12 ,

C1,−1 = 1
6 +

r5h
12 − (ab + r4) h2

12 + (∆a − ab(0,1)) h3

24 ,

C1,0 = 2
3 + ah

3 + (a2 + ab + r2 + r3) h2

12 ,

C1,1 = 1
6 + r1h

12 + a(0,1)b h3

24 ,

where

r1 = a + b, r2 = a(0,1) + a(1,0), r3 = b(1,0) − b(0,1), r4 = a(0,1) + b(1,0),

r5 = a − b, r6 = a(0,1) − a(1,0), r7 = b(1,0) + b(0,1),
(2.48)

and
Fi, j := ψ − ((a(1,0) + b(0,1))ψ − aψ(1,0) − bψ(0,1) − ∆ψ) h2

12 . (2.49)

In particular, if a = b (e.g, if κ = constant and α(u) = β(u) = u2/2, then (2.6) yields the steady viscous Burgers equation), we
obtain a more concise expression by the following steps: (2.43) and (2.44) with a = b, M = 4, c0,0,0 = −10/3, c−1,1,1 = c0,0,1 =

c1,−1,1 = c−1,−1,2 = c1,1,2 = c0,1,3 = c1,0,3 = c1,1,3 = 0, {ck,`,p}k,`=−1,0,1,p=4,5 = {0}, and c1,0,2 = (a2 + a(1,0))/6 result in

C−1,−1 = 1
6 −

ah
6 + ∆ah3

12 , C−1,0 = 2
3 −

ah
3 + (a2 + a(1,0)) h2

6 −
∆ah3

6 ,

C−1,1 = 1
6 − (a2 + a(0,1) + a(1,0)) h2

12 + ∆ah3

24 , C0,−1 = 2
3 −

ah
3 + (a2 + a(0,1)) h2

6 −
∆ah3

6 ,

C0,0 = − 10
3 − (3a2 + a(0,1) + a(1,0)) h2

6 + ∆ah3

6 , C0,1 = 2
3 + ah

3 + (a2 + a(0,1)) h2

6 ,

C1,−1 = C−1,1, C1,0 = 2
3 + ah

3 + (a2 + a(1,0)) h2

6 , C1,1 = 1
6 + ah

6 ,

(2.50)

and Fi, j is obtained by replacing b by a in (2.49).
Note that the nine coefficients in {Ck,`}k,`=−1,0,1 satisfying (2.43)–(2.44) with M = 4 are not unique. We choose each free variable

ck,`,p to endow every Ck,` with the simplest explicit expression in (2.47) and (2.50). The coefficients in (2.47) with a = b can also
give the left-hand side of a fourth-order FDM for ∆u + aux + auy = ψ, but the corresponding nine coefficients {Ck,`}k,`=−1,0,1 are not
of the simplest forms based on our technique in Section 2.2.

Summarizing the above relations (2.35)–(2.50), the following Theorems 2.1 and 2.2 provide the fourth-order compact 9-point
FDMs for ∆u + aux + auy = ψ and ∆u + aux + buy = ψ, respectively.

Theorem 2.1. Assume κ, u, α = β, f are all smooth, and κx = κy in (1.1),Lhuh is defined in (2.35), the nine coefficients {Ck,`}k,`=−1,0,1
are defined in (2.50), the right-hand side Fi, j is obtained by replacing b by a in (2.49), and all the functions in Lhuh are evaluated
at the grid point (xi, y j) in (2.24). Then h−2Lhuh approximates ∆u + aux + buy = ψ in (2.5) with the fourth-order of consistency at
(xi, y j) for the case a = b, where ψ, a, b, u are defined in (2.1) and (2.6).

Proof. From the derivations of {Ck,`}k,`=−1,0,1 and Fi, j in identities (2.35)–(2.50), this result can be proved directly. For the readers’
convenience and to make our FDM more rigorous, we also provide the proof in the standard perspective as follows. From (2.5)
with a = b and (2.25), we have

∆u + (u(1,0) + u(0,1))a = ψ. (2.51)
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Taking the first-order partial derivatives of (2.51) with respect to x and y yields

∆u(1,0) + (u(2,0) + u(1,1))a + (u(1,0) + u(0,1))a(1,0) = ψ(1,0), (2.52)

and
∆u(0,1) + (u(1,1) + u(0,2))a + (u(1,0) + u(0,1))a(0,1) = ψ(0,1), (2.53)

so that (2.52)+(2.53) gives

∆(u(1,0) + u(0,1)) = −(∆u + 2u(1,1))a − (u(1,0) + u(0,1))(a(1,0) + a(0,1)) + ψ(1,0) + ψ(0,1). (2.54)

Now, we take the first-order partial derivatives of (2.52) and (2.53) with respect to x and y, respectively,

u(4,0) + u(2,2) + (u(3,0) + u(2,1))a + 2(u(2,0) + u(1,1))a(1,0) + (u(1,0) + u(0,1))a(2,0) = ψ(2,0), (2.55)

u(2,2) + u(0,4) + (u(1,2) + u(0,3))a + 2(u(1,1) + u(0,2))a(0,1) + (u(1,0) + u(0,1))a(0,2) = ψ(0,2), (2.56)

hence (2.55)+(2.56) gives

∆2u + (u(1,0) + u(0,1))∆a + 2u(1,1)(a(0,1) + a(1,0)) = − a∆(u(1,0) + u(0,1)) − 2u(2,0)a(1,0)

− 2u(0,2)a(0,1) + ∆ψ.
(2.57)

Next, we plug Ck,` of (2.50) into Lhu defined in (2.37), and apply (2.26) with M = 5. After a direct simplification, we obtain

Lhu =

1∑
k=−1

1∑
`=−1

Ck,`u(kh + xi, `h + y j)

=h2[∆u + a(u(1,0) + u(0,1))] + h4

12 [a2∆u + 2a2u(1,1) + 2a(∆u(1,0) + ∆u(0,1))

+ ∆2u + (u(0,1) + u(1,0))∆a + 2(a(0,1) + a(1,0))u(1,1) + (u(2,0) − u(0,2))(a(1,0) − a(0,1))] + O(h6).

Using (2.51), (2.54), and (2.57), after algebraic manipulation, we have

Lhu =h2ψ + h4

12 [a2∆u + 2a2u(1,1) − 2a2∆u − 4a2u(1,1) − 2a(u(1,0) + u(0,1))(a(1,0) + a(0,1))

+ 2a(ψ(1,0) + ψ(0,1)) − a∆(u(1,0) + u(0,1)) − 2u(2,0)a(1,0) − 2u(0,2)a(0,1)

+ ∆ψ + (u(2,0) − u(0,2))(a(1,0) − a(0,1))] + O(h6), by (2.51), (2.54), (2.57),

=h2ψ + h4

12 [−a2∆u − 2a2u(1,1) − 2a(u(1,0) + u(0,1))(a(1,0) + a(0,1)) + 2a(ψ(1,0) + ψ(0,1))

+ a2∆u + 2a2u(1,1) + a(u(1,0) + u(0,1))(a(1,0) + a(0,1)) − a(ψ(1,0) + ψ(0,1))

− 2u(2,0)a(1,0) − 2u(0,2)a(0,1) + ∆ψ + (u(2,0) − u(0,2))(a(1,0) − a(0,1))] + O(h6), by (2.54),

=h2ψ + h4

12 [−a(u(1,0) + u(0,1))(a(1,0) + a(0,1)) + a(ψ(1,0) + ψ(0,1))

− 2u(2,0)a(1,0) − 2u(0,2)a(0,1) + ∆ψ + (u(2,0) − u(0,2))(a(1,0) − a(0,1))] + O(h6), by simplification,

=h2ψ + h4

12 [−a(u(1,0) + u(0,1))(a(1,0) + a(0,1)) + a(ψ(1,0) + ψ(0,1))

− u(2,0)(a(1,0) + a(0,1)) − u(0,2)(a(1,0) + a(0,1)) + ∆ψ] + O(h6), by simplification,

=h2ψ + h4

12 [−a(u(1,0) + u(0,1))(a(1,0) + a(0,1)) + a(ψ(1,0) + ψ(0,1))

+ (a(1,0) + a(0,1))(a(u(1,0) + u(0,1)) − ψ) + ∆ψ] + O(h6), by (2.51),

=h2ψ + h4

12 [a(ψ(1,0) + ψ(0,1)) − (a(1,0) + a(0,1))ψ + ∆ψ] + O(h6), by simplification.

Finally, (2.35) and (2.49) with b = a complete the argument.

Theorem 2.2. Assume κ, u, α, β, f are all smooth in (1.1), Lhuh is defined in (2.35), the nine coefficients {Ck,`}k,`=−1,0,1 are defined
in (2.47)–(2.48), the right-hand side Fi, j is defined in (2.49), and all the functions in Lhuh are evaluated at the grid point (xi, y j) in
(2.24). Then h−2Lhuh approximates ∆u + aux + buy = ψ in (2.5) with the fourth-order of consistency at (xi, y j), where ψ, a, b, u are
defined in (2.1) and (2.6).

Proof. The proof follows similar arguments as in Theorem 2.1.

From (2.43)–(2.46), there exist the nine coefficients
{
Ck,` =

∑M+1
p=0 ck,`,php : k, ` = −1, 0, 1

}
fulfilling (2.43) with M = 4 for

any free variables ck,`,p in (2.46). Hence, we use the free variables from (2.46) to reduce the pollution effects in the following
Section 2.4.
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2.4. Reduction of the pollution effects of O(h4) and O(h5)
Recall that M = 4 is the largest integer such that the nontrivial {Ck,`}k,`=−1,0,1 satisfying (2.43), i.e., the maximum consistency

order of the FDM in Theorem 2.2 for ∆u + aux + buy = ψ in (2.5), is 4. In this section we use the free variables ck,`,p in (2.46) to
reduce the pollution effects of O(h4) and O(h5). Let us choose M = 6 in (2.36), (2.39), and (2.41), so that

Ck,` :=
7∑

p=0

ck,`,php, ck,`,p ∈ S , I7,m,n :=
1∑

k=−1

1∑
`=−1

Ck,`G7,m,n(kh, `h), (2.58)

Fi, j = the terms of
(
h−2

∑
(m,n)∈Λ5

ψ(m,n)
1∑

k=−1

1∑
`=−1

Ck,`H7,m,n(kh, `h)
)

with degree ≤ 5 in h, (2.59)

where G7,m,n(x, y) and H7,m,n(x, y) are defined in (2.34), and S is defined in (2.18). To maintain the fourth-order of consistency, and
reduce the truncation errors of O(h4) and O(h5), we choose M = 4, and replace I5,m,n by I7,m,n and G5,m,n by G7,m,n in (2.43)–(2.44).
Using the symbolic computation from Maple, we verify that there exist Ck,` =

∑7
p=0 ck,`,php with k, ` = −1, 0, 1 satisfying

I7,m,n =

1∑
k=−1

1∑
`=−1

Ck,`G7,m,n(kh, `h) = O(h6) for all (m, n) ∈ Λ1
5, C0,0|h=0 , 0, Fi, j|h=0 = ψ, (2.60)

for any free variables in the following set

{c−1,−1,p}p=6,7 ∪ {c−1,0,p}p=5,6,7 ∪ {c−1,1,p}p=4,...,7 ∪ {c0,−1,p}p=5,6,7

∪ {c0,0,p}p=4,...,7 ∪ {c0,1,p}p=3,...,7 ∪ {c1,−1,p}p=3,...,7 ∪ {c1,0,p}p=2,...,7 ∪ {c1,1,p}p=1,...,7.
(2.61)

Furthermore, we also observe that {Ck,`}k,`=−1,0,1 solving (2.60) leads to

∑
(m,n)∈Λ1

7

u(m,n)I7,m,n =
∑

(m,n)∈Λ1
7

u(m,n)
1∑

k=−1

1∑
`=−1

Ck,`G7,m,n(kh, `h)

= h6

90 (a(0,1) − b(1,0))u(1,3) + C6h6 + C7h7 + O(h8),

(2.62)

where C6 and C7 depend on the free variables in (2.61). To reduce the truncation errors of O(h4) and O(h5), we consider

1∑
k=−1

1∑
`=−1

Ck,`G7,m,n(kh, `h) = O(h8) for all (m, n) ∈ Λ1
7 \ {(1, 3)},

1∑
k=−1

1∑
`=−1

Ck,`G7,1,3(kh, `h) − h6

90 (a(0,1) − b(1,0)) = O(h8), C0,0|h=0 , 0, Fi, j|h=0 = ψ.

(2.63)

Again using the symbolic calculation from Maple, there exist Ck,` =
∑7

p=0 ck,`,php with k, ` = −1, 0, 1 satisfying (2.63) for any free
variables in the following set:

{c−1,0,7} ∪ {c−1,1,p}p=6,7 ∪ {c0,−1,7} ∪ {c0,0,p}p=6,7 ∪ {c0,1,p}p=5,6,7 ∪ {c1,−1,p}p=5,6,7

∪ {c1,0,p}p=4,...,7 ∪ {c1,1,p}p=2,...,7.
(2.64)

Furthermore, Ck,` =
∑7

p=0 ck,`,php fulfilling (2.63) yields

c−1,−1,0 = c−1,1,0 = c1,−1,0 = c1,1,0 = 1
6 , c−1,0,0 = c1,0,0 = c0,−1,0 = c0,1,0 = 2

3 , c0,0,0 = − 10
3 . (2.65)

Similarly to (2.40)–(2.45), Ck,` =
∑7

p=0 ck,`,php meeting (2.63) implies

h−2Lh(u − uh) = h4

90 (a(0,1) − b(1,0))u(1,3) + O(h6), (2.66)

and Lhuh approximates ∆u + aux + buy = ψ with the fourth-order of consistency at (xi, y j), where Lhu is defined in (2.37),
Lhuh is defined in (2.35), and Fi, j is defined in (2.59). In our numerical examples, we set all free variables in (2.64) to zero, so
Ck,` =

∑7
p=0 ck,`,php with k, ` = −1, 0, 1 can be uniquely determined by solving (2.63). In summary, we have the FDM with the

reduced pollution effects of O(h4) and O(h5) in the following theorem:
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Theorem 2.3. Assume κ, u, α, β, f are all smooth in (1.1), Lhuh is defined in (2.35), the nine coefficients Ck,` =
∑7

p=0 ck,`,php

with k, ` = −1, 0, 1 are uniquely determined by solving (2.63) with all free variables being zero in (2.64), the right-hand side Fi, j

is defined in (2.59), and all the functions in Lhuh are evaluated at the grid point (xi, y j) in (2.24). Then h−2Lhuh approximates
∆u + aux + buy = ψ with the fourth-order of consistency at (xi, y j), and the truncation error h4

90 (a(0,1) − b(1,0))u(1,3) + O(h6).

Proof. The proof follows directly from (2.58)–(2.66).

We note that the theoretical results of the discrete maximum principle in [12, 13, 14, 19, 20] imply that, if the nine coefficients
{Ck,`}k,`=−1,0,1 satisfy

C0,0 > 0, Ck,` ≤ 0, if (k, `) , (0, 0), the sign condition;
1∑

k=−1

1∑
`=−1

Ck,` ≥ 0, the sum condition;
(2.67)

then the corresponding FDM with the Dirichlet boundary condition yields a numerical solution which satisfies the discrete maxi-
mum principle, and generates an M-matrix (a real square matrix with the non-positive off-diagonal entries and the positive diagonal
entries such that all row sums are non-negative with at least one row sum being positive).

Proposition 2.4. All {Ck,`}k,`=−1,0,1 in Theorems 2.1 to 2.3 with Ck,` |h=0 = ck,`,0 satisfy

c±1,±1,0 = c±1,∓1,0 = 1
6 , c±1,0,0 = c0,±1,0 = 2

3 , c0,0,0 = − 10
3 ,

−1∑
k=1

−1∑
`=1

ck,`,0 = 0. (2.68)

That is, each FDM in Theorems 2.1 to 2.3 satisfies the discrete maximum principle, and generates an M-matrix, when the mesh size
h is sufficiently small.

Proof. The expression (2.68) stems from (2.47), (2.50), and (2.65). By Ck,` |h=0 = ck,`,0 and (2.35), we see that

− h−2Lh := h−2
1∑

k=−1

1∑
`=−1

(−Ck,`)(uh)i+k, j+` = −Fi, j, (2.69)

generates an M-matrix, and the numerical solution computed by (2.69) satisfies the discrete maximum principle, if h is sufficiently
small.

Now, we use the fourth-order compact 9-point FDMs in Theorems 2.1 to 2.3, and the iteration method (2.3), to numerically
solve (1.1) in the following Algorithm 1. Recall that u denotes the exact solution of (1.1). Now, we define uh as the numerical
solution computed by the FDMs in Theorems 2.1 to 2.3 and the iteration method (2.3).

Algorithm 1. We use the fourth-order compact 9-point FDMs in Theorems 2.1 to 2.3 to solve (2.5) to obtain uh with the iteration
method (2.3) after 40 iterations. Then uh = uh.

In Algorithm 1, we consider u0 = 0 in (2.3) as the initial guess in the iteration method, and we observe that 40 iterations are
sufficient for convergence. For the time-dependent nonlinear convection-diffusion equation (1.2) in Section 3, we use un+1/2

0 = un

in (3.5) for the CN method, un+3
0 = un+2 in (3.10) for the BDF3 method, and un+4

0 = un+3 in (3.15) for the BDF4 method, so we only
need 20 iterations in Algorithms 2 to 4.

2.5. Approximations of the high-order partial derivatives of a(m,n), b(m,n), and ψ(m,n)

For the explicit expressions of {Ck,`}k,`=−1,0,1 and Fi, j in (2.47), (2.49), and (2.50) of Theorems 2.1 and 2.2, the high-order partial
derivatives {a(m,n), b(m,n), ψ(m,n) : m + n ≤ 2} are required. Furthermore, the symbolic computation in Maple also reveals that the
unique {Ck,`}k,`=−1,0,1 and Fi, j of the FDM in Theorem 2.3 need {a(m,n), b(m,n) : m + n ≤ 4} and {ψ(m,n) : m + n ≤ 5}. Since κ and f are
available in (1.1), the expressions of (2.1) and (2.6) imply that, we only need to approximate(

αu(u)
κ

)(m,n)

and
(
βu(u)
κ

)(m,n)

, with m + n ≤ 4. (2.70)

So we use the following FDMs to evaluate (2.70). For any smooth 1D function ρ(x) ∈ C5(R),
The first-order derivatives:

ρx(xi) = 1
h
[ 1

20ρ(xi−2) − 1
2ρ(xi−1) − 1

3ρ(xi) + ρ(xi+1) − 1
4ρ(xi+2) + 1

30ρ(xi+3)
]
+ O(h5),
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if 0 ≤ xi±2, xi+3 ≤ 1,

ρx(xi) = 1
h
[
− 1

30ρ(xi−3) + 1
4ρ(xi−2) − ρ(xi−1) + 1

3ρ(xi) + 1
2ρ(xi+1) − 1

20ρ(xi+2)
]
+ O(h5),

if 0 ≤ xi±2, xi−3 ≤ 1,

ρx(xi) =±1
h
[ 1

5ρ(xi±5) − 5
4ρ(xi±4) + 10

3 ρ(xi±3) − 5ρ(xi±2) + 5ρ(xi±1) − 137
60 ρ(xi)

]
+ O(h5),

if 0 ≤ xi±5 and xi ≤ 1,

ρx(xi) =±1
h
[
− 1

20ρ(xi±4) + 1
3ρ(xi±3) − ρ(xi±2) + 2ρ(xi±1) − 13

12ρ(xi) − 1
5ρ(xi∓1)

]
+ O(h5),

if 0 ≤ xi±4 and xi∓1 ≤ 1.

The second-order derivatives:

ρxx(xi) = 1
h2

[
− 1

12ρ(xi−2) + 4
3ρ(xi−1) − 5

2ρ(xi) + 4
3ρ(xi+1) − 1

12ρ(xi+2)
]
+ O(h4),

if 0 ≤ xi±2 ≤ 1,

ρxx(xi) = 1
h2

[
− 5

6ρ(xi±5) + 61
12ρ(xi±4) − 13ρ(xi±3) + 107

6 ρ(xi±2) − 77
6 ρ(xi±1) + 15

4 ρ(xi)
]
+ O(h4),

if 0 ≤ xi±5 and xi ≤ 1,

ρxx(xi) = 1
h2

[ 1
12ρ(xi±4) − 1

2ρ(xi±3) + 7
6ρ(xi±2) − 1

3ρ(xi±1) − 5
4ρ(xi) + 5

6ρ(xi∓1)
]
+ O(h4),

if 0 ≤ xi±4 and xi∓1 ≤ 1.

The third-order derivatives:

ρxxx(xi) = 1
h3

[
− 1

4ρ(xi−2) − 1
4ρ(xi−1) + 5

2ρ(xi) − 7
2ρ(xi+1) + 7

4ρ(xi+2) − 1
4ρ(xi+3)

]
+ O(h3),

if 0 ≤ xi±2, xi+3 ≤ 1,

ρxxx(xi) = 1
h3

[ 1
4ρ(xi−3) − 7

4ρ(xi−2) + 7
2ρ(xi−1) − 5

2ρ(xi) + 1
4ρ(xi+1) + 1

4ρ(xi+2)
]
+ O(h3),

if 0 ≤ xi±2, xi−3 ≤ 1,

ρxxx(xi) =±1
h3

[ 7
4ρ(xi±5) − 41

4 ρ(xi±4) + 49
2 ρ(xi±3) − 59

2 ρ(xi±2) + 71
4 ρ(xi±1) − 17

4 ρ(xi)
]
+ O(h3),

if 0 ≤ xi±5 and xi ≤ 1,

ρxxx(xi) =±1
h3

[ 1
4ρ(xi±4) − 7

4ρ(xi±3) + 11
2 ρ(xi±2) − 17

2 ρ(xi±1) + 25
4 ρ(xi) − 7

4ρ(xi∓1)
]
+ O(h3),

if 0 ≤ xi±4 and xi∓1 ≤ 1.

The fourth-order derivatives:

ρxxxx(xi) = 1
h4

[
ρ(xi−2) − 4ρ(xi−1) + 6ρ(xi) − 4ρ(xi+1) + ρ(xi+2)

]
+ O(h2),

if 0 ≤ xi±2 ≤ 1,

ρxxxx(xi) = 1
h4

[
− 2ρ(xi±5) + 11ρ(xi±4) − 24ρ(xi±3) + 26ρ(xi±2) − 14ρ(xi±1) + 3ρ(xi)

]
+ O(h2),

if 0 ≤ xi±5 and xi ≤ 1,

ρxxxx(xi) = 1
h4

[
− ρ(xi±4) + 6ρ(xi±3) − 14ρ(xi±2) + 16ρ(xi±1) − 9ρ(xi) + 2ρ(xi∓1)

]
+ O(h2),

if 0 ≤ xi±4 and xi∓1 ≤ 1.

The fifth-order derivatives:

ρxxxxx(xi) = 1
h5

[
− ρ(xi−2) + 5ρ(xi−1) − 10ρ(xi) + 10ρ(xi+1) − 5ρ(xi+2) + ρ(xi+3)

]
+ O(h),

if 0 ≤ xi±2, xi+3 ≤ 1,

ρxxxxx(xi) = 1
h5

[
− ρ(xi−3) + 5ρ(xi−2) − 10ρ(xi−1) + 10ρ(xi) − 5ρ(xi+1) + ρ(xi+2)

]
+ O(h),

if 0 ≤ xi±2, xi−3 ≤ 1,

ρxxxxx(xi) =±1
h5

[
ρ(xi±5) − 5ρ(xi±4) + 10ρ(xi±3) − 10ρ(xi±2) + 5ρ(xi±1) − ρ(xi)

]
+ O(h),

if 0 ≤ xi±5 and xi ≤ 1,

ρxxxxx(xi) =±1
h5

[
ρ(xi±4) − 5ρ(xi±3) + 10ρ(xi±2) − 10ρ(xi±1) + 5ρ(xi) − ρ(xi∓1)

]
+ O(h),

if 0 ≤ xi±4 and xi∓1 ≤ 1.
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Similarly, for any smooth 2D function ρ(x, y) ∈ C5(R2), we can evaluate ρx(xi, y j), ρxx(xi, y j), ρxxx(xi, y j), ρxxxx(xi, y j), ρxxxxx(xi, y j),
ρy(xi, y j), ρyy(xi, y j), ρyyy(xi, y j), ρyyyy(xi, y j), ρyyyyy(xi, y j). Then we can evaluate the high-order mixed derivatives as follows:

ρxy = (ρx)y, ρxxy = (ρxx)y, ρxyy = (ρx)yy, ρxxxy = (ρxxx)y, ρxxyy = (ρxx)yy,

ρxyyy = (ρx)yyy, ρxxxxy = (ρxxxx)y, ρxxxyy = (ρxxx)yy, ρxxyyy = (ρxx)yyy, ρxyyyy = (ρx)yyyy.

Note that the fifth-order partial derivatives are not required in this section, but they are necessary for the FDMs in Section 3.

3. Second- to fourth-order compact 9-point FDMs for the time-dependent nonlinear convection-diffusion equation

Similarly to Section 2, we rewrite the time-dependent nonlinear convection-diffusion equation (1.2) as the linear problem via a
fixed point method in Section 3.1, and the compact 9-point FDMs are constructed in Section 3.2 to solve the reformulated linear
problem.

3.1. Reformulation of the time-dependent nonlinear convection-diffusion equation
(1.2) leads to

ut − κ∆u − κxux − κyuy + αu(u)ux + βu(u)uy = f . (3.1)

Recall that temporal domain I = [0, 1], and u is the exact solution of (1.2) and (3.1). Here, we define that

un := u|t=tn , tn := nτ, n = 0, . . . ,N2, τ := 1/N2, N2 ∈ N. (3.2)

The second-order Crank-Nicolson method: (1.2) and (3.1) with the CN method in [2] imply
un+1/2 − un

τ/2
− κn+1/2∆un+1/2+[αu(un+1/2) − κn+1/2

x ]un+1/2
x + [βu(un+1/2) − κn+1/2

y ]un+1/2
y = f n+1/2,

un+1 = 2un+1/2 − un, with the initial n = 0, the given u0 ∈ Ω, un+1/2 ∈ ∂Ω.
(3.3)

The first identity in (3.3) yields

∆un+1/2 +
κn+1/2

x − αu(un+1/2)
κn+1/2 un+1/2

x +
κn+1/2

y − βu(un+1/2)
κn+1/2 un+1/2

y −
2un+1/2

τκn+1/2

=
−1
κn+1/2

[
f n+1/2 +

2
τ

un
]
, with the initial n = 0, the given u0 ∈ Ω, un+1/2 ∈ ∂Ω.

(3.4)

We denote the solution at t = (n + 1/2)τ in the k-iteration by un+1/2
k . Then we use the following iteration method to rewrite (3.3) as

the linear convection-diffusion equation:

∆un+1/2
k+1 +

κn+1/2
x − αu(un+1/2

k )
κn+1/2 (un+1/2

k+1 )x +
κn+1/2

y − βu(un+1/2
k )

κn+1/2 (un+1/2
k+1 )y −

2un+1/2
k+1

τκn+1/2

=
−1
κn+1/2

[
f n+1/2 +

2
τ

un
]
,

k := k + 1, the initial k = n = 0, the given u0 ∈ Ω, un+1/2
k+1 ∈ ∂Ω, un+1/2

0 = un in Ω,

un+1 = 2un+1/2 − un,

(3.5)

where un with n ≥ 1 is calculated at t = nτ by the same iteration method. Let

τ := rh, u := un+1/2
k+1 , a :=

κn+1/2
x − αu(un+1/2

k )
κn+1/2 , b :=

κn+1/2
y − βu(un+1/2

k )
κn+1/2 ,

c := −
2

rκn+1/2 , d :=
c
h
, ϕ := −

f n+1/2

κn+1/2 , φ := −
2un

rκn+1/2 , ψ := ϕ +
φ

h
,

(3.6)

where r is a positive constant. Then (1.2) and (3.5) indicate

∆u + aux + buy + du = ψ in Ω and u = g on ∂Ω. (3.7)

The third-order backward difference formula: (1.2) and (3.1) with the BDF3 method in [15, p.366] give

11un+3 − 18un+2 + 9un+1 − 2un

6τ
− κn+3∆un+3 + (αu(un+3) − κn+3

x )un+3
x

+ (βu(un+3) − κn+3
y )un+3

y = f n+3, with the given u0 ∈ Ω and un+3 ∈ ∂Ω.

(3.8)
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After a direct calculation, we rewrite

∆un+3 +
κn+3

x − αu(un+3)
κn+3 un+3

x +
κn+3

y − βu(un+3)

κn+3 un+3
y −

11un+3

6τκn+3

=
−1
κn+3

[
f n+3 +

3
τ

un+2 −
3
2τ

un+1 +
1
3τ

un
]
, with the given u0 ∈ Ω and un+3 ∈ ∂Ω.

(3.9)

Similarly to (3.5), the above nonlinear equation (3.9) is solved by the following linear convection-diffusion equation, via the iteration
method: 

∆un+3
k+1 +

κn+3
x − αu(un+3

k )
κn+3 (un+3

k+1)x +
κn+3

y − βu(un+3
k )

κn+3 (un+3
k+1)y −

11un+3
k+1

6τκn+3

=
−1
κn+3

[
f n+3 +

3
τ

un+2 −
3
2τ

un+1 +
1
3τ

un
]
,

k := k + 1, the initial k = n = 0, the given u0 ∈ Ω, un+3
k+1 ∈ ∂Ω, and un+3

0 = un+2 in Ω,

(3.10)

where un+3
k with n ≥ 0 is computed in the k-iteration at t = (n + 3)τ; un, un+1, and un+2 with n ≥ 3 are calculated at t = nτ, (n + 1)τ,

and (n + 2)τ by the same iteration method; u1 and u2 are computed by the CN method. Let

τ := rh, u := un+3
k+1, a :=

κn+3
x − αu(un+3

k )
κn+3 , b :=

κn+3
y − βu(un+3

k )

κn+3 , c := −
11

6rκn+3 ,

d :=
c
h
, ψ := ϕ +

φ

h
, ϕ := −

f n+3

κn+3 , φ :=
−1
κn+3

[
3
r

un+2 −
3
2r

un+1 +
1
3r

un
]
,

(3.11)

where r is a positive constant. Then

∆u + aux + buy + du = ψ in Ω and u = g on ∂Ω. (3.12)

The fourth-order backward difference formula: (1.2) and (3.1) with the BDF4 method in [15, p.366] generate

25un+4 − 48un+3 + 36un+2 − 16un+1 + 3un

12τ
− κn+4∆un+4 + (αu(un+4) − κn+4

x )un+4
x

+ (βu(un+4) − κn+4
y )un+4

y = f n+4, with the given u0 ∈ Ω and un+4 ∈ ∂Ω.

(3.13)

Then,

∆un+4 +
κn+4

x − αu(un+4)
κn+4 un+4

x +
κn+4

y − βu(un+4)

κn+4 un+4
y −

25un+4

12τκn+4

=
−1
κn+4

[
f n+4 +

4
τ

un+3 −
3
τ

un+2 +
4
3τ

un+1 −
1
4τ

un
]
, with given u0 ∈ Ω and un+4 ∈ ∂Ω.

(3.14)

Similarly to (3.10), we linearize (3.14) as
∆un+4

k+1 +
κn+4

x − αu(un+4
k )

κn+4 (un+4
k+1)x +

κn+4
y − βu(un+4

k )

κn+4 (un+4
k+1)y −

25un+4
k+1

12τκn+4

=
−1
κn+4

[
f n+4 +

4
τ

un+3 −
3
τ

un+2 +
4
3τ

un+1 −
1
4τ

un
]
,

k := k + 1, the initial k = n = 0, the given u0 ∈ Ω, un+4
k+1 ∈ ∂Ω, and un+4

0 = un+3 in Ω,

(3.15)

where u1 and u2 are computed by the CN method, and u3 is computed by the BDF3 method. Let

τ := rh, u := un+4
k+1, a :=

κn+4
x − αu(un+4

k )
κn+4 , b :=

κn+4
y − βu(un+4

k )

κn+4 , c := −
25

12rκn+4 ,

d :=
c
h
, ψ := ϕ +

φ

h
, ϕ := −

f n+4

κn+4 , φ := −
1
κn+4

[
4
r

un+3 −
3
r

un+2 +
4
3r

un+1 −
1
4r

un
]
,

(3.16)

where r is a positive constant. Then

∆u + aux + buy + du = ψ in Ω and u = g on ∂Ω. (3.17)

So, the CN, BDF3, and BDF4 methods with the iteration methods (3.5), (3.10), and (3.15) yield the same linear convection-diffusion
equation in (3.7), (3.12), and (3.17).

Next, we propose the fourth-order compact 9-point FDM for the linear convection-diffusion equation in the following Sec-
tion 3.2.
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3.2. Fourth-order compact 9-point FDM
Since the CN, BDF3, and BDF4 methods yield the same linear convection-diffusion equation (3.7), (3.12), and (3.17), in this

section we construct the fourth-order compact 9-point FDM for

∆u + aux + buy + du = ψ, (3.18)

where a, b, d, ψ are defined in (3.6), (3.11), and (3.16). Similarly to (2.10)–(2.17),

u(p,q) =
∑

(m,n)∈Λ1
p+q

ξp,q,m,nu(m,n) +
∑

(m,n)∈Λp+q−2

ηp,q,m,nψ
(m,n), (p, q) ∈ Λ2

M , (3.19)

where ξp,q,m,n and ηp,q,m,n are uniquely determined by the high-order partial derivatives of a, b, and d. Similarly to (2.18)–(2.34),

u(x + xi, y + y j) =
∑

(m,n)∈Λ1
M

u(m,n)GM,m,n(x, y) +
∑

(m,n)∈ΛM−2

ψ(m,n)HM,m,n(x, y) + O(hM+1), (3.20)

where x, y ∈ [−h, h], and

GM,m,n(x, y) :=
xmyn

m!n!
+

∑
(p,q)∈Λ2

M\Λ
2
m+n−1

ξp,q,m,n
xpyq

p!q!
, HM,m,n(x, y) :=

∑
(p,q)∈Λ2

M\Λ
2
m+n+1

ηp,q,m,n
xpyq

p!q!
, (3.21)

each ξp,q,m,n, ηp,q,m,n in (3.19) and (3.21) belongs to

S := span

 ∏
i1, j1,v1,w1,r1,s1∈N0

a(i1, j1)b(v1,w1)d(r1,s1), . . . ,
∏

ik , jk ,vk ,wk ,rk ,sk∈N0

a(ik , jk)b(vk ,wk)d(rk ,sk)

 , (3.22)

with k ∈ N, and the coefficients in R. Similarly to (2.35)–(2.37), we define the linear operator Lhu and the stencil Lhuh of the FDM
as follows:

h−2Lhu := h−2
1∑

k,`=−1

Ck,`u(kh + xi, `h + y j), h−2Lhuh := h−2
1∑

k,`=−1

Ck,`(uh)i+k, j+` = Fi, j, (3.23)

Ck,` :=
7∑

p=0

ck,`,php, ck,`,p ∈ S̃ , (3.24)

where

S̃ := span

 ∏
i1, j1,v1,w1,r1,s1∈N0

a(i1, j1)b(v1,w1)c(r1,s1), . . . ,
∏

ik , jk ,vk ,wk ,rk ,sk∈N0

a(ik , jk)b(vk ,wk)c(rk ,sk)

 , (3.25)

a, b, and c are defined in (3.6), (3.11), and (3.16). We restrict each ck,`,p ∈ S̃ in (3.24) such that the high-order partial derivatives
a(m,n), b(m,n), and c(m,n) do not appear in the denominator, ensuring that each ck,`,p is well defined. Similarly to (2.59),

Fi, j = the terms of
(
h−2

∑
(m,n)∈Λ5

ψ(m,n)
1∑

k,`=−1

Ck,`H7,m,n(kh, `h)
)

with degree ≤ 5 in h, (3.26)

where H7,m,n(x, y) is defined in (3.21), and ψ is defined in (3.6), (3.11), and (3.16). Similarly to (2.35)–(2.45) and (2.58)–(2.65), by
the symbolic calculation in Maple, there exist {ck,`,p}

p=0,7
k,`=−1,0,1 with ck,`,p ∈ S̃ satisfying

∑
(m,n)∈Λ1

7

u(m,n)
1∑

k,`=−1

Ck,`G7,m,n(kh, `h) − h6

90 (a(0,1) − b(1,0))u(1,3) − h7ζ = O(h8),

c0,0,0 = − 10
3 , Fi, j|h=0 = ψ, c−1,−1,0 = c−1,1,0 = c1,−1,0 = c1,1,0 = 1

6 ,

c−1,0,0 = c1,0,0 = c0,−1,0 = c0,1,0 = 2
3 ,

(3.27)

for any free variables in the following set:

{c−1,0,7} ∪ {c−1,1,p}p=6,7 ∪ {c0,−1,7} ∪ {c0,0,p}p=6,7

∪ {c0,1,p}p=5,6,7 ∪ {c1,−1,p}p=5,6,7 ∪ {c1,0,p}p=4,...,7 ∪ {c1,1,p}p=1,...,7,
(3.28)
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where

ζ := 1
37800 (10a(6bc − 21(a(0,1) − b(1,0)) − 8c(0,1)) − 210(a(0,1) − b(1,0) + c(1,0))b

− (49a(0,1) + 91b(1,0))c + 2520c1,1,1(a(0,1) − b(1,0)))u(1,3) − 1
7560 (ac + 14c(1,0))u(1,4)

+ 1
540 (bc − c(0,1))u(0,5).

(3.29)

Similarly to (2.66), Ck,` =
∑7

p=0 ck,`,php with k, ` = −1, 0, 1 satisfying (3.27) implies

h−2Lh(u − uh) = h4

90 (a(0,1) − b(1,0))u(1,3) + h5ζ + O(h6), (3.30)

and Lhuh approximates ∆u + aux + buy + du = ψ in (3.18) with the fourth-order of consistency at (xi, y j) in (2.24), where Lhu and
Lhuh are defined in (3.23), and Fi, j is defined in (3.26). In our numerical examples, we set all free variables in (3.28) to zero, so
Ck,` =

∑7
p=0 ck,`,php with k, ` = −1, 0, 1 can be uniquely determined by solving (3.27).

In summary, we have the fourth-order compact 9-point FDM with the reduced pollution effects of O(h4) and O(h5) in the
following theorem:

Theorem 3.1. Assume κ, u, α, β, f are all smooth in (1.2), Lhuh is defined in (3.23), the nine coefficients Ck,` =
∑7

p=0 ck,`,php with
k, ` = −1, 0, 1 are uniquely determined by solving (3.27) with variables being zero in (3.28), the right-hand side Fi, j is defined in
(3.26), and all the functions in Lhuh are evaluated at the grid point (xi, y j) in (2.24). Then h−2Lhuh approximates ∆u + aux + buy +

du = ψ in (3.18) with the fourth-order of consistency at (xi, y j), and the truncation error h4

90 (a(0,1) − b(1,0))u(1,3) + h5λ+O(h6), where
λ = ζ with c1,1,1 = 0 in (3.29), and a, b, c, d, ψ are defined in (3.6), (3.11), and (3.16).

Proof. The proof follows similar arguments as in Theorem 2.3.

Proposition 3.2. The nine coefficients Ck,` =
∑7

p=0 ck,`,php with k, ` = −1, 0, 1 of the FDM in Theorem 3.1 satisfy

c±1,±1,0 = c±1,∓1,0 = 1
6 , c±1,0,0 = c0,±1,0 = 2

3 , c0,0,0 = − 10
3 ,

−1∑
k=1

−1∑
`=1

ck,`,0 = 0. (3.31)

That is, the FDM in Theorem 3.1 satisfies the discrete maximum principle, and generates an M-matrix, when the mesh size h is
sufficiently small.

Proof. The proof follows similar arguments as in Proposition 2.4.

Combining the FDM in Theorem 3.1 with the iteration methods (3.5), (3.10), and (3.15), we provide the following Algorithm 2
with the CN method, Algorithm 3 with the BDF3 method, and Algorithm 4 with the BDF4 method to solve (1.2). Recall that u is
the exact solution of (1.2), and un = u|t=tn=nτ in (3.2). Now, we define that un

h is the numerical solution computed by our proposed
FDM and the iteration method at t = tn = nτ, where τ is defined in (3.2) and N2τ = 1.

Algorithm 2. (CN method) Step 1: Apply the first and second statements in the iteration method (3.5) and the fourth-order FDM
in Theorem 3.1 to solve (3.7) with (3.6) to compute uh after 20 iterations. Step 2: un+1/2

h = uh and un+1
h = 2un+1/2

h − un
h. Step 3:

Repeat steps 1-2 with n := n + 1 until n = N2 − 1.

Algorithm 3. (BDF3 method) Step 1: Apply the CN method to compute u1, u2. Step 2: Apply the iteration method (3.10) and the
fourth-order FDM in Theorem 3.1 to solve (3.12) with (3.11) to compute uh after 20 iterations. Step 3: un+3

h = uh and repeat the
step 2 with n := n + 1 until n = N2 − 3.

Algorithm 4. (BDF4 method) Step 1: Apply the CN method to compute u1, u2, and use BDF3 method to calculate u3. Step 2: Apply
the iteration method (3.15) and the fourth-order FDM in Theorem 3.1 to solve (3.17) with (3.16) to compute uh after 20 iterations.
Step 3: un+4

h = uh and repeat the step 2 with n := n + 1 until n = N2 − 4.

3.3. Approximations of the high-order partial derivatives of a(m,n), b(m,n), c(m,n), and ψ(m,n)

By the symbolic calculation of (3.27) of FDM in Theorem 3.1, we need a(m,n), b(m,n), c(m,n) with m + n ≤ 4 and ψ(m,n) with
m + n ≤ 5. As κ and f are available in (1.2), the expressions of (3.6), (3.11), and (3.16) imply that, we need to evaluate(

αu(u)
κ

)(m,n)

and
(
βu(u)
κ

)(m,n)

with m + n ≤ 4; and
(u
κ

)(m,n)
with m + n ≤ 5. (3.32)

We use the FDM in Section 2.5 to evaluate the high-order partial derivatives in (3.32).
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4. Numerical experiments

Recall that the spatial domain Ω = (0, 1)2, the temporal domain I = [0, 1], u = u(x, y) and u = u(x, y, t) are the exact solutions
of the model problems (1.1) and (1.2), respectively, uh is the numerical solution of (1.1) computed by Algorithm 1, and un

h is the
numerical solution of (1.2) at t = tn computed by Algorithms 2 to 4, where

(xi, y j) = (ih, jh), h = 1/N1, tn = nτ, τ = 1/N2 = rh, N1/N2 = r, N1,N2 ∈ N,

i, j = 0, . . . ,N1 and n = 0, . . . ,N2. In our numerical examples, we choose r = 1/2 for the CN method, and r = 1 for the BDF3 and
BDF4 methods.

To verify the accuracy and the convergence rates of Algorithms 1 to 4, we use the following l2 and l∞ norms of errors for the
model problems (1.1) and (1.2),

‖uh − u‖22 := h2
N1∑

i, j=0

(
(uh)i, j − u(xi, y j)

)2
, ‖uh − u‖∞ := max

0≤i, j≤N1

∣∣∣(uh)i, j − u(xi, y j)
∣∣∣ ,

for the steady nonlinear convection-diffusion equation (1.1);

‖uh − u‖22 := h2
N1∑

i, j=0

(
(uN2

h )i, j − u(xi, y j, 1)
)2
, ‖uh − u‖∞ := max

0≤i, j≤N1

∣∣∣(uN2
h )i, j − u(xi, y j, 1)

∣∣∣ ,
for the time-dependent nonlinear convection-diffusion equation (1.2);

where (uh)i, j and (uN2
h )i, j are values of uh and uN2

h at (xi, y j), respectively. In this section, we provide 2 examples for (1.1) and (1.2)
in Section 4.1 and Section 4.2, respectively.

4.1. Two examples of the steady nonlinear convection-diffusion equation
In the following Example 4.1, we choose the variable diffusion coefficient κ = κ(x, y) to examine the performance of Algorithm 1

with Theorems 2.2 and 2.3.

Example 4.1. The exact solution, the diffusion coefficient, and the nonlinear convection term in (1.1) are given by

u = sin(3x) cos(7y), κ = 2 + sin(5x − 2y), α = cos(u), β = sin(u),

f and g are obtained by plugging the above functions into (1.1). The numerical results are presented in Table 1 and Fig. 3. As
we reduce the pollution effects of O(h4) and O(h5) in Theorem 2.3, we observe that Theorem 2.3 produces the smaller errors than
Theorem 2.2 in Table 1. Furthermore, the convergence rates of Algorithm 1 with Theorem 2.3 are higher than 4 when h ≥ 1/25.

Table 1: The performance in Example 4.1 of the proposed Algorithm 1 with Theorems 2.2 and 2.3, where ’RPE’ denotes the ’reduced pollution effect’.

Algorithm 1 with Theorem 2.2 Algorithm 1 with Theorem 2.3

The 4th-order FDM without RPE The 4th-order FDM with RPE

h ‖uh − u‖2 order ‖uh − u‖∞ order ‖uh − u‖2 order ‖uh − u‖∞ order

1/23 1.2164E-03 3.0974E-03 1.1144E-04 3.7841E-04

1/24 7.2612E-05 4.07 2.0035E-04 3.95 2.2191E-06 5.65 5.9879E-06 5.98

1/25 4.5074E-06 4.01 1.2469E-05 4.01 1.1455E-07 4.28 2.9631E-07 4.34

1/26 2.8133E-07 4.00 7.7980E-07 4.00 7.1254E-09 4.01 1.8216E-08 4.02

1/27 1.7585E-08 4.00 4.8776E-08 4.00 4.4590E-10 4.00 1.1612E-09 3.97

1/28 1.0995E-09 4.00 3.0505E-09 4.00 2.7868E-11 4.00 7.3088E-11 3.99

In the following Example 4.2, we choose the constant κ to compare Algorithm 1 with the discontinuous Galerkin method
constructed in [24]. Since we do not apply the postprocessing procedure in Algorithm 1, we compare the numerical results from
[24] without the postprocessing procedure to ensure a fair comparison.

17



Figure 3: Example 4.1: The diffusion coefficient κ (first), the exact solution u (second), the error |uh − u| with the numerical solution uh computed by Algorithm 1
and Theorem 2.2 (third), and the error |uh − u| with the numerical solution uh computed by Algorithm 1 and Theorem 2.3 (fourth) on the closure of the spatial
domain [0, 1]2 with h = 2−8.

Example 4.2. The exact solution, the diffusion coefficient, and the nonlinear convection term in (1.1) are given by

u = xy tanh((1 − x)/κ) tanh((1 − y)/κ), κ = 1/10, α = u2/2, β = u2/2.

The numerical results are presented in Table 2 and Fig. 4. The error from Algorithm 1 with Theorem 2.3 is less than one-sixth of
that in [24] when h = 1/26 in Table 2. We do not have the data of [24] if h < 1/26, but Table 2 indicates that Algorithm 1 with
Theorem 2.3 achieves a stable convergence order of 4 if h < 1/26. So we can expect that the errors of [24] are approximately six
times larger than those of our proposed method when h < 1/26. Furthermore, Algorithm 1 generates a matrix with only 9 nonzero
bands, whereas [24] requires more than 9 nonzero bands to produce the results in Table 2.

Table 2: The performance in Example 4.2 of the proposed Algorithm 1 with Theorems 2.1 and 2.3, where ’RPE’ denotes the ’reduced pollution effect’. The ratio r
is equal to ‖uh − u‖2 of [24] divided by ‖uh − u‖2 of Algorithm 1 with Theorem 2.3.

Theorem 2.1 (the 4th-order FDM) Theorem 2.3 (the 4th-order FDM) [24] (the 4th-order DG)

Without RPE With RPE

col4 col6 r = col6/col4

h ‖uh − u‖2 order ‖uh − u‖2 order ‖uh − u‖2 order r

1/23 1.0157E-02 1.1651E-02 5.97E-04 0.05

1/24 3.9676E-04 4.68 6.6129E-05 7.46 4.14E-05 3.85 0.63

1/25 3.3975E-05 3.55 8.8686E-07 6.22 2.79E-06 3.89 3.15

1/26 2.0859E-06 4.03 2.8940E-08 4.94 1.77E-07 3.98 6.12

1/27 1.3078E-07 4.00 1.7415E-09 4.05

1/28 8.2163E-09 3.99 1.1497E-10 3.92

1/29 5.1521E-10 4.00 7.6643E-12 3.91

Next, we present 2 examples to verify the accuracy and the convergence rates of Algorithms 2 to 4 for the time-dependent
nonlinear convection-diffusion equation (1.2) in the following Section 4.2.

4.2. Two examples of the time-dependent nonlinear convection-diffusion equation
Recall that τ = rh in (3.6), (3.11), and (3.16). In the following Examples 4.3 and 4.4, we choose r = 1/2 in Algorithm 2 and

r = 1 in Algorithms 3 and 4.

Example 4.3. The exact solution, the diffusion coefficient, and the nonlinear convection term in (1.2) are given by

u = sin(3t) cos(2x − y), κ = 3 + cos(x + 3y + t), α = −u3/3, β = sin(u).

The numerical results are presented in Table 3 and Fig. 5. Table 3 confirms the third-order and fourth-order convergence rates of
the BDF3 method in Algorithm 3 and the BDF4 method in Algorithm 4, respectively, for the diffusion coefficient κ = κ(x, y, t).
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Figure 4: Example 4.2: The exact solution u (first and second), the error |uh − u| with the numerical solution uh computed by Algorithm 1 with Theorem 2.1 (third),
and the error |uh − u| with the numerical solution uh computed by Algorithm 1 with Theorem 2.3 (fourth) on the closure of the spatial domain [0, 1]2 with h = 2−9.

Table 3: The performance in Example 4.3 of the proposed Algorithms 3 and 4.

Algorithm 3 with τ = h (BDF3) Algorithm 4 with τ = h (BDF4)

Using the 4th-order FDM Using the 4th-order FDM

h τ ‖uh − u‖2 order ‖uh − u‖∞ order ‖uh − u‖2 order ‖uh − u‖∞ order

1/23 1/23 3.1777E-04 6.0055E-04 2.3851E-04 4.7264E-04

1/24 1/24 2.7632E-05 3.52 5.4008E-05 3.48 8.2563E-06 4.85 1.5931E-05 4.89

1/25 1/25 2.5943E-06 3.41 5.0863E-06 3.41 5.8285E-07 3.82 1.1277E-06 3.82

1/26 1/26 2.6848E-07 3.27 5.2770E-07 3.27 3.7437E-08 3.96 7.2471E-08 3.96

1/27 1/27 3.0023E-08 3.16 5.9143E-08 3.16 2.3653E-09 3.98 4.5802E-09 3.98

1/28 1/28 3.5303E-09 3.09 6.9619E-09 3.09 1.4867E-10 3.99 2.8794E-10 3.99

Figure 5: Example 4.3: The diffusion coefficient κ at t = 1 (first), the exact solution u at t = 1 (second), the error |uh − u| at t = 1 with the numerical solution uh
computed by Algorithm 3 (third), and the error |uh −u| at t = 1 with the numerical solution uh computed by Algorithm 4 (fourth) on the closure of the spatial domain
[0, 1]2 with h = 2−8.
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To demonstrate the efficiency and accuracy of our FDM, a comparison with the results in [24] is presented in the following
Example 4.4.

Example 4.4. The exact solution, the diffusion coefficient, and the nonlinear convection term in (1.2) are given by

u = (exp(t) − 1)xy tanh((1 − x)/κ) tanh((1 − y)/κ), κ = 1/10, α = u2/2, β = u2/2.

The numerical results are presented in Table 4 and Fig. 6. We note that the results in Table 4 from [24] are computed by the BDF3
method, while the proposed Algorithm 2 and Algorithm 3 use the CN and BDF3 methods, respectively. According to Table 4, even
though Algorithm 2 is second-order accurate in the temporal discretization, and uses a larger time step τ than [24], Algorithm 2
yields the smaller errors than those from the third-order BDF3 method in [24]. Furthermore, if we apply the same BDF3 method
for the time discretization, then the error from [24] is approximately 63 times greater than that of Algorithm 3 when h = 1/26, even
the time step of Algorithm 3 is approximately 3 times larger than that of [24]. Since we reduce the truncation errors of O(h4) and
O(h5) in Algorithms 2 and 3, the numerical orders of Algorithms 2 and 3 are higher than 2 and 3, respectively if h ≥ 1/27. When
h = 1/28, we obtain the desired convergence rates 2 and 3. Finally, Algorithms 2 and 3 form a nine-band matrix, but the number of
nonzero bands in [24] to generate the results in Table 4 is higher than 9.

Table 4: The performance in Example 4.4 of the proposed Algorithms 2 and 3. The ratios r2 and r3 are equal to ‖uh − u‖2 of [24] divided by ‖uh − u‖2 of Algorithm 2
and Algorithm 3, respectively.

Algorithm 2 with τ = h/2 (CN) Algorithm 3 with τ = h (BDF3) [24] with τ = 1/200 (BDF3)

col3 col6 col9 col9/col3 col9/col6

h τ ‖uh − u‖2 order τ ‖uh − u‖2 order τ ‖uh − u‖2 order r2 r3

1/23 1/16 3.3269E-03 1/8 1.8605E-03 1/200 5.09E-03 1.53 2.74

1/24 1/32 7.1559E-04 2.22 1/16 3.9588E-04 2.23 1/200 7.86E-04 2.69 1.10 1.99

1/25 1/64 3.3296E-05 4.43 1/32 8.7041E-06 5.51 1/200 1.01E-04 2.97 3.03 11.6

1/26 1/128 4.6570E-06 2.84 1/64 2.0001E-07 5.44 1/200 1.26E-05 2.99 2.71 63.0

1/27 1/256 1.0770E-06 2.11 1/128 1.0019E-08 4.32

1/28 1/512 2.6870E-07 2.00 1/256 1.3557E-09 2.89

Figure 6: Example 4.4: The exact solution u (first and second), the error |uh − u| with the numerical solution uh computed by Algorithm 2 (third), and the error
|uh − u| with the numerical solution uh computed by Algorithm 3 (fourth) on the closure of the spatial domain [0, 1]2 with h = 2−8.

5. Contribution

In this paper, we consider the steady and time-dependent nonlinear convection-diffusion equations in a square domain with the
Dirichlet boundary condition. The main contributions of this paper are as follows:
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• We present the fourth-order compact 9-point FDM for the steady nonlinear equation, and derive the second-order to fourth-
order compact 9-point FDMs for the time-dependent nonlinear equation. To increase the accuracy, we modify FDMs to
reduce the pollution effects. Each proposed FDM preserves the discrete maximum principle and forms an M-matrix, when h
is sufficiently small.

• We compare our method with the discontinuous Galerkin (DG) method in [24], and the numerical results demonstrate that
our proposed FDM generates the smaller errors. Precisely, when we apply the second-order CN method, our FDM scheme
produces the smaller errors than those from the third-order BDF3 and the DG methods in [24]. Particularly, if the same BDF3
method is used, then we achieve the error that is 1.6% of that in [24].

• Our proposed method is accurate, robust, and stable for the variable and time-dependent diffusion coefficient κ(x, y, t), and
the challenging nonlinear term ∇ · F(u) (not limited to the Burgers equation). The examples verify the accuracy and the
theoretical convergence rates in the l2 and l∞ norms.

• The matrix of the corresponding linear system constructed by our FDM only contains 9 nonzero bands. Due to the structure
of the compact 9-point FDM, no special treatment is required for the grid points near the boundary. In comparison with the
FEM, FVM, and DG methods, our high-order FDM avoids the numerical integration, resulting in the reduced computational
cost. This advantage becomes particularly significant for the highly oscillatory κ, α, β, f .

The proposed method can be naturally extended to a 3D spatial domain and the more general nonlinear convection-diffusion-
reaction equation: ut − ∇ · (κ∇u) + ∇ · F(u) + r(u) = f , where κ = κ(x, y, t, u). We also plan to extend our method to solve the more
complicated problems of the two-phase flow in porous media in [17] and the incompressible Boussinesq equation in [21, 26].
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[8] V. Dolejšı́, M. Feistauer, and V. Sobotı́ková, Analysis of the discontinuous Galerkin method for nonlinear convection-diffusion problems. Comput. Methods

Appl. Mech. Engrg. 194 (2005), 2709-2733.
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