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Abstract. The 1877 assumption/conjecture of Boussinesq is that turbulent fluctuations have a
dissipative effect on the mean flow. The eddy viscosity hypothesis is that this dissipative effect can
be modelled by a turbulent viscosity term. Many computational and experimental data sets have
shown that the eddy viscosity hypothesis is not generally correct. The inverse cascade of energy to
larger scales in 2d flows is thought to imply that both are false for 2d flows. This article gives a proof
that for strong solutions in 2d and 3d the Boussinesq assumption does holds in a time averaged sense.
Since this proof contradicts commonly held interpretations of the Batchelor-Leith-Kraichnen theory
of 2d turbulence, this (extended) report includes a brief discussion of BLK theory in the light of the
theorem.
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1. Introduction. The Boussinesq assumption, developing ideas of Saint-Venant
[17], is often expressed as "turbulent fluctuations are dissipative on the mean flow".
In this report we give a proof of this 1877 conjecture in both 2d and 3d for ensemble
averages. (The formal steps of the proof also hold for Reynolds / long time averages
with the issue of existence of the limits as T → ∞.) The Boussinesq assumption
/ eddy viscosity hypothesis has been viewed as an engineering approximation that,
while false, was good enough when enough free parameters are data-fit to a specific
flow. That the Boussinesq assumption holds in 2d is surprising since it contradicts
the common interpretation of the Batchelor-Leith-Kraichnan (BLK) phenomenology
of 2d turbulence, see Section 4.

The eddy viscosity hypothesis is that this dissipativity can be modelled by a
viscosity term with particular flow features captured by a turbulent viscosity coeffi-
cient. These assumptions are the foundation most turbulence models used in practical
computations. Aside from simple eddy viscosity, turbulence models increasingly use
a variety of mechanisms for dissipativity (tensor diffusion, hyper viscosity, variational
multi-scale diffusion, time relaxation, terms analogous to ones arising in viscoelastic
flows, e.g., [10], [9], [16], [8], [1], [19][14], [15]). Thus, it is worthwhile to consider the
Boussinesq assumption (proven herein) separately from the eddy viscosity hypothesis.

Boussinesq [2] justified dissipativity (and a mixing length eddy viscosity model)
by an analogy with the kinetic theory of gasses where the micro-scale of turbulence is
the mixing length. If there is a scale separation, mathematical support exists for both,
well summarized in Chapters 11 and 12 in [14], see also [4]. Boussinesq’s assumption of
scale separation has been criticized since turbulent flows contain a near continuum of
scales, e.g., [12], [13], [18]. Validity of the eddy viscosity hypothesis has been checked
against experimental data and numerically generated flow data in various places and
also found not to hold generally, e.g., [13], [18]. Furthermore, in 2d turbulence the
conventional phenomenology is that (in the absence of boundaries) energy cascades
from small scales to larger scales. For 2d turbulent flows negative viscosity has been
even suggested, e.g., [20]. We quote [18] (about the eddy viscosity hypothesis):

" ... The results using numerical ... or experimental data are very

consistent in pointing the non-validity of the Boussinesq hypothe-

sis..."
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Given this work, it is perhaps surprising that we give here a proof of the Boussi-
nesq assumption in both 2d and 3d.

1.1. Preliminaries. Let Ω denote a 2d or 3d flow domain, ν the kinematic
viscosity, f(x) the body force, uj(x, t), (j = 1, · · ·, J), a collection of velocities. Let
the ensemble of initial conditions determining the ensemble of velocities by

uj(x, 0) = u
0
j(x), j = 1, · · ·, J, in Ω. (1.1)

We assume1 f ∈ L2(Ω) and let || · || denote the usual L2 norm. The velocities
and pressures uj , pj satisfy the Navier-Stokes equations under no slip (or periodic)
boundary conditions uj = 0 on ∂Ω and

uj,t + uj · ∇uj − ν�uj +∇pj = f(x), (1.2)

∇ · uj = 0 in Ω

uj = 0 on ∂Ω .

D��������� 1.1 (Means and Fluctuations). Ensemble averages 〈vj〉 and associ-
ated fluctuations v′j are

〈vj〉 :=
1

J

J∑

j=1

vj and v′j = vj − 〈v〉 .

Since 〈vj〉 is independent of j we shall often write 〈v〉. Ensemble averaging satisfies
well known properties, [3], [14],

〈〈v〉〉 = 〈v〉〈
v′j
〉
= 0

〈〈w〉 ⊗ vj〉 = 〈w〉 ⊗ 〈v〉 〈〈w〉 · vj〉 = 〈w〉 · 〈v〉〈
〈w〉 ⊗ v′j

〉
= 〈w〉 ⊗

〈
v′j
〉
= 0

〈
〈w〉 · v′j

〉
= 〈w〉 ·

〈
v′j
〉
= 0

∂
∂x 〈v〉 =

〈
∂
∂xv

〉
∂
∂t 〈v〉 =

〈
∂
∂tv
〉

The effect of the fluctuations on the mean flow are connected to the Reynolds
stresses.

D��������� 1.2 (Reynolds stresses). The Reynolds stresses are

R(u, u) := 〈uj〉 ⊗ 〈uj〉 − 〈uj ⊗ uj〉 .

Using the above properties of averaging, it is not hard to show (by using the above
properties of averaging, expanding uj = 〈uj〉+ u

′

j and cancelling terms) that

R(u, u) = −
〈
u′j ⊗ u

′

j

〉
.

This does not hold for averaging by a convolution (local spacial or local time filter)
commonly used in large eddy simulation. One important quantity that the proof
identifies is the Variance of the velocity and velocity gradient.

1 The result also holds if f = f(x, t) ∈ L∞(0,∞;L2(Ω)).
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D��������� 1.3 (Variance). The Variance of u and ∇u are respectively

V ar(u) : =

〈∫

Ω

|uj |
2dx

〉
−

∫

Ω

| 〈uj〉 |
2dx

V ar(∇u) : =

〈∫

Ω

|∇uj |
2dx

〉
−

∫

Ω

|∇ 〈u〉 |2dx

The variance satisfies

V ar(u) ≥ 0 and V ar(∇u) ≥ 0.

Further, using the fact that the L2 norm comes from an inner product, expanding
uj = 〈uj〉+ u

′

j , calculating

V ar(u) =

〈∫

Ω

(〈uj〉+ u
′

j) · (〈uj〉+ u
′

j)dx

〉
−

∫

Ω

〈uj〉 · 〈uj〉 dx

and cancelling terms we easily find the standard result that the variance measures
fluctuations

V ar(u) =

〈∫

Ω

|u′j |
2dx

〉
and V ar(∇u) =

〈∫

Ω

|∇u′j |
2dx

〉
.

1.2. Mathematical Formulation. Ensemble averaging the NSE gives

〈u〉t + 〈u〉 · ∇ 〈u〉 − ν�〈u〉 −∇ ·R(u, u) +∇〈p〉 = f(x) and ∇ · 〈u〉 = 0 in Ω.

Taking the dot product with 〈u〉, integrating over the flow domain Ω and integrating
by parts gives the energy equation for the mean flow

d

dt

1

2

∫

Ω

| 〈u〉 |2dx+

∫

Ω

ν|∇ 〈u〉 |2dx+

∫

Ω

R(u, u) : ∇〈u〉 dx =

∫

Ω

f(x) · 〈u〉 dx. (1.3)

The first term, d
dt
1

2

∫
| 〈u〉 |2dx , is the rate of change of kinetic energy of the mean flow.

The second,
∫
ν|∇ 〈u〉 |2dx, is the rate of energy dissipation (since the term is non-

negative) of the mean flow due to molecular viscosity and the last term,
∫
f(x)·〈u〉 dx,

is the rate of energy input:

d

dt

1

2

∫
| 〈u〉 |2dx : rate of change of kinetic energy of the mean flow,
∫
ν|∇ 〈u〉 |2dx : rate of energy dissipation by viscosity,

∫
f(x) · 〈u〉 dx : rate of energy input,

∫

Ω

R(u, u) : ∇〈u〉 dx : effect of fluctuations upon the mean flow’s energy.

The third term,
∫
R(u, u) : ∇〈u〉 dx, is the effect of fluctuations upon the mean

flow. LIM denotes a Banach or generalized limit and will be used for long time
averages, e.g., [7], [6]. We prove the conjecture that this term dissipates energy in the
mean flow in a time averaged sense

LIMT→∞

1

T

∫ T

0

∫

Ω

R(u, u) : ∇〈u〉 dxdt ≥ 0.
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In particular, this implies

lim
T→∞

inf
1

T

∫ T

0

∫

Ω

R(u, u) : ∇〈u〉 dxdt ≥ 0.

Key Assumptions. The two key assumptions are:
A1. The ensemble is generated by different initial data and not different body

forces or physical parameters.

A2. The solutions of the NSE are strong solutions or sufficiently regular that the
energy equality holds.

For A2, we note that the gap between the energy equality and the energy inequal-
ity is one of the (many) mysteries of the Navier Stokes equations.

T������ 1.4. Under assumptions A1, A2

LIMT→∞
1

T

∫ T

0

∫

Ω

R(u, u) : ∇〈u〉 dxdt =

= LIMT→∞
1

T

∫ T

0

∫

Ω

〈
ν|∇u′j |

2
〉
dxdt ≥ 0.

There is an obvious extension to inclusion of a random variable in the initial
condition. The result could be phrased (as noted above) as the limit infimum being
non-negative. This proves that in both 2d and 3d on bounded domains the time av-
eraged effects of the Reynolds stresses is to dissipate energy. In other words,
turbulent fluctuations are dissipative in the mean on the mean flow. At any instant
in time or at any specific point in space, the effect of the turbulent fluctuations may
be positive or negative. The theorem does not address the correct parametrization of
that dissipation. As noted above, many dissipative mechanisms have been studied to
parameterize their effects.

2. Consequences of the proof. Variance Evolution. The proof is very
short and will be in the next section. It has interesting consequences. In particular, it
shows that the variance obeys an important evolution equation

Variance Evolution :

1

2
V ar(u(T )) + ν

∫ T

0

V ar(∇u(t))dt =
1

2
V ar(u(0)) +

∫ T

0

∫

Ω

R(u, u) : ∇〈u〉 dxdt.

In its most compact form, the proof consists of establishing this relation, dividing
by T then taking the limit as T → ∞ (i.e.., time averaging this relation). The one
time-step version of this equation is

1

2
V ar(u(tn+1))−

1

2
V ar(u(tn)) + ν

∫ tn+1

tn
V ar(∇u(t))dt =

=

∫ tn+1

tn

∫

Ω

R(u, u) : ∇〈u〉 dxdt.

It is possibly important to notice that the LHS is computable from information
available at reach time-step within a calculation. Its magnitude can be used to scale
the closure model used for the Reynolds stresses (on the RHS) and its sign to indicate
whether there is forward scatter or backscatter at that instant/time-step).
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Reynolds / long time averages. Following the formal steps of the proof,
when the averaging operator is the classical Reynolds averaging, given by

〈v〉 (x) := lim
T→∞

1

T

∫ T

0

v(x, t)dt,

the same result holds. This result is formal in that it assumes that at each step the
long time limits are well defined.

Turbulence intensities. Recall that the turbulence intensity is defined by

I(u(t)) :=

〈
||u′j(t)||

2
〉

|| 〈u〉 ||2

The proof suggests that I(∇u) is a better measure of turbulence intensity than I(u).

3. The proof. We calculate the energy equality for
〈
1

2
||uj ||

2
〉

and for 1

2
|| 〈uj〉 ||

2.
By subtracting, we obtain an estimate for the variance of ∇uj which will then be time
averaged.

Take the dot product of the NSE with uj and integrate over Ω then ensemble
average the result and average in time. Standard manipulations yield

1

T

{〈
1

2
||uj(T )||

2

〉
−

〈
1

2
||u0j ||

2

〉}
+
1

T

∫ T

0

〈
ν||∇uj(t)||

2
〉
dt = (3.1)

=
1

T

∫ T

0

∫

Ω

f(x) · 〈u〉 dxdt.

Next, integrate (1.3) over [0, T ] and divide by T . This gives

1

T

{
1

2
|| 〈u〉 (T )||2 −

1

2
||
〈
u0j
〉
||2
}
+
1

T

∫ T

0

ν||∇ 〈u〉 (t)||2dt+ (3.2)

+
1

T

∫ T

0

∫

Ω

R(u, u) : ∇〈u〉 dxdt =
1

T

∫ T

0

∫

Ω

f(x) · 〈u〉 dxdt.

Consider the terms in the above. Since || 〈u〉 || ≤ 〈||uj ||〉 ≤ C the first term (in braces)
→ 0 as T → ∞. For the same reason the second term is uniformly bounded in T as
is the last term (on the RHS). Thus the third, Reynolds stress, term is also uniformly
bounded in T . Thus, generalized limits of this term exist as T → ∞. Subtracting
(3.1) - (3.2) gives

1

T

{〈
1

2
||uj(T )||

2

〉
−

〈
1

2
||u0j ||

2

〉
−
1

2

∫

Ω

| 〈u〉 (T )|2dx+
1

2

∫

Ω

| 〈u〉 (0)|2dx

}

+
ν

T

∫ T

0

(〈
||∇uj(t)||

2
〉
− ||∇ 〈u〉 (t)||2

)
dt =

=
1

T

∫ T

0

∫

Ω

R(u, u) : ∇〈u〉 dxdt.

As T →∞ and the first term (in braces) → 0. Thus, we have

LIMT→∞
ν

T

∫ T

0

(〈
||∇uj(t)||

2
〉
− ||∇ 〈u〉 (t)||2

)
dt =

= LIMT→∞
1

T

∫ T

0

∫

Ω

R(u, u) : ∇〈u〉 dxdt.
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The LHS integrand is the variance of ∇uj so that
〈
||∇uj(t)||

2
〉
− ||∇ 〈u〉 (t)||2 =〈

||∇u′j(t)||
2
〉
. Thus, as claimed,

LIMT→∞
1

T

∫ T

0

∫

Ω

R(u, u) : ∇〈u〉 dxdt =

= LIMT→∞
ν

T

∫ T

0

(〈
||∇uj(t)||

2
〉
− ||∇ 〈u〉 (t)||2

)
dt =

= LIMT→∞

ν

T

∫ T

0

〈
||∇u′j(t)||

2
〉
dt ≥ 0.

4. A few consequences. That fluctuations are dissipative in the time averaged
mean on the mean flow has several consequences. First, it suggests that care must be
used in applying the conventional phenomenology of 2d turbulence (which assumes
an unbounded domain and predicts a cascade of energy to larger scales) to flow in
bounded domains. That dissipativity holds in a time averaged sense means that there
is no contradiction with instants where backscatter occurs or with the observation in
p.48 of [8] for 2d turbulence that "... eddy viscosity is frequently negative ...". The
theorem also does not give insight into which scales the dissipation should damp or
the form the dissipation should take.

Backscatter. Backscatter describes situations when fluctuations effects on the
mean flow increases the energy in the mean flow. The book of Starr [20] collects
examples of many flows where backscatter occurs at certain instants and places. The
theorem indicates that backscatter is not the averaged behavior in 3d or even 2d.
Thus, it makes the study of backscatter more interesting and important.

The Batchelor-Leith-Kraichnan Phenomenology of 2d turbulence. The
theorem contradicts the conventional interpretation of the BLK phenomenology which
predicts a cascade of energy to larger scales in 2d. This paragraph presents three
speculations on why there is no contradiction with BLK phenomenology but rather
with the conventional application of it to the 2d NSE in bounded domains. For
background, in 3d the Kolmogorov phenomenology has been a great success (in spite
of the difficulties associated with the fundamental problem of the 3d NSE). Whatever
3d data is analyzed a k−5/3 energy spectrum emerges. In 2d the picture has been
less clear. In numerics, it is well known that for under-resolved computations in 2d
(and even 1d linear convection diffusion equations), if a clean numerical method is
used on an under-resolved mesh, approximations result with artifacts at the smallest
resolved scales. These disappear when extra dissipative mechanisms, such as low or
even high order upwinding, hyperviscosity and drag terms modelling bottom friction,
are included. When the introduced numerical dissipation is greater than that of
the effects of the Reynolds stresses, data fitting the resulting flows to determine an
effective turbulent viscosity obviously will suggest backscatter. This could be wrongly
interpreted as a physical result rather than an indication that numerical anti-diffusion
is needed. The second concerns data from soap film experiments2 . Data from them
clearly indicates that the flow of soap films is not governed by the 2d NSE. There
is significant (6% − 10%) variation of film thickness and phenomena in soap films,
such as hysteresis in vortex shedding, occur that are not contained in the 2d NSE.

2 The author has learned a lot about these from his collegue Professor Walter Goldburg from the
Physics departmet. He is grateful for many conversations. Naturally, this paragraphh expresses the
author’s wild speculations, not those of Professor Goldburg.
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Drag occurs with the air on both sides of the film (a 3d effect that must be modelled
in a 2d simulation). Thus, there are several reasons why soap film data cannot be
directly compared with the result of the theorem. Finally, the 2d BLK phenomenology
addresses 2d flow in an infinite domain. The question naturally arises: What happens,
in a finite domain, when the cascade to larger scales reaches the domain size? The
convention expectation is that the cascade to larger scales continues and there is an
accumulation of energy at the largest scales. (This picture is reinforced by the self—
organization hypothesis which is addressed next.) The theorem does not apply to the
BLK setting but does prove decisively that this interpretation for bounded domains
is wrong.

The self-organization hypothesis. One striking example of an apparent con-
tradiction with physical effects is the self organization hypothesis of 2d, periodic,
unforced/decaying turbulence. For 2d periodic decaying turbulence it has been ob-
served, explained and proven by van Groesen [25] (see also [21], [22], [23], [24] for
important related work) that the flow evolves to the largest Stokes vortex allowed by
the size of the domain. (A numerical test of Jiang [26] suggests it holds under no
slip boundary conditions as well.) This effect is not connected to an energy cascade
to larger scales, [25], [21], [22], [23], [24]. Self-organization is a diffusive process. The
emergence of the largest Stokes vortex is because 2d flow has two integral invariants
that decay at different rates in the unforced case. Energy decays slowly while enstro-
phy decays more rapidly. Thus, energy in the resolved scales does not increase due
to either backscatter or an inverse cascade.

Calibration of Closure Models. The second consequence is that the theorem
does specify exactly how much turbulent dissipation a model should introduce. If
the time averaged amount is applied at each instant (an assumption of statistical
equilibrium), the rate of energy dissipation done by the modelling terms that replace
the Reynolds stress terms should be exactly

ν
〈
||∇u′j(t)||

2
〉
.

For example, suppose a turbulent viscosity term with constant νT replaces the
Reynolds stresses

R(u, u)⇐−∇ · (νT∇〈u〉) (+ terms incorporated into the pressure)

The dissipation added to the resulting model would be (for constant νT )
∫

Ω

R(u, u) : ∇〈u〉 dx⇐ νT ||∇ 〈u〉 ||
2.

Recall that the turbulence intensity is defined by

I(u(t)) :=

〈
||u′j(t)||

2
〉

|| 〈u〉 ||2

We calculate, under these simplifications, that the correct turbulent viscosity coeffi-
cient must satisfy

νT ||∇ 〈u〉 ||
2 = ν

〈
||∇u′j(t)||

2
〉

which implies

νT = ν

〈
||∇u′j(t)||

2
〉

||∇ 〈u〉 ||2
= νI(∇u).

This calculation suggests that I(∇u) is a better measure of turbulence intensity than
I(u). A similar calculation can be used to scale other model’s parameters.

7



REFERENCES

[1] L.C. B�������, T. I������ ��� W. L�����, Mathematics of Large Eddy Simulation of Tur-
bulent Flows, Springer, Berlin, 2006.

[2] J. B��������!, Essai sur la théorie des eaux courantes, Mémoires présentés par divers savants
à l’Académie des Sciences 23 (1877): 1-680

[3] T. C�����-R�$���� ��� R. L�%����%�&�, Mathematical and numerical foundations of tur-
bulence models and applications, Springer, New-York, 2014.

[4] T. C���'�-R�$����, D. F�����, F. O���*'�, Homogenization of incompressible flows with
helical microstructures, Adv. in Math. Sciences and Appl., 1, (1992) 251—300.

[5] S. C������, Some current problems in turbulent shear flows, in: Proc. 1st Naval Hydro-Symp,
Natn. Acad. Sci./Natn. Res. Counc., Pub. 515, 373 - 400 (1957)

[6] C. D�����* ��� C. F����, Energy dissipation in body-forced turbulence, J. Fluid Mech., 467
(2002), 289-306.

[7] C. D�����* ��� J.D. G�$$��, Applied Analysis of the Navier-Stokes Equations, Cambridge
Univ. Press, Cambridge, 1995.

[8] U. F�����, Turbulence, Cambridge Univ. Press, Cambridge, 1995.
[9] T. H�*���, L. M�00�� ��� K. J�����, Large Eddy Simulation and the Variational Multiscale

Method, Computing and Visualization in Science, 3 (1/2)(2000) 47-59.
[10] V. J���, Large Eddy Simulation of Turbulent Incompressible Flows. Analytical and Numerical

Results for a Class of LES Models, Lecture Notes in CSE vol. 34, Springer-Verlag, Berlin,
2004

[11] W. L����� ��� R. L�%����%�&�, Analysis of an eddy viscosity model for large eddy simula-
tion of turbulent flows, J. Math. Fluid Mechanics, 2 (2002), 374-399.

[12] T. S. L���, E. A. N�6�&�6, Parametrization of subgrid-scale stress by the velocity gradient
tensor. Annual Research Briefs, CTR, 27 - 43 (1992)

[13] H. F������� ��� U. C�. D������, Examination of the eddy viscosity concept regarding its
physical justification, p. 255-262 in: Notes on Numerical Fluid Mechanics, vol. 77, 2002.

[14] B. M�������� ��� O. P��������, Analysis of the K-Epsilon Turbulence Model, Masson,
Paris, 1994.

[15] S. P�8�, Turbulent Flows, Cambridge Univ. Press, Cambridge, 2000.
[16] R.S. R�6���, The relation between the flow of non-Newtonian fluids and turbulent Newtonian

fluids, Quarterly of Appl. Math, 15(1957), 1941-1944.
[17] A.J.C. S����-V����� (B���9), Note à joindre au Mémoire sur la dynamique des fluides,

CRAS 17(1843), 1240-1243.
[18] F.G. S������, About Boussinesq’s turbulent viscosity hypothesis: historical remarks and a

direct evaluation of its validity, Comptes Rendus Mécanique 335 (2007), 617-627.
[19] P. S�*���, Large eddy simulation for Incompressible flows, Springer, Berlin, 2001.
[20] V.P. S����, Physics of Negative Viscosity Phenomena, McGraw Hill, NY, 1968.
[21] C. F���� ��� J.C. S���, Asymptotic behavior as t → ∞ of solutions of Navier-Stokes equa-

tions and nonlinear spectral manifolds, Indiana Univ. Math. J. 33(1984) 459-477.
[22] M. G���, R. B��0� ��� G. P�����, Turbulence and predictability in Geophysical Fluid Dynamics

and Climate Dynamics, North Holland, Amsterdam, 1985.
[23] A. H���*�%�, Self-organization processes in continuous media, Adv. Physics 34(1985) 1-42.
[24] A. M�:�� ��� X. W��*, Nonlinear dynamics and statistical theories for basic geophysical

flows, Cambridge, 2006.
[25] E. 6�� G������, Time-Asymptotics and the self organization hypothesis for the 2d Navier-

Stokes equations, Physica 48A(1998) 312-320.
[26] N. J���*, A higher order ensemble simulation algorithm for fluid flows, technical report, Univ.

of Pittsburgh, 2014.

8


