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Abstract. This report presents an efficient, higher order method for fast

calculation of an ensemble of solutions of the Navier-Stokes equations (NSE).
We give a complete stability and convergence analysis of the method. For

high Reynolds number flows, we propose and analyze an eddy viscosity model
with a recent reparametrization of the mixing length. This turbulence model

depends on a new definition of the ensemble mean, presented here for the

first time, compatible with the higher order method. We show the turbulence
model has superior stability, also demonstrated in numerical tests. We also

give tests showing the potential of the new method for exploring flow problems

to compute turbulence intensities, effective Lyapunov exponents, windows of
predictability, and to verify the selective decay principle.

1. Introduction

Ensemble calculation is essential in uncertainty quantification, numerical weather
prediction, sensitivity analysis, predicting probability distributions for quantities
of interest and many other applications in Computational Fluid Dynamics (CFD),
see for instance, [7], [14], [23], [25], [21], [26], [30]. Despite the fact that a lot
of effort has been made to make reliable predictions with only a finite/small size
ensemble, such as the bred vectors algorithm, [30], little progress has been made
in developing efficient algorithms to compute the flow ensemble. A recent, first
order accurate, ensemble algorithm was proposed in [19]. The algorithm results
in J linear systems with the same coefficient matrix instead of J linear systems
with J different coefficient matrices at each time step, which allows the use of
block iterative methods, e.g., [29], [11], [12], [10], to reduce the computing time and
required memory substantially. While efficient, the method of [19] is only first order
accurate. In applications such as the climate and ocean forecasts, which involve
both turbulent flows and long time integration, higher order methods incorporating
turbulence models are indispensable.

In this paper, we extend the method in [19] to an efficient, higher order, en-
semble time discretization and extend an ensemble eddy viscosity model of [20] to
the higher order method. The new higher order method preserves the good algo-
rithmic property of the method of [19], while being second order convergent. This
advantage makes it a promising tool to increase ensemble size and improve data
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quality, complementing the current ensemble techniques. The time stepping method
we used here is a combination of a second order in time Backward-differentiation
(BDF) and a special explicit Adams-Bashforth (AB) treatment of the advection
term. The base ensemble algorithm naturally induces a new definition of the en-
semble mean, compatible to the higher order time discretization, see Section 1.1
below.

We give comprehensive stability analysis and error analysis of the higher order
method in Section 3, 4, respectively. This method, without any parametrizations
of turbulence, requires a timestep restriction, (3.2) below, for stability. This condi-
tion degrades as the Reynolds number increases. For high Reynolds number flows,
we analyze an ensemble eddy viscosity turbulence model based on the higher or-
der ensemble method. Computing ensembles allows direct parameterization of the
turbulence characteristic velocity |u′| and the mixing length (recently redefined in
[20]) |u′|∆t. The stability condition derived from the eddy viscosity model, (4.2)
below, is far less restrictive than (3.2) and in our tests large/moderate timesteps
are enough to give good stability results. In several important cases it implies
unconditional stability.

Three numerical tests are presented in Section 5. Convergence of each ensemble
member is verified and the convergence rate is calculated. The second numeri-
cal experiment tests the timestep conditions for stability and gives some insight
into the usefulness of the proposed methods. Several important quantities in tur-
bulence simulations, such as turbulence intensity (e.g., [33]), effective Lyapunov
exponent (introduced in [3]) and Dirichlet quotient (e.g., [27]), are computed with
our method. Lastly, for 3D Ethier-Steinman flow, the superiority of the turbulence
model in stability is shown for high Reynolds number flows.

1.1. Methods and Models. In this paper, we consider a second order accurate
method for computing an ensemble of J Navier-Stokes equations, j = 1, ..., J :

uj,t + uj · ∇uj − ν4uj +∇pj = fj , in Ω,(1.1)

∇ · uj = 0, in Ω,

uj = 0, on ∂Ω,

uj(x, 0) = u0
j (x), in Ω,

The first important subtlety is that a new (but consistent) definition of the mean,
(1.2) below, is needed to match the numerical method.

Definition 1. Let tn = n∆t, n = 0, 1, 2, ..., NT , and T := NT∆t. Denote unj =
uj(t

n), j = 1, ..., J . We define the ensemble mean and fluctuation about the mean
as follows.

< u >n:=
1

J

J∑
j=1

(2unj − un−1
j ),(1.2)

u′nj := 2unj − un−1
j − < u >n .(1.3)

Lemma 1. The ensemble mean and fluctuation have the following properties.

< u′ >= 0, << u >>=< u >,

<< u > ·v >=< u > · < v >, << u > ·v′ >= 0.

In particular, if uj ≡ a, then < u >= a.
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Suppressing the spacial discretization until Section 3 for clarity, for laminar
flows/small Re, the method is, for j = 1, ..., J , given u0

j and u1
j ,

3un+1
j − 4unj + un−1

j

2∆t
+ < u >n ·∇un+1

j(EnB)

+u′nj · ∇
(
2unj − un−1

j

)
+∇pn+1

j − ν∆un+1
j = fn+1

j ,

∇ · un+1
j = 0.

This method is second order accurate, Section 5.
For high Reynolds number flows, we incorporate an eddy viscosity model to the

method. Following Prandtl’s assumption that the eddy viscosity is proportional
to the mixing length multiplied by a turbulence characteristic velocity, the eddy
viscosity parameterization has the form

νT = CνT (l · |u′|) .

Definition 2. Let | · | denote the usual Euclidean length of a vector and the Frobe-
nius norm of an array. Then the magnitude of fluctuation (the characteristic
velocity) is defined to be

|u′n| :=

 J∑
j=1

|u′nj |2
1/2

.

The mixing length (from [20]) is defined to be the distance that a fluctuating eddy
travels in one timestep

ln = |u′n|∆t.

Thus the eddy viscosity parameterization is

νT = CνT |u′n|2∆t,

The ensemble eddy viscosity model is, for j = 1, ..., J , given u0
j and u1

j ,

3un+1
j − 4unj + un−1

j

2∆t
+ < u >n ·∇un+1

j + u′nj · ∇
(
2unj − un−1

j

)
(EVB)

+∇pn+1
j − ν∆un+1

j −∇ ·
(
2νT∇sun+1

j

)
= fn+1

j ,

∇ · un+1
j = 0.

Remark 1. The time discretization was motivated by the scheme studied by Wang,
[32], for 2d Navier-Stokes problem in the vorticity-streamfunction formulation. The
special explicit Adams-Bashforth treatment of the nonlinear term is different from
the classical Adams-Bashforth treatment, i.e., u′nj ·∇(2unj −u

n−1
j ) herein vs. un+1

j ·
∇(2unj − u

n−1
j ) and 2unj · ∇unj − u

n−1
j · ∇un−1

j , see [1], [22], [31].

2. Notation and preliminaries

Let Ω be an open, regular domain in Rd (d = 2 or 3). The Lp(Ω) norms and the
Sobolev W k

p (Ω) norms are denoted by ‖ · ‖Lp and ‖ · ‖Wk
p

respectively. For p = 2,

the L2(Ω) norm and the inner product are denoted by ‖ · ‖ and (·, ·). Hk(Ω) is used
to denote the Sobolev space W k

2 (Ω), with norm ‖ · ‖k. For functions v(x, t) defined
on Ω× (0, T ), define (1 ≤ m <∞)
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‖v‖∞,k := EssSup[0,T ]‖v(·, t)‖k and ‖v‖m,k :=

(∫ T

0

‖v(·, t)‖mk dt

)1/m

.

We also introduce the following discrete norms:

‖|v|‖∞,k := max
0≤n≤NT

‖vn‖k and ‖|v|‖m,k :=

(
NT∑
n=0

‖vn‖mk ∆t

)1/m

.

Let X,Q denote the velocity, pressure spaces:

X : = H1
0 (Ω)d =

{
v ∈ L2(Ω)d : ∇v ∈ L2(Ω)d×d and v = 0 on ∂Ω

}
,

Q : = L2
0(Ω) =

{
q ∈ L2(Ω) :

∫
Ω

q dx = 0

}
.

The dual space of X has the usual norm

‖f‖−1 = sup
06=v∈X

(f, v)

‖∇v‖
.

A weak formulation of (1.1) is: find uj : [0, T ] → X, pj : [0, T ] → Q satisfying, for
j = 1, ..., J :

(uj,t, v) + (uj · ∇uj , v) + ν(∇uj ,∇v)− (pj ,∇ · v) = (fj , v) , ∀v ∈ X
uj(x, 0) = u0

j (x) in X and (∇ · uj , q) = 0, ∀q ∈ Q.

Define the usual skew symmetric trilinear form b∗(u, v, w) := 1
2 (u · ∇v, w) − 1

2 (u ·
∇w, v). By the divergence theorem

(2.1) b∗(u, v, w) =

∫
Ω

u · ∇v · w dx+
1

2

∫
Ω

(∇ · u)(v · w) dx.

In both 3d and 2d, b∗(u, v, w) satisfies

|b∗(u, v, w)| ≤ C(Ω)‖∇u‖‖∇v‖‖∇w‖,(2.2)

and two sharper bounds (improvable in 2d)

|b∗(u, v, w)| ≤ C(Ω)‖∇u‖1/2‖u‖1/2‖∇v‖‖∇w‖,(2.3)

|b∗(u, v, w)| ≤ C(Ω)‖∇u‖‖∇v‖‖∇w‖1/2‖w‖1/2.(2.4)

Conforming velocity, pressure finite element spaces based on an edge to edge tri-
angulation (if d = 2) or tetrahedralization (if d = 3) of Ω with maximum element
diameter h are denoted by

Xh ⊂ X , Qh ⊂ Q.
We assume the finite element spaces (Xh, Qh) satisfy the usual discrete inf-sup
/LBBh condition for stability of the discrete pressure, see [15]. Taylor-Hood el-
ements, e.g., [5], [15], are one such choice used in the tests in Section 6. The
discretely divergence free subspace of Xh is

Vh : = {vh ∈ Xh : (∇ · vh, qh) = 0 , ∀qh ∈ Qh}.
We assume that the finite element spaces satisfy the inverse inequality (typical for
quasi-uniform meshes, e.g., [5]), for all vh ∈ Xh,

h‖∇vh‖ ≤ C‖vh‖.(2.5)
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3. Stability of the method without eddy viscosity

For laminar flows, we prove (EnB) is stable under a timestep restriction, (3.2)
below, relating the timestep to the size of the fluctuations about the mean. The
fully discrete method is: given un−1

j,h , unj,h, find un+1
j,h ∈ Xh, pn+1

j,h ∈ Qh satisfying

(
3un+1

j,h − 4unj,h + un−1
j,h

2∆t
, vh

)
+ b∗

(
< uh >

n, un+1
j,h , vh

)
(3.1)

+b∗
(
u′nj,h, 2u

n
j,h − un−1

j,h , vh

)
−
(
pn+1
j,h ,∇ · vh

)
+ν
(
∇un+1

j,h ,∇vh
)

=
(
fn+1
j , vh

)
, ∀vh ∈ Xh,(

∇ · un+1
j,h , qh

)
= 0, ∀qh ∈ Qh.

Timestep condition of (EnB). With a standard spacial discretization with mesh
size h, in both 2d and 3d (EnB) is stable under the CFL type condition:

C
∆t

νh
‖∇u′nj,h‖2 ≤ 1, j = 1, ..., J.(3.2)

This is improvable in 2d following estimates in [19]. Note that the condition is
explicit (i.e., the required information is available at tn to determine ∆t to compute
un+1
j,h stably) and depends on the size of the fluctuation u′nj,h. The constant C is

independent of the timestep ∆t but depends on the domain and minimum angle of
the mesh. Pre-computations were used to determine C for different domains and
meshes in our tests.

Theorem 1 (Stability of (EnB)). Consider the method (3.1). Suppose the condition
(3.2) holds. Then, for any N > 1

1

4
‖uNj,h‖2 +

1

4
‖2uNj,h − uN−1

j,h ‖
2 +

1

8

N−1∑
n=1

‖un+1
j,h − 2unj,h + un−1

j,h ‖
2(3.3)

+
∆t

4

N−1∑
n=1

ν‖∇un+1
j,h ‖

2 ≤
N−1∑
n=1

∆t

ν
‖fn+1
j ‖2−1 +

1

4
‖u1

j,h‖2 +
1

4
‖2u1

j,h − u0
j,h‖2 .

Proof. Set vh = un+1
j,h in (3.1) and multiply through by ∆t. This gives

1

4

(
‖un+1

j,h ‖
2 + ‖2un+1

j,h − u
n
j,h‖2

)
− 1

4

(
‖unj,h‖2 + ‖2unj,h − un−1

j,h ‖
2
)

(3.4)

+
1

4
‖un+1

j,h − 2unj,h + un−1
j,h ‖

2 + ν∆t‖∇un+1
j,h ‖

2

+∆tb∗
(
u′nj,h, 2u

n
j,h − un−1

j,h , un+1
j,h

)
= ∆t

(
fn+1
j , un+1

j,h

)
.

Applying Young’s inequality to the right hand side gives



6 NAN JIANG

1

4

(
‖un+1

j,h ‖
2 + ‖2un+1

j,h − u
n
j,h‖2

)
− 1

4

(
‖unj,h‖2 + ‖2unj,h − un−1

j,h ‖
2
)

(3.5)

+
1

4
‖un+1

j,h − 2unj,h + un−1
j,h ‖

2 + ν∆t‖∇un+1
j,h ‖

2

+∆tb∗
(
u′nj,h, 2u

n
j,h − un−1

j,h , un+1
j,h

)
≤ ν∆t

4
‖∇un+1

j,h ‖
2 +

∆t

ν
‖fn+1
j ‖2−1 .

Next, we bound the trilinear term using (2.4) and the inverse inequality (2.5).

∆tb∗
(
u′nj,h, 2u

n
j,h − un−1

j,h , un+1
j,h

)
(3.6)

= ∆tb∗
(
u′nj,h,−un+1

j,h + 2unj,h − un−1
j,h , un+1

j,h

)
= ∆tb∗

(
u′nj,h, u

n+1
j,h , un+1

j,h − 2unj,h + un−1
j,h

)
≤ C∆t‖∇u′nj,h‖‖∇un+1

j,h ‖‖∇(un+1
j,h − 2unj,h + un−1

j,h )‖1/2‖un+1
j,h − 2unj,h + un−1

j,h ‖
1/2

≤ C∆th−
1
2 ‖∇u′nj,h‖‖∇un+1

j,h ‖‖u
n+1
j,h − 2unj,h + un−1

j,h ‖ .

Using Young’s inequality again yields

∆tb∗
(
u′nj,h, 2u

n
j,h − un−1

j,h , un+1
j,h

)
(3.7)

≤ C∆t2

h
‖∇u′nj,h‖2‖∇un+1

j,h ‖
2 +

1

8
‖un+1

j,h − 2unj,h + un−1
j,h ‖

2 .

With this bound, combining like terms, (3.5) becomes

1

4

(
‖un+1

j,h ‖
2 + ‖2un+1

j,h − u
n
j,h‖2

)
− 1

4

(
‖unj,h‖2 + ‖2unj,h − un−1

j,h ‖
2
)

(3.8)

+
ν∆t

4
‖∇un+1

j,h ‖
2 +

ν∆t

2

(
1− C∆t

νh
‖∇u′nj,h‖2

)
‖∇un+1

j,h ‖
2

+
1

8
‖un+1

j,h − 2unj,h + un−1
j,h ‖

2 ≤ ∆t

ν
‖fn+1
j ‖2−1 .

With the restriction (3.2) assumed, we have

ν∆t

2

(
1− C∆t

νh
‖∇u′nj,h‖2

)
‖∇un+1

j,h ‖
2 ≥ 0 .

Equation (3.8) reduces to

1

4

(
‖un+1

j,h ‖
2 + ‖2un+1

j,h − u
n
j,h‖2

)
− 1

4

(
‖unj,h‖2 + ‖2unj,h − un−1

j,h ‖
2
)

(3.9)

+
ν∆t

4
‖∇un+1

j,h ‖
2 +

1

8
‖un+1

j,h − 2unj,h + un−1
j,h ‖

2 ≤ ∆t

ν
‖fn+1
j ‖2−1 .

Summing up (3.9) from n = 1 to n = N − 1 results in (3.3). This concludes the
proof of Theorem 1.
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The necessity of a timestep condition of the form (3.2) is shown in Section 6.2.
More extensive experiments for a similar lower order accurate method in [19] were
consistent with the conclusion that some timestep condition is needed.

4. Stability of the method with eddy viscosity

In this section, we analyze the method (EVB) including the effect of the eddy
viscosity term. The approximation we study of NSE is: given un−1

j,h , unj,h, find

un+1
j,h ∈ Xh, pn+1

j,h ∈ Qh satisfying

(
3un+1

j,h − 4unj,h + un−1
j,h

2∆t
, vh

)
+ b∗

(
< uh >

n, un+1
j,h , vh

)
(4.1)

+b∗
(
u′nj,h, 2u

n
j,h − un−1

j,h , vh

)
−
(
pn+1
j,h ,∇ · vh

)
+ ν

(
∇un+1

j,h ,∇vh
)

+

∫
Ω

CνT4t|u′n|2
(
∇un+1

j,h · ∇vh
)
dx =

(
fn+1
j , vh

)
, ∀vh ∈ Xh,(

∇ · un+1
j,h , qh

)
= 0, ∀qh ∈ Qh.

Timestep conditions of (EVB). With a standard spacial discretization with
mesh size h, in both 2d and 3d (EVB) is stable, if the following condition holds

CνT > 1 and ∆t‖∇ · u′nj,h‖2L4 ≤
(CνT − 1) ν

2CsCνT
, j = 1, ..., J.(4.2)

If exactly divergence free elements (e.g., [6], [8], [13], [34]) are used, this implies
unconditional stability if CνT > 1. The constant Cs in the second condition of
(4.2) comes from the Sobolev embedding inequality and thus only depends on the
domain.

Remark 2. (4.2) is only one sufficient condition for stability. Other sufficient
conditions can be derived, e.g., for some θ and α, 0 ≤ θ ≤ 1

2 , 0 < α < 1,

θν + ∆t

(
CνT −

1

α

)
|u′nh |2 ≥ 0 and(

1

2
− θ
)
ν‖∇un+1

j,h ‖
2 − 1

1− α
∆t‖∇ · u′nj,h‖2L4‖un+1

j,h ‖
2
L4 ≥ 0.

Theorem 2 (Stability of (EVB)). Consider the method (4.1). Suppose the condi-
tions in (4.2) hold. Then, for any N > 1

1

4
‖uNj,h‖2 +

1

4
‖2uNj,h − uN−1

j,h ‖
2 +

∆t

4

N−1∑
n=1

ν‖∇un+1
j,h ‖

2(4.3)

≤
N−1∑
n=1

∆t

ν
‖fn+1
j ‖2−1 +

1

4
‖u1

j,h‖2 +
1

4
‖2u1

j,h − u0
j,h‖2 .

Proof. Setting vh = un+1
j,h in (4.1) and multiplying through by ∆t yields:

1

4

(
‖un+1

j,h ‖
2 + ‖2un+1

j,h − u
n
j,h‖2

)
− 1

4

(
‖unj,h‖2 + ‖2unj,h − un−1

j,h ‖
2
)

(4.4)
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+
1

4
‖un+1

j,h − 2unj,h + un−1
j,h ‖

2 +

∫
Ω

∆t
(
ν + CνT4t|u′nh |2

)
|∇un+1

j,h |
2dx

+∆tb∗
(
u′nj,h, 2u

n
j,h − un−1

j,h , un+1
j,h

)
= ∆t

(
fn+1
j , un+1

j,h

)
.

Applying Young’s inequality to the right hand side gives

1

4

(
‖un+1

j,h ‖
2 + ‖2un+1

j,h − u
n
j,h‖2

)
− 1

4

(
‖unj,h‖2 + ‖2unj,h − un−1

j,h ‖
2
)

(4.5)

+
1

4
‖un+1

j,h − 2unj,h + un−1
j,h ‖

2 +

∫
Ω

∆t
(
ν + CνT |u′nh |2∆t

)
|∇un+1

j,h |
2dx

+∆tb∗
(
u′nj,h, 2u

n
j,h − un−1

j,h , un+1
j,h

)
≤ ν∆t

4
‖∇un+1

j,h ‖
2 +

∆t

ν
‖fn+1
j ‖2−1 .

Next, for any 0 < α < 1, we bound the trilinear term as follows

∆tb∗
(
u′nj,h, 2u

n
j,h − un−1

j,h , un+1
j,h

)
(4.6)

= ∆tb∗
(
u′nj,h,−un+1

j,h + 2unj,h − un−1
j,h , un+1

j,h

)
= ∆tb∗

(
u′nj,h, u

n+1
j,h , un+1

j,h − 2unj,h + un−1
j,h

)
= ∆t

(
u′nj,h · ∇un+1

j,h , un+1
j,h − 2unj,h + un−1

j,h

)
+

1

2
4t
(
∇ · u′nj,h, un+1

j,h ·
(
un+1
j,h − 2unj,h + un−1

j,h

))
≤ ∆t2

α

∫
Ω

|u′nj,h|2|∇un+1
j,h |

2dx+
1

4
α‖un+1

j,h − 2unj,h + un−1
j,h ‖

2

+
∆t2

1− α

∫
Ω

|∇ · u′nj,h|2|un+1
j,h |

2dx+
1

4
(1− α) ‖un+1

j,h − 2unj,h + un−1
j,h ‖

2 .

The stability follows provided for some α, 0 < α < 1,∫
Ω

{(ν
2

+ CνT |u′nh |2∆t
)
|∇un+1

j,h |
2(4.7)

−4t
(

1

α
|u′nj,h|2|∇un+1

j,h |
2 +

1

1− α
|∇ · u′nj,h|2|un+1

j,h |
2

)}
dx ≥ 0.

We rewrite above inequality with 0 ≤ θ ≤ 1
2 as∫

Ω

{(
θν + ∆t

(
CνT −

1

α

)
|u′nh |2

)
|∇un+1

j,h |
2(4.8)

+

((
1

2
− θ
)
ν|∇un+1

j,h |
2 − 1

1− α
∆t|∇ · u′nj,h|2|un+1

j,h |
2

)}
dx ≥ 0.

A sufficient condition for (4.8) is

θν + ∆t

(
CνT −

1

α

)
|u′nh |2 ≥ 0 and(4.9) (

1

2
− θ
)
ν‖∇un+1

j,h ‖
2 − 1

1− α
∆t‖∇ · u′nj,h‖2L4‖un+1

j,h ‖
2
L4 ≥ 0.
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By Sobolev embedding theorem, (4.9) holds if

θν + ∆t

(
CνT −

1

α

)
|u′nh |2 ≥ 0 and(4.10) (

1

2
− θ
)
ν‖∇un+1

j,h ‖
2 − Cs

1− α
∆t‖∇ · u′nj,h‖2L4‖∇un+1

j,h ‖
2 ≥ 0.

In particular, let CνT > 1, α = 1/CνT and θ = 0, then (4.10) reduces to

CνT > 1 and
1

2
ν − CsCνT

CνT − 1
∆t‖∇ · u′nj,h‖2L4 ≥ 0,

which is equivalent to (4.2). Assume (4.2) holds, then (4.5) becomes

1

4

(
‖un+1

j,h ‖
2 + ‖2un+1

j,h − u
n
j,h‖2

)
− 1

4

(
‖unj,h‖2 + ‖2unj,h − un−1

j,h ‖
2
)

(4.11)

+
ν∆t

4
‖∇un+1

j,h ‖
2 ≤ ∆t

ν
‖fn+1
j ‖2−1 .

Summing up (4.11) from n = 1 to N − 1 completes the proof.

The question arises: how restrictive is the ν in the RHS of the second conditon
in (4.2) vs the L4 accuracy of the weakly imposed divergence free condition (the
LHS of the second condition in (4.2)). This is explored in numerical tests in Section
6.2, 6.3. In these tests, (4.2) did not appear to be restrictive.

5. Error Analysis

In this section we give a detailed error analysis of (EnB). Assume Xh and Qh
satisfy the usual (LBBh) condition, then the method is equivalent to: for n =
1, ..., NT − 1, find un+1

j,h ∈ Vh such that(
3un+1

j,h − 4unj,h + un−1
j,h

2∆t
, vh

)
+ b∗

(
< uh >

n, un+1
j,h , vh

)
(5.1)

+b∗
(
u′nj,h, 2u

n
j,h − un−1

j,h , vh

)
+ ν

(
∇un+1

j,h ,∇vh
)

=
(
fn+1
j , vh

)
, ∀vh ∈ Vh.

To analyze the rate of convergence of the approximation we assume that the fol-
lowing regularity assumptions on the NSE

uj ∈ L∞
(
0, T ;H1(Ω)

)
∩H1

(
0, T ;Hk+1(Ω)

)
∩H2

(
0, T ;H1(Ω)

)
,

pj ∈ L2
(
0, T ;Hs+1(Ω)

)
, and fj ∈ L2

(
0, T ;L2(Ω)

)
.

Let enj = unj − unj,h be the error between the true solution and the approximate
solution, then we have the following error estimates.

Theorem 3 (Convergence of (EnB)). Consider the method ( EnB). If the following
condition holds

Ce
∆t

νh
‖∇u′nj,h‖2 ≤ 1, j = 1, ..., J,(5.2)

where Ce is a constant that depends on the domain and the minimum angle of the
mesh, but independent of the timestep, then for any 1 < N ≤ NT , there is a positive
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constant C independent of the mesh width and timestep such that

1

2
‖eNj ‖2 +

1

2
‖2eNj − eN−1

j ‖2 +
1

4

N−1∑
n=1

‖en+1
j − 2enj + en−1

j ‖2(5.3)

+
ν∆t

4
‖∇eNj ‖2 +

ν∆t

8
‖∇eN−1

j ‖2

≤ exp
(
CT

ν2

){1

2
‖e1
j‖2 +

1

2
‖2e1

j − e0
j‖2 +

ν∆t

4
‖∇e1

j‖2 +
ν∆t

8
‖∇e0

j‖2

+C
h2k

ν
‖|∇uj |‖2∞,0‖|uj |‖22,k+1 + C

∆t4

ν
‖|∇uj,tt|‖22,0

+C
h2k

ν
‖|∇uj |‖22,k+1 + C∆t2h2k+1‖|∇uj,tt|‖22,k + C∆t3h‖|∇uj,tt|‖22,0

+C
h2s+2

ν
‖|pj |‖22,s+1 + Ch2k+2ν−1‖|ut,j |‖22,k+1

+Cνh2k‖|∇uj |‖22,k +
C∆t4

ν
‖|uj,ttt|‖22,0

}
.

Remark 3. The condition (5.2) is the same type of condition as the stability con-
dition (3.2) for ( EnB). Only the constant Ce in (5.2) is possibly different from the
one in (3.2).

Corollary 1. Under the assumptions of Theorem 3, with (Xh, Qh) given by the
Taylor-Hood approximation elements (k = 2, s = 1), i.e., C0 piecewise quadratic
velocity space Xh and C0 piecewise linear pressure space Qh, we have the following
error estimate

1

2
‖eNj ‖2 +

1

2
‖2eNj − eN−1

j ‖2 +
1

4

N−1∑
n=1

‖en+1
j − 2enj + en−1

j ‖2(5.4)

+
ν∆t

4
‖∇eNj ‖2 +

ν∆t

8
‖∇eN−1

j ‖2 ≤ C
(
h4 + ∆t4 + h∆t3 + ‖∇e0

j‖2 + ‖∇e1
j‖2
)

.

Proof. The true solution(uj , pj) of the NSE satisfies

(
3un+1

j − 4unj + un−1
j

2∆t
, vh

)
+ b∗

(
un+1
j , un+1

j , vh
)

+ ν
(
∇un+1

j ,∇vh
)

(5.5)

−
(
pn+1
j ,∇ · vh

)
=
(
fn+1
j , vh

)
+ Intp

(
un+1
j ; vh

)
, for all vh ∈ Vh,

where Intp
(
un+1
j ; vh

)
is defined as

Intp
(
un+1
j ; vh

)
=

(
3un+1

j − 4unj + un−1
j

2∆t
− uj,t(tn+1), vh

)
.

Let enj = unj − unj,h =
(
unj − Ihunj

)
+
(
Ihu

n
j − unj,h

)
= ηnj + ξnj,h, where Ihu

n
j ∈ Vh is

an interpolant of unj in Vh. Subtracting (5.1) from (5.5) gives

(
3ξn+1
j,h − 4ξnj,h + ξn−1

j,h

2∆t
, vh

)
+ b∗

(
un+1
j , un+1

j , vh
)

+ ν
(
∇ξn+1

j,h ,∇vh
)

(5.6)
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−b∗
(

2unj,h − un−1
j,h − u

′n
j,h, u

n+1
j,h , vh

)
− b∗

(
u′nj,h, 2u

n
j,h − un−1

j,h , vh

)
−
(
pn+1
j ,∇ · vh

)
= −

(
3ηn+1
j − 4ηnj + ηn−1

j

2∆t
, vh

)
− ν

(
∇ηn+1

j ,∇vh
)

+ Intp
(
un+1
j ; vh

)
.

Set vh = ξn+1
j,h ∈ Vh , and rearrange the nonlinear terms, then we have

1

4∆t

(
‖ξn+1
j,h ‖

2 + ‖2ξn+1
j,h − ξ

n
j,h‖2

)
− 1

4∆t

(
‖ξnj,h‖2 + ‖2ξnj,h − ξn−1

j,h ‖
2
)

(5.7)

+
1

4∆t
‖ξn+1
j,h − 2ξnj,h + ξn−1

j,h ‖
2 + ν‖∇ξn+1

j,h ‖
2

= −b∗
(
un+1
j , un+1

j , ξn+1
j,h

)
+ b∗

(
2unj,h − un−1

j,h , un+1
j,h , ξn+1

j,h

)
+b∗

(
u′nj,h, 2u

n
j,h − un−1

j,h − u
n+1
j,h , ξn+1

j,h

)
+
(
pn+1
j ,∇ · ξn+1

j,h

)
−

(
3ηn+1
j − 4ηnj + ηn−1

j

2∆t
, ξn+1
j,h

)
− ν

(
∇ηn+1

j ,∇ξn+1
j,h

)
+ Intp

(
un+1
j ; ξn+1

j,h

)
.

Now we bound the right hand side of equation (5.7). First, for the nonlinear term,
adding and subtracting b∗(un+1

j , un+1
j,h , ξn+1

j,h ) (Step 1), b∗(2unj − u
n−1
j , un+1

j,h , ξn+1
j,h )

(Step 2) and b∗(u′nj,h, 2u
n
j − u

n−1
j − un+1

j , ξn+1
j,h ) (Step3) respectively, we have

−b∗
(
un+1
j , un+1

j , ξn+1
j,h

)
+ b∗

(
2unj,h − un−1

j,h , un+1
j,h , ξn+1

j,h

)
(5.8)

+b∗
(
u′nj,h, 2u

n
j,h − un−1

j,h − u
n+1
j,h , ξn+1

j,h

)
= −b∗

(
un+1
j , en+1

j , ξn+1
j,h

)
− b∗

(
un+1
j , un+1

j,h , ξn+1
j,h

)
(Step 1)

+b∗
(

2unj,h − un−1
j,h , un+1

j,h , ξn+1
j,h

)
+ b∗

(
u′nj,h, 2u

n
j,h − un−1

j,h − u
n+1
j,h , ξn+1

j,h

)
= −b∗

(
un+1
j , en+1

j , ξn+1
j,h

)
− b∗

(
un+1
j − (2unj − un−1

j ), un+1
j,h , ξn+1

j,h

)
(Step 2)

−b∗
(

2enj − en−1
j , un+1

j,h , ξn+1
j,h

)
+ b∗

(
u′nj,h, 2u

n
j,h − un−1

j,h − u
n+1
j,h , ξn+1

j,h

)
= −b∗

(
un+1
j , en+1

j , ξn+1
j,h

)
− b∗

(
un+1
j −

(
2unj − un−1

j

)
, un+1
j,h , ξn+1

j,h

)
(Step 3)

−b∗
(

2enj − en−1
j , un+1

j,h , ξn+1
j,h

)
− b∗

(
u′nj,h, 2e

n
j − en−1

j − en+1
j , ξn+1

j,h

)
+b∗

(
u′nj,h, 2u

n
j − un−1

j − un+1
j , ξn+1

j,h

)
= −b∗

(
un+1
j , ηn+1

j , ξn+1
j,h

)
− b∗

(
un+1
j − (2unj − un−1

j ), un+1
j,h , ξn+1

j,h

)
−b∗

(
2ηnj − ηn−1

j , un+1
j,h , ξn+1

j,h

)
− b∗

(
2ξnj,h − ξn−1

j,h , un+1
j,h , ξn+1

j,h

)
−b∗

(
u′nj,h, 2ξ

n
j,h − ξn−1

j,h − ξ
n+1
j,h , ξn+1

j,h

)
− b∗

(
u′nj,h, 2η

n
j − ηn−1

j − ηn+1
j , ξn+1

j,h

)
+b∗

(
u′nj,h, 2u

n
j − un−1

j − un+1
j , ξn+1

j,h

)
.

We estimate the nonlinear terms using (2.2), (2.3) and Young’s inequality as follows.

b∗
(
un+1
j , ηn+1

j , ξn+1
j,h

)
≤ C‖∇un+1

j ‖‖∇ηn+1
j ‖‖∇ξn+1

j,h ‖(5.9)
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≤ ν

64
‖∇ξn+1

j,h ‖
2 + Cν−1‖∇un+1

j ‖2‖∇ηn+1
j ‖2 .

b∗
(
un+1
j −

(
2unj − un−1

j

)
, un+1
j,h , ξn+1

j,h

)
(5.10)

≤ C‖∇
(
un+1
j − 2unj + un−1

j

)
‖‖∇un+1

j,h ‖‖∇ξ
n+1
j,h ‖

≤ ν

64
‖∇ξn+1

j,h ‖
2 + Cν−1‖∇

(
un+1
j − 2unj + un−1

j

)
‖2‖∇un+1

j,h ‖
2

≤ ν

64
‖∇ξn+1

j,h ‖
2 + Cν−1∆t3

(∫ tn+1

tn−1

‖∇uj,tt‖2dt

)
‖∇un+1

j,h ‖
2 .

b∗
(

2ηnj − ηn−1
j , un+1

j,h , ξn+1
j,h

)
≤ C‖∇

(
2ηnj − ηn−1

j

)
‖‖∇un+1

j,h ‖‖∇ξ
n+1
j,h ‖(5.11)

≤ ν

64
‖∇ξn+1

j,h ‖
2 + Cν−1

(
‖∇ηnj ‖2 + ‖∇ηn−1

j ‖2
)
‖∇un+1

j,h ‖
2.

2b∗
(
ξnj,h, u

n+1
j,h , ξn+1

j,h

)
≤ C‖∇ξnj,h‖

1
2 ‖ξnj,h‖

1
2 ‖∇un+1

j,h ‖‖∇ξ
n+1
j,h ‖(5.12)

≤ C‖∇ξnj,h‖
1
2 ‖ξnj,h‖

1
2 ‖∇ξn+1

j,h ‖

≤ C
(
ε‖∇ξn+1

j,h ‖
2 +

1

ε
‖∇ξnj,h‖‖ξnj,h‖

)
≤ C

(
ε‖∇ξn+1

j,h ‖
2 +

1

ε

(
δ‖∇ξnj,h‖2 +

1

δ
‖ξnj,h‖2

))
≤
( ν

64
‖∇ξn+1

j,h ‖
2 +

ν

16
‖∇ξnj,h‖2

)
+ Cν−3‖ξnj,h‖2.

Similarly,

b∗
(
ξn−1
j,h , un+1

j,h , ξn+1
j,h

)
≤ C‖∇ξn−1

j,h ‖
1
2 ‖ξn−1

j,h ‖
1
2 ‖∇un+1

j,h ‖‖∇ξ
n+1
j,h ‖(5.13)

≤ C‖∇ξn−1
j,h ‖

1
2 ‖ξn−1

j,h ‖
1
2 ‖∇ξn+1

j,h ‖

≤ C
(
ε‖∇ξn+1

j,h ‖
2 +

1

ε
‖∇ξn−1

j,h ‖‖ξ
n−1
j,h ‖

)
≤ C

(
ε‖∇ξn+1

j,h ‖
2 +

1

ε

(
δ‖∇ξn−1

j,h ‖
2 +

1

δ
‖ξn−1
j,h ‖

2

))
≤
( ν

64
‖∇ξn+1

j,h ‖
2 +

ν

16
‖∇ξn−1

j,h ‖
2
)

+ Cν−3‖ξn−1
j,h ‖

2.

By skew symmetry

b∗
(
u′nj,h, 2ξ

n
j,h − ξn−1

j,h − ξ
n+1
j,h , ξn+1

j,h

)
= −b∗

(
u′nj,h, ξ

n+1
j,h − 2ξnj,h + ξn−1

j,h , ξn+1
j,h

)
= b∗

(
u′nj,h, ξ

n+1
j,h , ξn+1

j,h − 2ξnj,h + ξn−1
j,h

)
.

Using (2.4) and inverse inequality (2.5) gives

b∗
(
u′nj,h, 2ξ

n
j,h − ξn−1

j,h − ξ
n+1
j,h , ξn+1

j,h

)
(5.14)

≤ C‖∇u′nj,h‖‖∇ξn+1
j,h ‖‖∇(ξn+1

j,h − 2ξnj,h + ξn−1
j,h )‖1/2‖ξn+1

j,h − 2ξnj,h + ξn−1
j,h ‖

1/2

≤ C‖∇u′nj,h‖‖∇ξn+1
j,h ‖

(
h−1/2

)
‖ξn+1
j,h − 2ξnj,h + ξn−1

j,h ‖
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≤ 1

8∆t
‖ξn+1
j,h − 2ξnj,h + ξn−1

j,h ‖
2 +

Ce
16

∆t

h
‖∇u′nj,h‖2‖∇ξn+1

j,h ‖
2.

b∗
(
u′nj,h, η

n+1
j − 2ηnj + ηn−1

j , ξn+1
j,h

)
(5.15)

≤ C‖∇u′nj,h‖‖∇
(
ηn+1
j − 2ηnj + ηn−1

j

)
‖‖∇ξn+1

j,h ‖

≤ ν

64
‖∇ξn+1

j,h ‖
2 + Cν−1‖∇u′nj,h‖2‖∇

(
ηn+1
j − 2ηnj + ηn−1

j

)
‖2

≤ ν

64
‖∇ξn+1

j,h ‖
2 +

C∆t3

ν
‖∇u′nj,h‖2

(∫ tn+1

tn−1

‖∇ηj,tt‖2 dt

)
.

b∗
(
u′nj,h, u

n+1
j − 2unj + un−1

j , ξn+1
j,h

)
(5.16)

≤ C‖∇u′nj,h‖‖∇
(
un+1
j − 2unj + un−1

j

)
‖‖∇ξn+1

j,h ‖

≤ ν

64
‖∇ξn+1

j,h ‖
2 + Cν−1‖∇u′nj,h‖2‖∇

(
un+1
j − 2unj + un−1

j

)
‖2

≤ ν

64
‖∇ξn+1

j,h ‖
2 + Cν−1∆t3‖∇u′nj,h‖2

(∫ tn+1

tn−1

‖∇uj,tt‖2 dt

)
.

Next, consider the pressure term. Since ξn+1
j,h ∈ Vh we have(

pn+1
j ,∇ · ξn+1

j,h

)
=
(
pn+1
j − qn+1

j,h ,∇ · ξn+1
j,h

)
(5.17)

≤ ‖pn+1
j − qn+1

j,h ‖‖∇ · ξ
n+1
j,h ‖

≤ ν

64
‖∇ξn+1

j,h ‖
2 + Cν−1‖pn+1

j − qn+1
j,h ‖

2, ∀qn+1
j,h ∈ Qh .

The other terms, are bounded as(
3ηn+1
j − 4ηnj + ηn−1

j

2∆t
, ξn+1
j,h

)
≤ C‖

3ηn+1
j − 4ηnj + ηn−1

j

2∆t
‖‖∇ξn+1

j,h ‖(5.18)

≤ Cν−1‖
3ηn+1
j − 4ηnj + ηn−1

j

2∆t
‖2 +

ν

64
‖∇ξn+1

j,h ‖
2

≤ Cν−1‖ 1

∆t

∫ tn+1

tn−1

ηj,t dt‖+
ν

64
‖∇ξn+1

j,h ‖
2

≤ C

ν∆t

∫ tn+1

tn−1

‖ηj,t‖2 dt+
ν

64
‖∇ξn+1

j,h ‖
2 .

ν
(
∇ηn+1

j ,∇ξn+1
j,h

)
≤ ν‖∇ηn+1

j ‖‖∇ξn+1
j,h ‖(5.19)

≤ Cν‖∇ηn+1
j ‖2 +

ν

64
‖∇ξn+1

j,h ‖
2 .

Finally,

Intp
(
un+1
j ; ξn+1

j,h

)
=

(
3un+1

j − 4unj + un−1
j

2∆t
− uj,t(tn+1), ξn+1

j,h

)
(5.20)
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≤ C‖
3un+1

j − 4unj + un−1
j

2∆t
− uj,t(tn+1)‖‖∇ξn+1

j,h ‖

≤ ν

64
‖∇ξn+1

j,h ‖
2 +

C

ν
‖

3un+1
j − 4unj + un−1

j

2∆t
− uj,t(tn+1)‖2

≤ ν

64
‖∇ξn+1

j,h ‖
2 +

C∆t3

ν

∫ tn+1

tn−1

‖uj,ttt‖2dt .

Combining, we now have the following inequality

1

4∆t

(
‖ξn+1
j,h ‖

2 + ‖2ξn+1
j,h − ξ

n
j,h‖2

)
− 1

4∆t

(
‖ξnj,h‖2 + ‖2ξnj,h − ξn−1

j,h ‖
2
)

(5.21)

+
1

8∆t
‖ξn+1
j,h − 2ξnj,h + ξn−1

j,h ‖
2 +

ν

16

(
‖∇ξn+1

j,h ‖
2 − ‖∇ξnj,h‖2

)
+
ν

16

((
‖∇ξn+1

j,h ‖
2 + ‖∇ξnj,h‖2

)
−
(
‖∇ξnj,h‖2 + ‖∇ξn−1

j,h ‖
2
))

+

(
ν

16
− Ce

16

∆t

h
‖∇u′nj,h‖2

)
‖∇ξn+1

j,h ‖
2 ≤ Cν−3

(
‖ξnj,h‖2 + ‖ξn−1

j,h ‖
2
)

+Cν−1‖∇un+1
j ‖2‖∇ηn+1

j ‖2 +
C∆t3

ν

(∫ tn+1

tn−1

‖∇uj,tt‖2dt

)
‖∇un+1

j,h ‖
2

+Cν−1
(
‖∇ηnj ‖2 + ‖∇ηn−1

j ‖2
)
‖∇un+1

j,h ‖
2 +

C∆t3

ν
‖∇u′nj,h‖2

(∫ tn+1

tn−1

‖∇ηj,tt‖2 dt

)

+
C∆t3

ν
‖∇u′nj,h‖2

(∫ tn+1

tn−1

‖∇uj,tt‖2 dt

)
+ Cν−1‖pn+1

j − qn+1
j,h ‖

2

+
C

ν∆t

∫ tn+1

tn−1

‖ηj,t‖2 dt+ Cν‖∇ηn+1
j ‖2 +

C∆t3

ν

∫ tn+1

tn−1

‖uj,ttt‖2dt.

Under the assumption of (5.2), ( ν16 −
Ce

16
∆t
h ‖∇u

′n
j,h‖2) is nonnegative and thus can

be eliminated from the LHS of (5.21). We then take the sum of (5.21) from n = 1
to n = N − 1 and multiply through by 2∆t. This yields

1

2
‖ξNj,h‖2 +

1

2
‖2ξNj,h − ξN−1

j,h ‖
2 +

1

4

N−1∑
n=1

‖ξn+1
j,h − 2ξnj,h + ξn−1

j,h ‖
2(5.22)

+
ν∆t

8
‖∇ξNj,h‖2 +

ν∆t

8

(
‖∇ξNj,h‖2 + ‖∇ξN−1

j,h ‖
2
)

≤ 1

2
‖ξ1
j,h‖2 +

1

2
‖2ξ1

j,h − ξ0
j,h‖2 +

ν∆t

8
‖∇ξ1

j,h‖2 +
ν∆t

8

(
‖∇ξ1

j,h‖2 + ‖∇ξ0
j,h‖2

)
+∆t

N−1∑
n=0

Cν−3‖ξnj,h‖2 + ∆t

N−1∑
n=0

{
Cν−1‖∇un+1

j ‖2‖∇ηn+1
j ‖2

+
C∆t3

ν

(∫ tn+1

tn−1

‖∇uj,tt‖2 dt

)
+ Cν−1‖∇ηnj ‖2

+C∆t2h

(∫ tn+1

tn−1

‖∇ηj,tt‖2dt

)
+ C∆t2h

(∫ tn+1

tn−1

‖∇uj,tt‖2dt

)
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+Cν−1‖pn+1
j − qn+1

j,h ‖
2 +

C

ν∆t

∫ tn+1

tn−1

‖ηj,t‖2dt

+Cν‖∇ηn+1
j ‖2 +

C∆t3

ν

∫ tn+1

tn−1

‖uj,ttt‖2 dt
}
.

Applying interpolation inequalities gives

1

2
‖ξNj,h‖2 +

1

2
‖2ξNj,h − ξN−1

j,h ‖
2 +

1

4

N−1∑
n=1

‖ξn+1
j,h − 2ξnj,h + ξn−1

j,h ‖
2(5.23)

+
ν∆t

4
‖∇ξNj,h‖2 +

ν∆t

8
‖∇ξN−1

j,h ‖
2

≤ 1

2
‖ξ1
j,h‖2 +

1

2
‖2ξ1

j,h − ξ0
j,h‖2 +

ν∆t

4
‖∇ξ1

j,h‖2 +
ν∆t

8
‖∇ξ0

j,h‖2 + ∆t

N−1∑
n=0

Cν−3‖ξnj,h‖2

+C
h2k

ν
‖|∇uj |‖2∞,0‖|uj |‖22,k+1 + C

∆t4

ν
‖|∇uj,tt|‖22,0

+C
h2k

ν
‖|∇uj |‖22,k+1 + C∆t2h2k+1‖|∇uj,tt|‖22,k + C∆t3h‖|∇uj,tt|‖22,0

+C
h2s+2

ν
‖|pj |‖22,s+1 + Ch2k+2ν−1‖|ut,j |‖22,k+1

+Cνh2k‖|∇uj |‖22,k +
C∆t4

ν
‖|uj,ttt|‖22,0.

The next step will be the application of the discrete Gronwall inequality (Girault
and Raviart [16], p. 176).

1

2
‖ξNj,h‖2 +

1

2
‖2ξNj,h − ξN−1

j,h ‖
2 +

1

4

N−1∑
n=1

‖ξn+1
j,h − 2ξnj,h + ξn−1

j,h ‖
2(5.24)

+
ν∆t

4
‖∇ξNj,h‖2 +

ν∆t

8
‖∇ξN−1

j,h ‖
2

≤ exp
(
CN∆t

ν2

){1

2
‖ξ1
j,h‖2 +

1

2
‖2ξ1

j,h − ξ0
j,h‖2 +

ν∆t

4
‖∇ξ1

j,h‖2 +
ν∆t

8
‖∇ξ0

j,h‖2

+C
h2k

ν
‖|∇uj |‖2∞,0‖|uj |‖22,k+1 + C

∆t4

ν
‖|∇uj,tt|‖22,0

+C
h2k

ν
‖|∇uj |‖22,k+1 + C∆t2h2k+1‖|∇uj,tt|‖22,k + C∆t3h‖|∇uj,tt|‖22,0

+C
h2s+2

ν
‖|pj |‖22,s+1 + Ch2k+2ν−1‖|ut,j |‖22,k+1

+Cνh2k‖|∇uj |‖22,k +
C∆t4

ν
‖|uj,ttt|‖22,0

}
.

Using triangle inequality on the error and absorbing constants into a new con-
stant C, we obtain (5.3).



16 NAN JIANG

∆t ‖u1 − u1,h‖∞,0 rate ‖∇u1 −∇u1,h‖2,0 rate
0.05 4.85642 · 10−4 – 5.11092 · 10−3 –
0.025 1.26128 · 10−4 1.9450 1.18810 · 10−3 2.1049
0.0125 3.21716 · 10−5 1.9710 2.92502 · 10−4 2.0221
0.00625 8.12342 · 10−6 1.9856 7.31031 · 10−5 2.0004
0.003125 2.04078 · 10−6 1.9930 1.83094 · 10−5 1.9974

Table 1. (EnB): Errors and convergence rates for the first en-
semble member

6. Numerical Tests

In this section, we give three tests to verify the convergence rate, test the effect
of the EV term, test stability of the methods, test the severity of the timestep
conditions, and explore the use of ensemble methods to interrogate flows.

6.1. Convergence. We check the convergence rate on a simple test problem from
[18], with known exact solution. This problem preserves spacial patterns of the
Green-Taylor solution, [4], [17], but the vortices do not decay as t → ∞. The
analytical solution of the Navier-Stokes equations in the unit square Ω = [0, 1]2 is
given by

utrue = (−g(t) cosx sin y,+g(t) sinx cos y)T ,

ptrue = −1

4
[cos(2x) + cos(2y)]g2(t), where g(t) = sin(2t),

with source term f(x, y, t) = [g′(t) + 2νg(t)](− cosx sin y, sinx cos y)T . The bound-
ary condition on the problem is taken to be inhomogeneous Dirichlet: u = utrue on ∂Ω.

The generation of perturbations to initial conditions and source terms is applica-
tion dependable. In this simple test, we generate perturbations to initial conditions
in the same way as in [19]. Consider an ensemble of two members u1,2 = (1±ε)utrue,
ε = 10−3, which are the solutions to NSE corresponding to two different initial
conditions u0

1,2 = (1 ± ε)u0
true, respectively. Note the source term and boundary

condition are adjusted accordingly.
Taking ν = 0.01, T = 1, h = 2∆t, we compute approximations to the test

problem with both (EnB) and (EVB) on 5 successive mesh refinements and cor-
responding timestep reductions. From Table 1 and Table 2 we can see u1 and u2

computed with (EnB) are second order convergent as predicted. The eddy vis-
cosity term in (EVB) results in extra errors that depend on the magnitude of the
fluctuations. A comparison of data from Table 1, 2, 3 and 4 shows that the errors
from (EVB) are comparable to although slightly bigger than errors from (EnB).

6.2. Flow between two offset cylinders. We test the stability of our algorithm
on a problem of flow between two offset circles, given in [19]. The domain is a disk
with a smaller off center obstacle inside. Let r1 = 1, r2 = 0.1, c = (c1, c2) = (1

2 , 0),
then the domain is given by

Ω = {(x, y) : x2 + y2 ≤ r2
1 and (x− c1)2 + (y − c2)2 ≥ r2

2}.
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∆t ‖u2 − u2,h‖∞,0 rate ‖∇u2 −∇u2,h‖2,0 rate
0.05 4.84794 · 10−4 – 5.09708 · 10−3 –
0.025 1.25913 · 10−4 1.9449 1.18528 · 10−3 2.1044
0.0125 3.21161 · 10−5 1.9711 2.91837 · 10−4 2.0220
0.00625 8.10943 · 10−6 1.9856 7.29391 · 10−5 2.0004
0.003125 2.03726 · 10−6 1.9930 1.82684 · 10−5 1.9973

Table 2. (EnB): Errors and convergence rates for the second en-
semble member

∆t ‖u1 − u1,h‖∞,0 rate ‖∇u1 −∇u1,h‖2,0 rate
0.05 4.85644 · 10−4 – 5.11094 · 10−3 –
0.025 1.26129 · 10−4 1.9450 1.18812 · 10−3 2.1049
0.0125 3.21721 · 10−5 1.9710 2.92508 · 10−4 2.0221
0.00625 8.12367 · 10−6 1.9856 7.31064 · 10−5 2.0004
0.003125 2.0409 · 10−6 1.9929 1.83110 · 10−5 1.9973

Table 3. (EVB): Errors and convergence rates for the first en-
semble member

∆t ‖u2 − u2,h‖∞,0 rate ‖∇u2 −∇u2,h‖2,0 rate
0.05 4.84796 · 10−4 – 5.09709 · 10−3 –
0.025 1.25915 · 10−4 1.9449 1.185291 · 10−3 2.1044
0.0125 3.21166 · 10−5 1.9711 2.91844 · 10−4 2.0220
0.00625 8.10968 · 10−6 1.9856 7.29423 · 10−5 2.0004
0.003125 2.03738 · 10−6 1.9929 1.82701 · 10−5 1.9973

Table 4. (EVB): Errors and convergence rates for the second en-
semble member

The flow is driven by a counterclockwise rotational body force

f(x, y, t) = (−4y ∗ (1− x2 − y2), 4x ∗ (1− x2 − y2))T ,

with no-slip boundary conditions imposed on both circles. The flow between the
two circles shows interesting structures interacting with the inner circle. A Von
Kármán vortex street is formed and then reinteracts with the inner circle and itself
generating complex flow patterns.

We generate perturbations of the initial conditions in the same way given in [19]
for the same test problem. Two perturbed initial conditions are obtained by by
solving steady Stokes problem with perturbed body forces given by

f1(x, y, t) = f(x, y, t) + ε1 ∗ (sin(3πx)sin(3πy), cos(3πx)cos(3πy))T ,

f2(x, y, t) = f(x, y, t) + ε2 ∗ (sin(3πx)sin(3πy), cos(3πx)cos(3πy))T .

We compute approximations to the test problem with both (EnB) and (EVB),
with perturbation parameters ε1 = 10−3, ε2 = −10−3. The mesh is generated by
Delaunay triangulation with 40 mesh points on the outer circle and 10 mesh points
on the inner circle.
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For (EnB), we cut ∆t according to the following specific timestep condition

(6.1) ∆t‖∇u′nj,h‖2 ≤ 80000νh, (j = 1, 2).

For (EVB), we cut ∆t according to the following specific timestep condition

(6.2) ∆t‖∇ · u′nj,h‖2L4 ≤ 40000ν, (j = 1, 2).

Pre-computations were used to determine the coefficients (80, 000 and 40, 000) in
the conditions. The timestep is cut in half if the condition is violated and doubled
if the magnitude of the fluctuations gets small enough (specifically, ∆t‖∇u′nj,h‖2 ≤
40000νh for (EnB); ∆t‖∇·u′nj,h‖2L4 ≤ 20000ν for (EVB)). In all cases, ∆t is enforced
to not exceed 0.05. Figure 1 shows the kinetic energy of the average velocity from
different methods. The curve marked with ’no perturbation’ is computed using
the linearly implicit Backward Euler method with no perturbation on the initial
condition. The other two curves are computed by (EnB) (marked with ’noEV’) and
(EVB) (marked with ’EV’, with eddy viscosity coefficient CνT = 1) respectively.
Figure 1 shows that the choice CνT = 1.0 results in too much damping. EV models
have this common sensitivity to the precise values of the EV coefficients.

There is a significant difference between the simulations with the averaged ini-
tial conditions and the averaged simulations with 10−3 perturbation of the initial
conditions. We can see from Figure 1 that the (EnB) gives a better approxima-
tion for ν = 0.02 than (EVB) which is somewhat over-diffused. For ν = 0.02,
both (EnB) and (EVB) are stable under the timestep conditions given above with
timestep reduced to 0.00625 for (EnB) while timestep kept to be 0.05 all the time
for (EVB).

Figure 2 shows a comparison of kinetic energy of the average velocity approxi-
mated by (EVB) with different eddy viscosity parameters. For ν = 0.001, (EnB)
fails with timestep cut to < 10−7, while (EVB) stays stable with large/moderate
timesteps. The upper picture in Figure 2 is obtained by adapting timestep ac-
cording to the timestep restriction (6.2) and the statistics in the lower picture are
obtained by computing with constant timestep ∆t = 0.0125. The approximations
are sensitive to the choice of the eddy viscosity parameter CνT , an observation
consistent with results in [2].

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

time

E
n
e
rg

y

 

 

no perturbation

EV

NoEV

Figure 1. Kinematic Energy for ν = 0.02.

It is believed that 2d (unforced) turbulent flow has a larger window of pre-
dictability than similar 3d flows due to the trend for energy to cascade to large,
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Figure 2. Kinematic Energy for ν = 0.001. UPPER: adapted
timestep; LOWER: constant timestep ∆t = 0.0125.
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Figure 3. Enstrophy for ν = 0.001 with constant timestep ∆t = 0.0125.

coherent structures. This trend may be connected to the selective decay principle
and convergence of Dirichlet quotients; see Majda and Wang [27] for elaborations.
We test this for the above 2d flow between offset circles as follows. We solve the
problem with the same initial conditions generated by the above perturbed body
forces until complex, small scale structures appear at time T ∗ using (EVB) with
eddy viscosity parameter CEV = 1.0. The time T ∗ is selected to be T ∗ = 9.6, a
time of (near) maximal enstrophy from Figure 3. Thereafter (for t > T ∗) we set
f(x, t) ≡ 0 and study the decay of the flow thereafter.
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Definition 3. The turbulence intensity I(t) is

I(t) :=

〈
‖u′j‖2

〉1/2
‖ 〈u〉 ‖

(t),

and the Dirichlet quotients are

D(t) :=
‖∇ × 〈u〉 ‖2

‖ 〈u〉 ‖2
(t), and 〈D〉 (t) :=

〈
‖∇ × uj‖2

‖uj‖2

〉
(t).

Definition 4. The relative energy fluctuation is

r(t) :=
‖u1 − u2‖2

‖u1‖‖u2‖
(t),

and the average, effective Lyapunov exponent over 0 ≤ t ≤ T is

γT (t) :=
1

2T
log

(
r(t+ T )

r(t)

)
.

Remark 4. The definition of γT (t), where T is chosen to be the simulation time,
is from [3].

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

time

I(
t)

Figure 4. Turbulence Intensity, ν = 0.001, ∆t = 0.0125.

IsoValue
-178.029
-160.226
-142.423
-124.62
-106.817
-89.0145
-71.2116
-53.4087
-35.6058
-35.6058
-17.8029
0
17.8029
35.6058
53.4087
71.2116
89.0145
106.817
124.62
142.423

IsoValue
-5.9271
-5.33439
-4.74168
-4.14897
-3.55626
-2.96355
-2.37084
-1.77813
-1.18542
-1.18542
-0.59271
0
0.59271
1.18542
1.77813
2.37084
2.96355
3.55626
4.14897
4.74168

Figure 5. Vorticity, ν = 0.001, ∆t = 0.0125. LEFT: t=0; RIGHT: t=50.

We solve the problem as described and give plots of I(t), D(t), 〈D〉 (t), r(t) and
γT (t) versus time in Figure 4, 6, 7, 8. The turbulence intensity is above 5% during
the entire simulation time, see Figure 4, which is normally associated with signifi-
cant turbulent fluctuations. Figure 5 shows vorticity contours of the freely evolving



A HIGHER ORDER ENSEMBLE SIMULATION ALGORITHM FOR FLUID FLOWS 21

turbulent flows at t = 0 (reinitiation) and t = 50 respectively. At t = 0, the domain
is filled with vortices of a wide range of scales. As time evolves, the size of eddies
continually grows, associated with the cascade of energy from small scales to large
scales, and then a large scale, coherent structure starts to show up. We can see
clearly from Figure 5 a large scale, coherent structure formed at t = 50. Figure 6
shows that the Dirichlet quotients approach a constant around 32, consistent with
the selective decay theorem for freely decaying 2d Navier-Stokes flows in [27]. The
relative energy fluctuation is plotted in Figure 7. For only a short time r(t) is above
0.25, which is the threshold used in [3] to define the predictability time. The differ-
ence here is that r(t) grows exponentially for only a short time period (t = 0 ∼ 5,
approximately) and after which r(t) fluctuates with time and is actually decreasing
to small values after time t = 30. Our explanation is that the dissipation is already
active after t = 5 and the separation of the two trajectories is slowed down due to
lost of energy. The approximated Lyapunov exponent corresponding to different
simulation times is plotted in Fig. 8. It is positive until around t = 44. After this
point (until t = 50), the two trajectories are actually closer than they initially were.
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Figure 6. Dirichlet Quotients, ν = 0.001, ∆t = 0.0125.

6.3. 3D Ethier-Steinman Flow. We give a 3D test to confirm the positive effect
of the eddy viscosity model for high Reynolds number flows compared to the laminar
flow model.

The well-known 3D Ethier-Steinman analytical solutions to the incompressible
Navier-Stokes euqations are used in [9] to provide benchmarks for testing Navier-
Stokes solvers. The solutions are valid for all Reynolds numbers and complex
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Figure 7. Relative Energy Fluctuation, ν = 0.001, ∆t = 0.0125.
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Figure 8. Effective Lyapunov Exponent, ν = 0.001, ∆t = 0.0125.

structures may also be expected due to the nontrivial helicty, see [24], [28]. The
exact 3D NSE solutions on a [0, 1]3 box is given by

u1 = −a(eaxsin(ay + dz) + eazcos(ax+ dy))e−νd
2t(6.3)

u2 = −a(eaysin(az + dx) + eaxcos(ay + dz))e−νd
2t

u3 = −a(eazsin(ax+ dy) + eaycos(az + dx))e−νd
2t

p = −a
2

2
(e2ax + e2ay + e2az + 2sin(ax+ dy)cos(az + dx)ea(y+z)

+2sin(ay + dz)cos(ax+ dy)ea(z+x) + 2sin(az + dx)cos(ay + dz)ea(x+y))e−2νd2t.

We compute approximations to (6.3) with parameters a = 1.25, d = 2.25, kine-
matic viscosity ν = 0.001, mesh size h = 0.1 and end time T = 1. Perturbations are
generated in the same way as in Section 6.1 with the same parameters ε1 = 10−3,
ε2 = −10−3. (EnB) fails for all time steps ∆t = 0.05,∆t = 0.02 and ∆t = 0.01,
while (EVB) gives acceptable approximations. To visualize the flow structure of
the test problem, we plot streamribbons in the box, velocity streamlines and speed
contours on the sides. The exact velocity field and the average velocity calculated
from (EVB) are given in Figure 9, with ∆t = 0.02.
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We plot energy versus time in Figure 10. From the figure, we can easily see,
(EnB) becomes unstable at time around t = 0.5 for all cases ∆t = 0.05,∆t = 0.02
and ∆t = 0.01, while (EVB) stays stable for all cases, giving better approximations
as timestep reduces.

Figure 9. Flow structure for ν = 0.001, ∆t = 0.02. LEFT: Exact
solution. Right: EV model average velocity.

7. Conclusion

We propose an efficient, second order accurate ensemble method to calculate
Navier-Stokes equations and a turbulence model to simulate high Reynolds number
flows. We believe the method has great potential for many important applications,
in which the size of the ensemble used has a great impact on the reliability of
prediction but is limited by computer resources. We emphasize the importance
of the new definition of ensemble mean, adapted to be compatible with the time
discretization. Numerical tests show the superiority of the ensemble turbulence
model and give some indication as to its potential use in exploring various aspects
of turbulent flows such as turbulence intensity, Dirichlet quotients and effective
Lyapunov exponent. The study of the efficiency of the method proposed is the
next step we will take.
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